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Instability of vortex solitons for 2D focusing NLS

7KET  # (Tetsu Mizumachi)
FUMNRZEE 2P (Faculty of Mathematics, Kyushu University)

1 Introduction

In the present article, we consider instability of radially symmetric vortex solitons to
2-dimensional nonlinear Schrédinger equations |
iug + Au+ f(u)=0 for (z,t) e R* xR,
@ {u(x,O) =ug(x) for z € R?, |
where n = 2 and f(u) = |ufP"'u. Let w > 0, m € NU {0}, and let e’“t*™)g, (r) be a

standing wave solution of (1) belonging to H*(R?). Here r and 8 denote polar coordinates

in R2. Then @, m(r) is a solution to

2 _
r¢”+;1:¢"‘ (w+%>¢+f(¢)=0 for r > 0,
(2) \ Lim M = lim ________cb’(r)
r=0 rm r—0 mrm-1’
| Jim 6(r) =0

We remark that €™ ¢, () is a solution to the scalar field equation
(3) Ap —wp+ f(p) =0 for z € R

A standing wave solution of the form e‘(‘”t+m9)¢w,m(r) appears in the study of nonlinear
optics (see references in [13]). If m = 0 and ¢, (r) is positive, then @, is a ground
state. Existence and uniqueness of the ground state are well known (see [4], [5], [12] and
reference therein).

If m # 0, Iaia and Warchall proved the existence of smooth solutions to (2) with any
prescribed number of zeroes. The uniqueness of positive solutions can been proved by

using the classification theorem of positive solutions due to Yanagida and Yotsutani [24)].



Theorem 1 ([14]). Let m be an integer and 1 < p < oo. Then there ezists a unique

positive radially symmetric solution ¢, m to (2) that belongs to H*(R?).

Let ¢ > 0 and let Q). be a positive solution to

Q"~cQ+ f(Q) =0 forzeR,

@) | lim Q(z) =0,
Q(0) = max Q(z).
Then
(5) Qc(z) = (gp_z_l)g)m sech#-T (-(—p—_—;)i@x> .

| In [13], Pego and Warchall numerically observe that as spin index m becomes larger,
a solution ¢, () to (2) remains small initially and then is approximated by Q.(r — )
around r = 7, where ¢ = w + (m?/7?) and 7 is a positive number with ¥ = O(m) as
m — oo (see also [16] and references in [13]). One of our goals in the present paper
is to explain this phenomena. Benci and D’Aprile [2] studied (2) in a slightly general
setting and locate the asymptotic peak of solutions (see also [7]). Recently, Ambrosetti,
Malchiodi and Ni [1] have proved the existence of positive radial solutions concentrating

on spheres to a class of singularly perturbed problem
e2Au — Vu + |[uff~tu =0,
and obtain their asymptotic profile. Adopting the argument in [1], we obtain the following.

Theorem 2. Let p > 1 and let ¢, be a positive solution to (2). Then there exists an
m. € N such that if m > m,,

(6) 1$wm(-) — Qe = Pl m2ge) = O(m~13),
(7) ”¢w,m(’) - Qc(-— f)“L“"(lk’) = O(m—l)’

where 7 = 2m/\/(p — V)w and c = (p + 3)w/4.
Remark 1. Letr =ms, e = 1/m and V(r) = w +r~2. Then (2) is transformed into

e’Arp = V(r)¢+ f(¢) =0.
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Though [1] assumes the boundedness of V(r) and cannot be applied directly to our problem,

a mazimum point of ¢, m(r) can be predicted’ from an auziliary weighted potential vV (r)
introduced by [1].

Let ¢, be a ground state to (3). As is well known, the standing wave solution
e“*p, is stable if dl|lpu||7agny/dw > 0 and unstable if d||p,||22gny/dw < 0. See e.g.
Berestycki-Cazenave (3], Cazenave-Lions [6], Grillakis-Shatah-Strauss [9], Shatah [18],
Shatah-Strauss [19] and Weinstein [23]. Namely, the standing wave solution e“*y,, is
stable if 1 < p < 1+ 4/n and unstable if p > 1 + 4/n. Grillakis [8] proved that every
radially symmetric standing wave solution is linearly unstable if p > 1 4+ 4/n. However,
to the best our knowledge, it remains unknown whether there exists an unstable standing
wave solution with higher energy in the subcritical case (1 < p < 1+ 4/n).

