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1 Introduction

Quantum computation is a novel computing paradigm which is based on the quantum
mechanics. The effects of superposition and entanglement provide quantum computers
with the power to solve several problems more efficiently than classical computers. The
most striking quantum algorithms are Shor’s factoring algorithm and Grover’s search
algorithm. The former exploits quantum parallelism to offer an exponential speed-up
over classical computers for prime factorization, suggesting the possibility of destroying
the safety of the RSA cryptography system which is very widely used. The latter, to
which this thesis is concerned, substantially speeds up the solution to the search problem.

If you are given an usual phone book, in which you wish to find the name whose
telephone number is 012-345-6789, for instance, the only strategy you take is to look up
the names one by one, so that before reaching the target name, you will read half of
the names on average. Moreover, if you are completely out of luck, you will come to
the name after having read all the names. Like this, we usually need $O(N)$ operations
to find out an element from a database of size $N$ without prior knowledge about its
structure. Grover’s algorithm, in contrast, provides a more efficient solution which needs
only $O(\sqrt{N})$ operations by using power of quantum computer. Grover’s algorithm attract
great interest, since searching heuristics have wide range of applications such as quantum
counting and speedup of solution to some $\mathrm{N}\mathrm{P}$-complete problems [1].

In 2001, Miyake and Wadati explored quantum search from the geometric viewpoint
[8]. They claimed that Grover’s algorithm skips along with the geodesic joining a target
state and an initial state on a complex projective space $\mathbb{C}P^{N-1}$ . Motivated by them,
Uwano, Hino, and Ishiwatari studied an integrable dynamical system arising from Grover’s
quantum search algorithm extended for an ordered tuple of multi-qubit states [3, 4, 5].
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They defined an action of unitary group $U$(2“) on the state space, making it into a fibre
bundle over the space of regular ‘relative configurations’ of multi-qubit state.

In this article, further analysis is made on the fibre bundle structure to provide a new
algorithm, “horizontal” Grover’s search algorithm. This thesis is organized as follows:
Section 2 is a review of quantum computation and Grover’s search algorithm. We set
up a Hilbert space for $m$-tuples of multi-qubit states, on which the extended Grover’s
algorithm is performed [4]. In Section 3, the fibre bundle structure is introduced. We also
note that the tangent space at each point is decomposed into a direct sum of a vertical
subspace and a horizontal subspace, and that the geodesic which the Grover’s algorithm
traces $\mathrm{i}\mathrm{s}\mathrm{n}’ \mathrm{t}$ horizontal. In Section 4, we define a connection on the principal stratum of the
fibre bundle by extending the definition of connection of a principal fibre bundle. With
the connection form taken into account, we can carry the search geodesic into a horizontal
curve. Section 5 is a main part of this thesis. First, we assert that it would be easier to
carry out operations on the states in the same orbit of the $U(2^{n})$ action. It is to be noted
that all the target states we are supposed to search are lying in the same orbit (target
orbit). Second, we generahze the Grover operator. Finally, we propose a new algorithm
which is broken up into two steps. In the first step, we reach the target orbit from the
initial point by generalized Grover operator with less steps than the ordinary algorithm,
and then, we proceed to carry out the search algorithm in the target orbit. Since the
sequence of states generated in the first step traces a horizontal geodesic, we call this
algorithm “horizontal” Grover’s algorithm. Section 6 contains concluding remarks on the
result obtained.

2 Quantum search algorithm

Suppose there is given an unsorted data array of size $N(=2^{n})$ and one of the data
is marked. According to Grover’s quantum search algorithm [2], one can find out the
marked datum with a success possibility almost 1 in only $O(\sqrt{N})$ queries, while the usual
classical algorithm needs $O(N)$ queries in the worst case. The Grover algorithm can be
extended so as to search an ordered $m$-tuple of data in the same $O(\sqrt{N})$ queries [4].
In this section, we make a review of the extended Grover algorithm together with some
geometric aspects.
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2.1 Setting up

