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A Mathematical Aspect for Liesegang Phenomena
in two space dimensions
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1 Introduction

B 1: Liesegang band [1] & 2: Liesegang ring (2]

We can see very beautiful pattern formation as snow in a single crystal. In case of mak-
ing precipitation after crystallization, there are some cases where very strikingly regular macro-
scopic patterns can be seen. Especially, it is well-known that spacio-temporally periodic patterns
emerge in reaction-diffusion process with precipitation in gel, if there is adequate difference of
initial densities between two chemical reaction substances. In Germany, Linge first discovered
this phenomena in 1855, and in 1896 Professor R.E.Liesegang studied it first as a science. In
vitro, we can find band pattern and ring pattern in one space dimension and two space dimen-
sions, respectively (Fig. 1 and Fig. 2). These are called Liesegang band and Liesegang ring,
respectively, after Professor Liesegang. The interesting point is that such a spacio-temporal dis-
continuous pattern is formed in spite of chemical reaction occurs continuously, and this patter
satisfies very strikingly regular laws (time law, spacing law, and width law).

17This note is based on the joint work with Professor M. Mimura in Meiji University and Dr. D. Ueyama in
Hiroshima University, although, if there are mistypes or mistakes under misunderstanding, then all of them are

due to the author. If you have a question, would you please mail him to the address: isamu.o@math.sci.hiroshima-
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In this note, we report our recent studies about such very interesting problem of Liesegang
phenomena.

2 History

There have been made of tons of researches about Liesegang phenomena since the previous
century. For example, there are

A)Theory of pre-nucleation:

1. super-saturation theory ([6], [7])
2. diffusion theory ([8])

3. diffusion wave theory ([9])

4. adsorption theory ([10])

5. membrane theory ([11])

B)Theory of post-nucleation:

1. theory of colloid growth and dissoluton ([3], [12])
2. theory of colloid coherence ([13]).

In the former group of theories, they consider that position of pattern is determined just when
the chemical reaction occures before nucleation. This is very old way of thinking about this
phenomena. On the other hand, in the latter group of theories, they consider of the position of
pattem is decided after nucleation. There are some facts which cannot be explained from the
former theories; for example, spiral structure or double periodic structure. Briefly speaking, we
cannot understand that the following properties:

1) Colloid particles can be seen in wider area before precipitation,

2) Band or ring pattern can be formed if colloid solution with a mean radius of particles
touches another with another mean radius,

3) Gavity affects the position of pattern,

4) Subring pattern can be often seen,

5) The Second structure can be made in a ring or band pattern,

6) Spacial bifurcation often occurs,

7) Spacing laws can be stochastic if the density difference is less.

Keller-Rubinow model is famous in the super-saturation theory. In the next section we briefly
state some numerical simulations and insufficient points in this model.

3 Super-saturation theory

3.1 Summary

In the super-saturation theory, Keller and Rubinow assumed the following two points ([7]):
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1) Precipitation occurs if the density reach the super-saturation density bigger than the satu-
ration density,

2) Reaction speed is much faster than diffusion speed,
and tried to explain Liesegang phenomena. Especially, accourding to the model, the discontinu-
ous presipitation emerges. In the next section, we introduce Keller-Rubinow model in detail to
make numerical simulations.
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B 3: Super-saturation theory [3]

3.2 Keller-Rubinow model

In 1981, Professors J.B.Keller and S.I.Rubinow made the model called Keller-Rubinow model
nowaday, with effect of adsorption of colloid combined with the super-saturation theory. This is
the following:

k
’UAA+ +wvgB~ 2 veC, (1)

c% p, 2)

187



with k4, k— chemical reaction constants, v4, vp, Up, stoichiometric coefficients, gP precipitation
rate, g precipitation coefficient. Here, we make v4 = vg = vg = 1, k_ = 0. We can make this
be the following system of partial differential equations:

a¢s = DalAa — kab, .

b; = DAb — kab, 3)
¢t = DcAc + kab — gP(c,d),

dy = qP(C7 d),

where, a, b, ¢, d are density of each ingredient, D4, Dg, D¢ are diffusion coefficients, k = k4
chemical reaction constant. The diffusion of D can be negligible. P(c,d) has the following form:

(c—Co)4, ifec>Csord>0
0, otherwise

P(c,d) = { O]

where C,, C, are saturation density and super-saturation density of C, respectively (C, > C, >
0). (Fig. 4)

Ce Cy

B 4: Precipitation P(c,d)

3.3 Numerical simulation
3.3.1 One space dimension
The initial conditon is
a(0,z) = ¢(0,z) = d(0,z) = 0, b(0,z) = By, (5)

and the boundary condition is

a(t,0) = Ag, by(t,0) = c5(t,0) = 0,0 < t < T

az(t, L) = by(t,L) = cx(t,L)=0,0<t<T (6)

with Ag >> By > 0. (parameters are the followings: Ag = 10.0, By = 1.0, Dy = Dp = D¢ =
0.001, C, = 0.2, C, = 0.8, k = 50.0, ¢ = 50.0,L = 1.5)

The result is Fig. 7. Spacing law and time law are satisfied enough very well, but width
law cannot be satisfied. This means that Keller-Rubinow model is good for the point that the
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precipitation occurs discretely, although it is not enough in point of view of width of precipita-
tion. But Keller-Rubinow model is simple and good for understanding the mechanism by which
precipitation occurs discretely and satisfies time law and spacing law. In fact, we have already
given a mathematically rigorous proof which ensure Keller-Rubinow model has a mathematically
rigorous solution satisfying time law and spacing law under natural assumptions. See in detail
[15], [16], [17], and [18].
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B 7: One space dimension
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4 Theory of colloid growth and dissolution

4.1 Kai’s theory

Professor S. Kai (Kyushu University) made a theory which explained mechanism of Liesegang
phenomena in view of colloid growth and dissolution in [4]. We use it to try to make a new

mathematical model of Liesegang phenomena.
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& 8: colloid growth and dissolution

4.2 Simple application of Kai’s theory

We consider about the following system of equations:

k
vaAt +vpB” 2vcC (M
cip (8)
ai = DAAG, hand lcab,
by = DgAb — kab, ©)
¢t = DoAc+ kab — P,
d; = P,
where we rewrite the term P as follows:
8,4 4
P= QEZ(E‘”R )
(10)

= R Ca(R)



R : radius of colloid particle, ¢,M : constants,

C.(R) is the Gibbs-Thomson formula, which is exacly the following;

Ca(R) = Ce1 + 7)
o2V
~ ksT

Here

" C, : saturation density of the ideal particle with radius co, ¢ : surface energy,
V : volume, kp : Boltzmann constant, 7 : templature.

4.3 Numerical simulation
4.3.1 One space dimension

We make comuter simulation with parameters: A¢g = 10.0, By = 1.0, D4 = Dp = D¢ = 0.001,
k=20,¢=0.5, M =1.0, a = 0.05, L =10.0.

X 9: One space dimension

We try to verify the three charasteristic laws of Liesegang phenomena. Time law and spacing
law are satisfied very well like the case of Keller-Rubinow model. But width law is not satisfied,
although this model realizes width of the band unlike the case of Keller-Rubinow model.
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4.3.2 Two space dimensions

We make two sapce dimensional simulation to get Fig. 12.

t =150.0 t =1240.0

12: Two space dimensions

In this model, we can make simulations of the two dimensinal ring pattern, although the patterns
dissapear after much time goes by. The result is better than in the case of Keller-Rubinow model,
but we cannot be satisfied with it. In the next section we improve this model to get the result
much better to discuss about the interesting view points of Liesegang phenomena.

5 Improvement of the model

We improve the model to set the ring pattern fixed adequately. Let us consider the following
model:
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6 Improved model

as = DalAa — kab
by = DgAb — kab

11
¢t = DoAc+ kab — q%(%wRa) (1

Rt=F(C,R)
( M .
E(c—%)+ if R <R
%(c—%) if Ry < R< Ry
Fle.R)= | | (12)
hle=2) f0SR<Ry
| —hR ifR<O

Here

Ro : minimum radius of colloid particle,  R; : minimum radius of precipitated colloid particle
g, h : positive constants, h >> 1

and f(z)4 satisfies

_ ) f(z) if f(z) =20
fe)e = { 0 if f(z) <0
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7 Numerical simulation

7.1 One space dimension

Simulation result is following (Fig. 13):

(Parameters are the followings: Ag = 10.0, By = 1.0, D4 = Dp = D¢ = 0.001, k=20.0,q=
0.05, M = 0.5, = 0.04, Ry = 0.25, Ry = 1.0, L = 10.0.)