From Theorem 1, we can deduce nondegeneracy of a bound state €™¢, m(r). Let

Nlu] := [g, |u(z)[*dz. Since ¢, m is a least energy solution to (2) in the class
Xm={ue H(R?) | u= f(r)e™},

it follows from Grillakis-Shatah-Strauss [9] that a bound state e“*+™ ¢, _(r) is stable to
the perturbation of the form e™v(r) if dN[@, m]/dw > 0 and unstable if dN{p,)/dw < 0.
More precisely, we have the following.

Theorem 3. Let m € NU {0} and ¢, m be a positive radially symmetric solution of (2)
that belongs to H(R?).

(i) Let p > 3. Then the standing wave solution '@+ ¢, . of (1) is unstable.

(ii) Let 1 < p <3 and up € X;n. Then for any € > 0, there exists a § > 0 such that if
inf e [|uo — €N Gy, mllmi(r2) < 8, the solution of (1) satisfies

sup inf ||u(-,t) — €M@, ol (e < €.
>0 7€R

Theorem 3 implies vortex solitons are stable to symmetric perturbations in the sub-
critical case (1 < p < 3). It is expected that vortex solitons are unstable even in the
subcritical case. Using the limiting profile of vortex solitons as m — oo, we prove that a
 standing wave solution e“++m® @, (r) is unstable to perturbations in H'(R?) for large

m.
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Theorem 4. Letp > 1 and ¢, m be as in Theorem 2. Then there exists an m, € N such

that if m > m., a standing wave solution e'“**™9¢,, .. is unstable.

2 Proof of Theorem 4

In this section, we will prove Theorem 4. Let u(z,t) = e**(e™¢,(r) + e*v) and

linearize (1) around v =0 and ¢t = 0. Then

(8) iIM 4 (A — w+ Bi(r))v + 2™ By ()T = 0,

where

fulr) = ’%ld)w(r)"", Bo(r) = ff—;—l%(r)p—x.

Put v = e/0+mfy,  § = e0-™¥y _ and complexify (8) into a system
*\2
(Ar ~w- BN iy m(ﬂ) vs + Ba(r)y- = 0,

(9) . |
(Ar —w-— (ﬂ;}J)—? —iA+ ﬂl(r)) Y-+ Ba(r)y+ = 0.

If ) is an eigenvalue of the linearized operator, there exist a j € Z and a solution (y4,y-)
to (9) that satisfy (e®+™0y, (r), ei-™¥y_(r)) € H!(R?,C?). We will show the existence
of unstable eigenvalues for j with 1 < j < m.

Let wy, =y +y—, wa=9y+ —y_,e=m"! and § = je. Let s =1 — aom. Then (9) can

be rewritten as

(10) | H(e, 6)w = Aw,
where w = {w;, ws),

, | h ha
(11) H(e, ) =1 <h21 hzz) ,
and

—9mi
hii = hyy = _,,.727'2’
m? + j2

h12=A,—w— 2 +¢f,_1
T

m? + 52
2

h21 =Ar-—w— +p¢f,_1.
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We remark that

—26
T-rh11 =T_rhg = (aTsr)z
£ 1+ 62
hy =R 4 ———08, —w— ———— 4¢P}
T-¢#M12 r+a0+€r r— W (ao+€r)2 w
€ | 1442
T_thl =—“83 + —0, - + +p¢f)*1‘.

aoter YT (ap +er)?
Before we investigate the spectrum of H(e, ), let us consider the spectrum of a linear
operator
—205%  L_ — a7?8?
H($) =1 0 T 0
(9) =1 (L+ — 05262 —2057%, )

where L, = 82 —c+pQr!, L_ = 8?—c+Q?™, D(Ly) = D(L_) = H*R) and ¢ = w+a;j>.
To begin with, we recall some spectral properties of H(0). Let

(o) o _ . [8Q. _ (@ if0
r (@) we), oo () el

(I’I = 910’2@2, Q); = 9102@1, @; = 9202@4, (I)z = 0202<I)3,

and

where

2=\, o] 91=2(d—c||Qc||L2(n)) , 02 = 4{|Qcll 2 gy

Then we have

(12) H(O)q)l = 0, H(O)‘I’z = @1, H(O)®3 = 0, H(O)(I)4 = q)g,
(13) H(0)*®; = ®;, H(0)'®; =0, H(0)'®;=®;, H(0)®;=0,

and (®;,®}) = §;; for 4, j = 1,2,3,4. Here we denote by (-,-) the inner product of
L*(R,C?).