Quantum computation is performed in a Hilbert space. The most basic Hilbert space $?i$

is that for a single qubit, which is a complex vector space of dimension two. Let $\{|0\rangle, |1\rangle\}$

denote an orthogonal basis of $\mathcal{H}$ . We can then identify $?t$ with $\mathbb{C}^{2}$ by the relation

$|\phi\rangle=c_{0}|0\rangle+c_{1}|1\rangle$ $rightarrow$ $\phi=$ . (2.1)

The Hilbert spacen $V$ for $n$-qubits are constructed as the tensor $\mathrm{p}\mathrm{r}o$duct of 1-qubit Hilbert

spaces, $\tilde{?t\otimes\cdots\otimes \mathcal{H}}$. Elements of $V_{n}$ are expressed as

$| \phi\rangle=\sum_{i_{1},\cdots 1_{n}},c_{i_{1}\cdots i_{m}}|\phi_{i_{1}}\rangle\otimes|\phi_{1_{2}}\rangle\otimes\cdots\otimes|\phi_{i_{m}}\rangle$
, $|\phi_{1_{k}}\rangle\in \mathcal{H}$ . (2.2)

The Hermitian inner product for $|\Psi\rangle$ $=|\psi_{1}\rangle$ $\otimes\cdots\otimes|\psi_{m}\rangle$ and $|\Phi\rangle$ $=|\phi_{1}\rangle$ $\otimes\cdots\otimes|\phi_{m}$) is
defined by

$\langle\phi|\psi\rangle=\prod_{i=1}^{n}\langle\phi_{i}|\psi_{i}\rangle$ , (2.3)

where inner product in the R.H.S. is that on 1-qubit space. By linearity, the Hermitean
inner product is defined on the whole $V$ . An orthonormal basis of $V_{n}$ is formed from $|0\rangle$

and $|1\rangle$ . We describe $x\in\{0, \cdots, 2^{n}-1\}$ as a binary number like $x=x_{1}x_{2}\cdots x_{n}$ and
define the elements $|x\rangle$ of $V_{n}$ by

$|x\rangle:=|x_{n}\rangle\otimes|x_{n-1}\rangle\otimes\cdots\otimes|x_{1}\rangle$ , $|x_{i}\rangle=|0\rangle$ or $|1\rangle$ . (2.4)

The system $\{|x\rangle\}_{x=0,1,\ldots,2^{n}-1}$ forms an orthonormal basis of $V_{n}$ , which is called the com-
putational basis of $V$ . Using this orthonormal basis, $V$ is identified with $(\mathbb{C}^{2})^{\theta n}=\mathbb{C}^{2}$

“

When the number of data to be searched is $m$ , we need to use the direct product space
of $mn$-qubit Hilbert spaces:

$(V_{n})^{m}:=V_{n}\cross\cdots\cross V_{n}=\{|\Phi\rangle=(|\phi_{1}\rangle\vee m’\ldots, |\phi_{m}\rangle)||\phi_{i}\rangle\in V_{n}\}$
(2.5)

in order to describe the data and to perform the search algorithm. The Hermitian inner
product on $(V_{n})^{m}$ is defined by

$\langle\Phi|\Psi\rangle=\frac{1}{m}\sum_{:=1}^{m}\langle\phi_{i}|\psi_{1}\rangle$ . (2.6)

The inner product in the R.H.S. is that on $V_{n}$ . An orthonormal basis of $(V_{n})^{m}$ is given in
terms of the computational basis of $V_{n}$ . Let

$|\Phi(j;x)\rangle=\sqrt{m}(0, \cdots, 0,|x\rangle, 0j\mathrm{t}\mathrm{h}’\ldots, 0)$
$(j\in\{1, \cdots, m\},x\in\{0, \cdots, 2^{n}-1\})$ . (2.7)
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Then, the set $\{|\Phi(j;x)\rangle\}$ forms an orthonormal basis of $(V_{n})^{m}$ , which is called the com-
putational basis of $(V_{n})^{m}$ .