¥ 13: simulation of the model (11), (12)

The three laws are the followings (Fig. 14, Fig. 15, and Fig. 16):
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7.2 Two space dimensions

The result is Fig. 17. (4o = 10.0, By = 1.0, D4 = D = D¢ = 0.001, k = 20, ¢ = 0.5,
M=1.0,a=004,Ry=0.1,R; =1.0,R=2.0)

1.0

T

0.0

it £=200.000000
(&) (b)

X 17: (a) Chemical experiment, (b) Numerical simulation

By use of the improved model, we realize the similar pattern to the real chemical experiment
unlike in the case of Keller-Rubinow model. We make an observation of the pattern in details
(Fig. 18).

t=185.8 t=187.825 t=194.425 t=196.125

[X) 18: Process of making ring 17(b)

We can consider of this model as much better than the previous ones. Therefore, we try to
make more simulation to realize other patterns in two space dimensions introduced in Section 2.
Fig. 19(b) shows the ring pattern with intial density By = 2.0.
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1.0

0.0

t=200.000000
(a) (b)

X 19: (a) Real experiment, (b) Numerical simulation

The ring pattern is made cut accourding to going away from the center, which is similar to the
real chemical expariment. Moreover, the characteristic property of cutting ring is very similar
to the real one (Fig. 20(b)).

(a) (b)
& 20: (a) Expanded figure of 19(a), (b) Expanded figure of Fig. 19(b)

rthermore, this model repliae the spiral patternts shonmiFifnZH B more and more.

we realize this property by use of this model as following (Fig. 23):



X 21: (a) Real chemical experiment, (b) Numerical spiral pattern

t=600.0

TR

t=1200.0 ' t=2000.0
B 22: Process of makig spiral pattern
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1.0 1.0

00 .
£=200.000000 £=200.000000

bo=1.0 by = 2.0
X 23: Ring splitting
Because of the above simulation results, the model 11, 12 is much better than Keller-rubinow
model especially in two space dimensions. Therefore, we understand that process of colloid

growth and dissolution is very important for Liesegang phenomena. But so far, it is not clear
how the growth and dissolution mechanism can stop at adequate time.

8 Important suggestion

B4 24: Splitting pattern

In this section we discuss about splitting phenomena of ring pattern. As long as we know,
the splitting is due to the ununiformness of the real world like impurity or bruise of petri dish.
But our simulation suggests that this system has an essential instablity to make the ring pattern
splitting because of it. See Fig. 25.
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K 25: (a), (b), (c) has different 5 % perturbation with different ways.(Parameters are the
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Very tiny nonuniformness trigger it to be splitting and to be destroyed as time goes by.

[Z] 26: (B)Bo = 1.6, (b)Bo = 2.0, (C)Bo =3.0

Fig. 26 shows that time at which the ring splits is dependent of the initial density of B. But
splitting triggers destroy of the ring pattern. Because of ths fact, we consider that there is some
kind of mechanism by which the ring pattern spontaneously split and is destroyed.

Furthermore, we considef about the problem of what kind of pattern is natural ? In other
words, what is the final pattern if the ring pattern is unstable. See Fig. 27.



X 27: Bo=2.0

As much time goes by, the ring pattern split and is destroyed to get the final pattern with
adequate size cluster. We make a conjecture that the final pattern is checker board pattern. See

Fig. 28.

28: (a)Bg = 1.6, By =3.0

Finaly we would like to state the point of our study briefly. Accourding to our study, we can
consider of this phenomena as result of contradiction and compromization between smoothing
effect of diffusion and positive feedback effect of Ostwald ripning of colloid. As an important
result, the final checker board pattern is regarded as very natural. This should be an important
conjecture for the pattern formation in Liesegang phenomena.
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