Proposition 5 (see [22]). Let p > 1 and p # 5. Then A = 0 is a discrete eigenvalue of
H(0) with algebraic multiplicity 4.

Using Proposition 5, we investigate the spectrum of H(4) .



Lemma 6. Let 1 < p < 5. Then there exist a positive number &y and a neighborhood
U C C of 0 such that for every § € (0,8), o(H(8)) NU consists of algebraically simple
eigenvalues A\;(8) (2 = 1,2,3,4) satisfying

|[ReXi(8) - ag"vd| < ag™yé/4,  liminf (5“1 B |X(6) - /\j(J)I) >0,
i#£j
where \ /2
Y- (2 d||Qc||L2(R) ) .
21Qel}2m)
Proof. Let Py(6) be a projection defined by

Pu(8) = 57— wm(x H(6))™ d),

and let Qg (8) = I — Py(8). In view of Proposition 5, there exist positive numbers py and
o such that Xy := R(Pg(4)) is 4-dimensional for every d € (0, dp).

Let X be a linear subspace whose basis is (®;, &5, &3, ®4). We decompose H2(R;C?)
and L%(R;C?) as

HA(R; C?) = X © Qu(0)H*(R; C?), LA(R;C?) = X & Qu(0)LA(R; C2).
Then

_ [ Hui(6) Hiz(6)
H(J) N (Hgl(é) Hzg(d)) '

where

Hy(8) = Py(0)H(6)Pr(0), Hia(6) = Pu(0)H(8)Qu(0)
Hx(8) = Qu(0)H(6)Pu(0), Hz(8) = Qu(0)H(6)Qn(0)-

By a simple computation, we have

0 14648 0 0

b162 0 0 0
0 0 0 1+b8%)’
0 0 b3d? 0

Hy(8) = —2ia5%61 +

le((s) = —Z'066252PH(0)01QH(0), H21(6) = —i06252QH(0)0'1PH(0),
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where
b = aazellchH%z(m, by = —05291”3ch”%2(111):

) ) i 0 1
by = —dog*,  bs = 05*[|sQcl ) |1 Qell Emyy 01 = (1 0) .

First, we investigate the spectrum of Hy;(6). Suppose A is an eigenvalue of the matrix
H;y;(6). Then

det()\I —-— Hu((S))
= {(A+ 2003787 — b16® — byba8*} {(A + 2ic26)? — b8 — bsbus*} = 0.
Hence there exist eigenvalues A; (i = 1,2, 3,4) of Hy;(6) satisfying

A = =0 (2icg? — agly + O(8%), Az = =6 (2ic52 + a5ty + O(6%),
s = ~4iag?6 (1 +0(6%), A= 0(8%.

Let R"(/\,é) = (/\ - H,','(é))_l fori= 1, 2 and let
Ro(3,5) = (R“(*’ R ) :

0 Rn()\9)
_ 0 Hya(X,6)Raa(), 6)
o(x.0) = (Hzl(A,é)Ru()\,d) 0 ) '

We remark that Rg(),d) is uniformly bounded for A € U and § € (0,dp). Suppose that
|A — Ai] = €18, where ¢; € (0,a5|7|6/4) is a constant such that |A; — Ak| > ¢,6 for every

j, k=1,2,3,4 with j # k. Then in view of the definitions of Hj,(), d) and Hy (A, 6), we
have |

(19 %) lagaa = 00)
and
(15 (\= HE)™ = Ralh8) 3 Vo(A ).
Now let -
Pui®) =g f A= HOO

Pad®) =3 §_ Falr.d)dA
[A=A;s|=c10

2w
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Combining (14) and (15) with the fact that

0 Ry Hi2Ry;
R22H21R11 O

“Py,i(é) - 13,,,,-(5)H —0(6) for every 21,234

”RO()"(S)VOOH 6)“B(L2(R)) = = 0(6)’

B(L*(R))

we have

Hence it follows that R(ISH,,-(é)) is isomorphic to R(Pg;(d)) and that
R(Py(6)) is 1-dimensional for ¢ = 1,2,3,4. Furthermore, we see that eigenvalues of
H (5) which lie in U satisfy |A — A| < ¢;6 for an i € N with 1 < < 4.