$(V_{n})^{m}$ is a $2^{n}\cross m$ dimensional complex vector space and can be identified with $\mathbb{C}^{2^{n}\mathrm{x}m}$ ,
the space of $2^{n}\cross m$ complex matrices, through the correspondence:

$| \Phi\rangle=\sum_{x=0}^{2^{n}-1}\sum_{j=1}^{m}c_{x+1i}|\Phi(j;x)\rangle$ $rightarrow$ $\Phi=(\sqrt{m}c_{xj})$ . (2.8)

In the following, we deal with matrices $\Phi\in \mathbb{C}^{2^{n}\mathrm{x}m}$ rather than the Dirac notation $|\Phi\rangle$ .
The Hermitian inner product (2.6) is then given by

$\langle\Phi, \Psi\rangle=\frac{1}{m}\mathrm{t}\mathrm{r}(\Phi^{\mathrm{t}}\Psi)$ , $\Phi,$ $\Psi\in(V_{n})^{m}$ . (2.9)

The elements of the Hilbert space whose norm is 1 are called state vectors. The space
of state vectors of $(V_{n})^{m}$ is defined as

$(V_{n})_{1}^{m}=\{\Phi\in(V_{n})^{m}|\langle\Phi, \Phi\rangle=1\}$ . (2.10)

The quantum computation is performed by applying a sequence of unitary operators to
an initial state vector in $(V_{n})_{1}^{m}$ , so that an algorithm generates a sequence of points in
$(V_{n})_{1}^{m}$ .

2.2 Grover’s Algorithm

Suppose that there are unsorted data arrays of size $N(=2^{n})$ and $m$ of them are labeled
$d_{1},$ $\cdots,$ $d_{m},$ $d_{j}\in\{1, \cdots, 2^{n}\}$ . We assume the labels are different from one another. In
other words, the label $d=\{d_{1}, \cdots, d_{m}\}$ is a permutation of $m$ numbers from $\{1, \cdots, 2^{n}\}$ .
Let $D$ be the set of all the possible labels, which has $2^{n}P_{m}= \frac{2^{n}!}{m!}$ elements.

The purpose of the search algorithm is to find the labeled target data sequence out of
the unsorted data arrays of size $N(=2^{n})$ .

Let the matrix

$W=[e_{d_{1}}, \cdots e_{d_{m}}]$ , $e_{j}=[0, \cdots, 0,1, 0j\mathrm{t}\mathrm{h}’\ldots, 0]^{\mathrm{T}}$ (2.11)

describe the data sequence associated with the label $d_{1},$
$\cdots,$ $d_{m}$ , which we will search. We

take up another element of $(V_{n})_{1}^{m}$ ,

$A=[a, \cdots, a]$ , $a= \frac{1}{\sqrt{2^{n}}}[1, \cdots, 1]^{\mathrm{T}}$ (2.12)
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as an initial state in the algorithm. $A$ is the superposition of all the computational basis
at an equal weight. $W$ and $A$ are called the target and the initial state, respectively.
It is easy to verify that $W$ and $A$ are in $(V_{n})_{1}^{m}$ .

We define a real inner product $(\cdot, \cdot)$ on $(V_{n})_{1}^{m}$ ,

$( \Phi, \Psi)={\rm Re}\langle\Phi, \Psi\rangle=\frac{1}{m}{\rm Re}(\mathrm{t}\mathrm{r}\Phi^{\mathrm{T}}\Psi)$ , $\Phi,$ $\Psi\in(V_{n})^{m}$ . (2.13)

We introduce two operators 1 on $(V_{n})^{m}$ by

$I_{W}$ : $(V_{n})_{1}^{m}arrow(V_{n})_{1}^{m}$ , $\Phirightarrow\Phi-2(W, \Phi)W$, (2.14)
$I_{A}$ : $(V_{n})_{1}^{m}arrow(V_{n})_{1}^{m}$ , ip $rightarrow\Phi-2(A, \Phi)$ A. (2.15)

The $I_{W}$ and $I_{A}$ are shown to be unitary operators and to leave invariant the complex
subspace $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{\mathrm{W}, \mathrm{A}\}$. In [4], the operators $I_{W}$ and $I_{A}$ are defined by using the Hermitian
inner product instead of the real inner product. Two definitions are equivalent since the
value of the Hermitian inner product is always real in this algorithm. The real inner
product is essential for generalizing the algorithm in Section 5. FUrther, we are thinkkilng
of $(V_{n})_{1}^{m}$ as a sphere $S^{2^{n}m-1}$ and of geometry in the real category.

Let us consider the dynamics of the algorithm. We define another state $R$ by

$R= \sqrt{\frac{2^{n}}{2^{n}-1}}A-\frac{1}{\sqrt{2^{n}-1}}W$. (2.16)

Then $R$ and $W$ form an orthonormal basis of $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{\mathrm{W}, \mathrm{A}\}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{\mathrm{R},\mathrm{W}\}$.
We define the Grover operator by $G=-I_{A}\mathrm{o}I_{W}$ . This operator acts on $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{\mathrm{R}, \mathrm{W}\}$

as

$G(W)=(1- \frac{2}{2^{n}})W-2\sqrt{\frac{1}{2^{n}}}\sqrt{\frac{2^{n}-1}{2^{n}}}R$, (2.17)

$G(R)=(1- \frac{2}{2^{n}})R+2\sqrt{\frac{1}{2^{n}}}\sqrt{\frac{2^{n}-1}{2^{n}}}$W. (2.18)

If we set

$\sin\frac{\theta}{2}=\sqrt{\frac{1}{2}}"$

’
$\cos\frac{\theta}{2}=\sqrt{\frac{2^{n}-1}{2^{n}}}$, (2.19)

the above transformation is expressed as

$G\{R, W\}=\{R, W\}$ , (2.20)

1Operator $I_{W}$ must be constructed using “oracle”.
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and $A$ is put in the form

$A= \sqrt{\frac{2^{n}-1}{2^{n}}}R+\sqrt{\frac{1}{2^{n}}}W=(\cos\frac{\theta}{2})R+(\sin\frac{\theta}{2})$ W. (2.21)

A point to make here is that $G$ is represented as a rotation operator in $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{\mathrm{R},\mathrm{W}\}$ . By
carrying out successive $G$-operations on $A$ , we obtain

$G^{k}(A)= \{\cos(k+\frac{1}{2})\theta\}R+\{$ $\sin(k+\frac{1}{2})\theta\}$ W. (2.22)

On the assumption that the size of the data is big enough (i.e. $2^{n}\gg 1$), we have $\frac{\theta}{2}\simeq\sqrt{\frac{1}{2^{n}}}$

on account of (2.19). The amplitude of $W$ of the state $G^{k}(A)$ becomes very closer to 1
when

$k \simeq\frac{\pi}{4}\sqrt{2^{n}}-\frac{1}{2}$ , (2.23)

so that $G^{k}(A)$ comes to $W$ with a success possibility of almost 1.

In quantum computation, we can implement each unitary operator at the time of $O(1)$ .
We need to apply the Grover operator $O(\sqrt{2^{n}})$ times to find out the target state $W$

and each application can be implemented at the time of $O(1)$ , so that the total time of
searching is $O(\sqrt{2^{n}})=O(\sqrt{N})$ , where $N$ is the size of the data array.

2.3 Searching sequence along a geodesic

The data space $(V_{\mathfrak{n}})_{1}^{m}$ is endowed with a natural Riemannian metric defined by
$(X_{1}, X_{2})_{\Phi}= \frac{1}{m}{\rm Re}(\mathrm{t}\mathrm{r}X_{1}^{1}X_{2})$ , where $X_{1}$ and $X_{2}$ are tangent vectors to $(V_{n})_{1}^{m}$ at $\Phi\in(V_{n})_{1}^{m}$ .
Any geodesic $\Phi(t)$ in $(V_{n})_{1}^{m}$ is expressed as

$\Phi(t)=A\cos t+B\sin t$ , (2.24)

where $A,$ $B\in(V_{n})_{1}^{m}$ satisfy the condition

$(A, A)=(B, B)=1$ , $(A, B)=0$ . (2.25)

As is shown in (2.22), the algorithm generates a sequence $G^{k}(A)$ on the data space
$(V_{n})_{1}^{m}$ . The sequence moves on a curve

$\Phi(t)=R\cos t+W\sin$ t. (2.26)

This curve is shown to be a geodesic in the state space $(V_{n})_{1}^{m}$ .
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3 Fibre bundle structure

We let $U(2^{n})$ act on the state space $(V_{n})_{1}^{m}$ to the left, and thereby endow $(V_{n})_{1}^{m}$ with a
natural fibre bundle structure. In the following, we assume that the number of the data
to be searched is smaller than total data array, i.e. $2^{n}>m$ .