Since dlchllig(R) /de > 0 for p € (1,5), we see that ~ is a positive number and that
there exist eigenvalues \; and A, satisfying

051v0/2 < Redy < 305176/2, —305y8/2 < Redy < —ogly6/2.
Thus we complete the proof of Lemma 6. O a

Proposition 7. Let j, m € N, e =m™ and 6§ = je. Let = min(p—1,1)/6. Then there
exists an m, € N such that if m > m.,, the linearized operator H(e,8) with j = [mP] has

an unstable eigenvalue.

Proof. In order to prove Proposition 7, we will show the spectrum of H(e,d) becomes
close to the spectrum of H(d) as € | 0. Let

H'—Z :%%m Ar'—w_'_n_i.ﬂi—'ﬁ
0= p g omg ym )

and Hy = UHoU ™. Let
D(N) = (1:%0) (A — Ho) ™ (Texo0) + X2 (A = H(8)) " x17—r.

Then we have

D(NU(A — H(e,8))U™" = I + Ry + Ra,



where

2
Ry = i{r)o(A — Ho)™ {([af,gfxd [a,,g,x[,]) ~ ()t (2 (11)}

.~ -1 0 [63, Xl]
Ry = itsxa(A = H(8)) 5 — x1(Ra + Ra2) ¢ 75,
[ar, Xl] 0
: ~28 26 1482267 | 1442
Row| GoreETal  Tleorer t ERR
A= | 148-32 | e ~26 . 28 ’
(co+er)? of (ap+er)? Eg

R42 — 0 f(¢w) - f(Qc) )
A\S(0) — F1(Qc) 0

We remark that

1[33,XiHIB(Lz(R),H-x(R» = O(l“) fori=0,1,
lIx1Ra || Barey) + || Raell Bzacmey) = O(e%1).

We have
xeci‘iu‘iw/z, 1A = Ho) ™l a2 ey Laay) < 005
since ‘ 2
*O’htoo=z'(A’—“’_(Ln?’lL X '*)
0 —Ar +w+ mﬁﬂ- ’
where

1 {1 1
0= V2 (1 —1) '
Lemma 6 yields that for § € (0, d), there exists a ¢ > 0 such that

(A = H(8) ™| praggay < €67

for every A € U with min;<;<s |\ — Ai(6)] > ¢§ and that Re(A\1(6) — ¢d) > 0. Let I = 673.
Then it follows from the above that

|1 Rsl| zaeyy = O(8° + e72V4™),
| Rall Beraay) = O(6% + €%574).
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Put

Pra(e,6) =o f (A = H(e, 8)) 2,
, A1 (8)|=c5

2mi
Pu.a(e,8) =U"7e%1 P (0)x17-#U.

Making use of Cauchy’s theorem and noting that § ~ ?, we have

Pr.1(€,6) — Pr,a(e, 6)l| (ra(may,

: ]{ {(A=H(e,8))"' = UTDA)U} dA
|A|=cé

“or

B(LA®))
<Cé? l)s\:ipa(”RSHB(LQ(—F,oo)) + | Ra|l B(L2(~#,00)))
<C(8+€%67%)

—0(s).

From the above, we conclude that the range of Py (e, 6) is isomorphic to the range of
Py 1(d) and that there exists an eigenvalue A of H(e, §) with ReA > 0. Thus we complete
the proof of Proposition 7. O O

Now we are in position to prove Theorem 4.

Proof of Theorem 4. Let £ be the linearized operator of (1) around e/“*t™9)@,,. Then

e A—w+06(r)  e¥™py(r)
'—6_2imo,@2(7”) ~A+w-— ,61 (7”) '

Proposition 7 tells us that £ has unstable eigenvalues if m € N is large and p € (1,5). On

the other hand, [15] tells us that £ has an unstable eigenvalue if p > 3. Hence it follows
that £ has an unstable eigenvalue if p > 1 and m € N is sufficiently large. a O

Remark 2. We remark that our method can also be applied to prove that a one-dimensional

standing wave solution €*Q.(z1) of (1) is unstable to long-wavelength transversal distur-

bances.
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