3.1 Left $U(2^{n})$ action

The unitary group $U(2^{n})=\{a\in \mathbb{C}^{2}" \mathrm{x}2^{n}|a^{\uparrow}a=1_{2^{n}}\}$ acts on $(V_{n})_{1}^{m}$ to the left:

$(a, \Phi)\in U(2^{n})\cross(V_{n})_{1}^{m}rightarrow L_{a}(\Phi)=a\Phi$ , (3.1)

where we note that $\langle L_{a}(\Phi), L_{a}(\Phi)\rangle=\langle\Phi, \Phi\rangle=1$ . The rank of $\Phi$ is invariant under the
$U(2^{n})$ action, $i.e$ . $\mathrm{r}\mathrm{t}\mathrm{k}(a\Phi)=\mathrm{r}\mathrm{t}\mathrm{k}(\Phi)$ . The orbit of $U(2^{n})$ through $\Phi$ is defined to be
$O_{\Phi}=\{a\Phi\in(V_{n})_{1}^{m}|a\in U(2^{n})\}$. The states in the orbit $O_{\Phi}$ have the same relative-
configuration as $\Phi$ , that is, the column vectors $\phi_{1},$

$\cdots,$
$\phi_{m}$ of $\Phi=(\phi_{1}, \cdots, \phi_{m})$ spread in

a same shape in $\mathbb{C}^{2^{n}}$

Let $P$ be the space of positive semi-definite $m\cross m$ Hermitian matrices of trace one,

$P=\{\rho\in \mathbb{C}^{m\mathrm{x}m}|\rho^{1}=\rho, \mathrm{t}\mathrm{r}\rho=1,\rho\geq 0\}$ . (3.2)

The left quotient space $U(2^{n})\backslash (V_{n})_{1}^{m}$ associated with the left action is diffeomorphic with
$P[4]$ . The projection map is given by

$\pi:\Phi\in(V_{n})_{1}^{m}arrow\frac{1}{m}\Phi\dagger\Phi\in P.$ (3.3)

If the action of $U(2^{n})$ on $(V_{n})_{1}^{m}$ were free, the $(V_{n})_{1}^{m}$ would be made into a principle
fibre bundle and the fibre $\pi^{-1}(\rho),$ $\rho\in P$ would be diffeomorphic to $U(2^{n})$ . But this is not
the case. The isotropy subgroup of $U(2^{n})$ at $\Phi,$ $G_{O}=\{g\in U(2^{n})|g\Phi=\Phi\}$ , is nontrivial
and depends on the rank of $\Phi$ .

Proposition 3.1. The isotropy subgroup $G_{O}$ at $\Phi\in(V_{n})_{1}^{m}$ is isomorphic to $U(2^{n}-r)$ ,
where $r:=\mathrm{r}\mathrm{t}\mathrm{k}(\Phi)$ .

Proof. To prove Proposition3.1, we need to decompose the element $\Phi\in(V_{n})_{1}^{m}$ . With the
singular decomposition, we decompose $\Phi\in(V_{n})_{1}^{m}$ into

$\Phi=\sqrt{m}gh^{\mathrm{t}}$ , (3.4)

127



(3.6)

where $g\in U(2^{n}),$ $h\in U(m)$ , and where

$\Lambda=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}[\lambda_{1}, \cdots, \lambda_{r}, 0, \cdots , 0]\in \mathbb{C}^{m\mathrm{x}m}$, $\sum_{j=1}^{r}\lambda_{j}^{2}=1,$ $\lambda_{j}>0$ . (3.5)

The numbers $\lambda_{1},$ $\cdots\lambda_{m}$ are singular values of $\Phi$ . By using (3.4), $G_{O}$ is written as

$G_{O}=\{gg^{-1}|b\in U(2^{n}-r)\}\cong U(2^{n}-r)$ .

Proposition 3.1 implies the following theorem.

Theorem 3.2. The orbit $O_{O}$ through $\Phi$ is diffeomorphic to $U(2^{n})/U(2^{n}-r)$ , where
$r=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(\Phi)$ .

Proof. An equivalence relation is defined on $U(2^{n})$ by

$a_{1}\sim a_{2}$ $\Leftrightarrow$ $a_{1}\Phi=a_{2}\Phi$ , (3.7)

where

$a_{1}\sim a_{2}\Leftrightarrow\exists_{b}\in U(2^{n}-r),$ $a_{2}=a_{1}gg^{\uparrow}$ . (3.8)

We define a right action of $H_{\Phi}$ on $U(2^{n})$ by

$(a, a_{b})\in U(2^{n})\cross G_{\Phi}\vdasharrow a\cdot a_{b}=agg^{\uparrow}\in U(2^{n})$. (3.9)

The map

$[a]\in U(2^{n})/G_{\Phi}rightarrow a\Phi$ (3.10)

is a diffeomorphism. This implies that the orbit $O_{O}$ is diffeomorphic with
$U(2^{n})/G_{\Phi}\cong U(2^{n})/U(2^{n}-r)$ .

$(V_{n})_{1}^{m}$ is then stratified into strata according to the rank of $\Phi$ :

$(V_{n})_{1}^{m}= \bigcup_{1=1}^{m}V_{r}$ , $V_{r}=\{\Phi\in(V_{n})_{1}^{m}|\mathrm{r}\mathrm{t}\mathrm{k}\Phi=r\}$ . (3.11)

The image of $V_{r}$ under the projection $\pi$ is

$P_{r}:=\pi(V_{f})=\{\rho\in P|\lambda_{1}^{2}>\cdots>\lambda_{f}^{2}>\lambda_{\gamma+1}^{2}=\cdots=\lambda_{m}^{2}=0\}$ , (3.12)

where $\lambda_{1}^{2}>\cdots>\lambda_{m}^{2}$ are eigenvalues of $\rho=\pi(\Phi)$ . Therefore we can make $(V_{n})_{1}^{m}$ into a
stratified fiber bundle with $m$ strata [7]:

$V_{f}arrow P_{f}\cong U(2^{n})\backslash V_{f}$ , $r=1,$ $\cdots,$ $m$ , (3.13)

whose fibre is diffeomorphic to $U(2^{n})/U(2^{n}-r)$ .
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3.2 Decomposition of the tangent space $T_{\Phi}(V_{n})_{1}^{m}$

The action $U(2^{n})$ on $(V_{n})_{1}^{m}$ induces a homomorphism a : $\mathrm{u}(2^{n})arrow X((V_{n})_{1}^{m})$ through

$\sigma$ : $\xi\in \mathrm{u}(2^{n})rightarrow\xi^{*}\in \mathfrak{X}((V_{n})_{1}^{m})$ , $\xi_{\Phi}^{*}=\frac{d}{dt}\exp(t\xi)\Phi|_{t=0}=\xi\Phi$. (3.14)

The vertical subspace of $T_{\Phi}(V_{n})_{1}^{m}$ is defined to be

$\mathrm{V}\mathrm{e}\mathrm{r}(\Phi)=\{X=\xi\Phi\in T_{O}(V_{n})_{1}^{m}|\xi\in \mathrm{u}(2^{n})\}$ , (3.15)

while the horizontal subspace $\mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$ of $T_{\Phi}(V_{n})_{1}^{m}$ is defined as the orthogonal complement
of $\mathrm{V}\mathrm{e}\mathrm{r}(\Phi)$ with respect to the Riemannian metric of $(V_{n})_{1}^{m}$ . Then, an easy calculation
shows that the horizontal subspace is given by

$\mathrm{H}\mathrm{o}\mathrm{r}(\Phi)=\{X\in T_{\Phi}(V_{n})_{1}^{m}|\Phi X^{\mathrm{t}}-X\Phi^{\uparrow}=0\}$ , (3.16)

and the tangent space $T_{\Phi}(V_{n})_{1}^{m}$ admits an orthogonal decomposition

$T_{\Phi}(V_{n})_{1}^{m}=\mathrm{V}\mathrm{e}\mathrm{r}(\Phi)\oplus \mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$ . (3.17)

3.3 Horizontal geodesic

A $C^{\infty}$ curve $\Phi(t)$ in $(V_{n})_{1}^{rn}$ is said to be a horizontal curve if and only if the tangent
vector $\dot{\Phi}(t)$ belongs to horizontal subspace $\mathrm{H}\mathrm{o}\mathrm{r}(\Phi(t))$ at each $\Phi(t)$ . Conditions for a
geodesic of $(V_{n})_{1}^{m}$ to be horizontal are given in the next proposition.

Proposition 3.3. A geodesic in $(V_{n})_{1}^{m}$ ,

$\Phi(t)=A\cos t+B\sin t$ , $(A, A)=(B, B)=1,$ $(A, B)=0$ , (3.18)

is horizontal, if and only if

$BA^{\uparrow}-AB^{\uparrow}=0$ , (3.19)

that is, the matrix $AB^{\mathrm{t}}$ is Hermitian.

Since the geodesic which the searching sequence $G^{k}(\Phi)$ traces is expressed as in (2.26),
it is horizontal if and only if $WR^{\uparrow}$ is Hermitian. On account of

$WR^{1}= \sqrt{\frac{2^{n}}{2^{n}-1}}WA^{\mathrm{t}}-\frac{1}{\sqrt{2^{n}-1}}WW^{\dagger}$, (3.20)
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$WR^{\uparrow}$ is Hermitian, if and only if $WA^{\mathrm{t}}$ is Hermitian. However, from the definition (2.11)
and (2.12), $WA\dagger$ is written out as

$WA^{\uparrow}= \frac{1}{\sqrt{2^{n}}}[e_{t}, \cdots, e_{t}]$ ,
$e_{t}= \sum_{i}e_{d_{1}}$

. (3.21)

From this, it follows that $WA^{\uparrow}$ is not Hermitian, since we have assumed that $2^{n}>m$ , so
that this geodesic is not horizontal.

4 Connection

In this section, we treat only the principal stratum $V_{m}$ , which is made into a fibre
bundle $V_{m}arrow P_{m}$ . We then give connection and a connection form on it.

4.1 Connection

For $r=m$, the space $V_{m}$ is an open sub-manifold of $(V_{n})_{1}^{m}$ , and $T_{\Phi}V_{m}$ admits the
decomposition $T_{O}V_{m}=\mathrm{V}\mathrm{e}\mathrm{r}(\Phi)\oplus \mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$ as given in Section 3.2. The dimension of
$\mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$ is constant on $V_{m}$ , and a distribution $\Gamma$ : $\Phi \mathrm{I}arrow \mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$ is defined.

Theorem 4.1. The distribution defined above is a connection in $V_{m}$ , that is, the subspace
$\mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$ of $T_{\Phi}V_{m}$ at each $\Phi\in V_{m}$ satisfies the following conditions:

(a) $T_{\Phi}V_{m}=\mathrm{V}\mathrm{e}\mathrm{r}(\Phi)\oplus \mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$ (direct sum);
(b) $\mathrm{H}\mathrm{o}\mathrm{r}(a\Phi)=(L_{a})_{*}\mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$ for every $\Phi\in V_{m}$ and $a\in U(2^{n})$ ;
(c) $\mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$ depends differentiably on $\Phi$ .

Condition (b) means that the distribution $\Gamma$ is invariant by $U(2^{n})$ .

This definition of the connection is an extension of the connection on a principal fibre
bundle [6].

4.2 Connection form

The connection defined in the previous subsection can be described in terms of a con-
nection form $\omega$ . We define the connection form as a 1-form with values in $\mathrm{u}(2")/\mathrm{u}(2^{n}-m)$

instead of $\mathrm{u}(2^{n})$ . The quotient space $u(2^{n})/\mathrm{u}(2^{n}-m)$ is defined by the equivalence relation
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on $\mathrm{u}(2^{n})$

$\eta_{1}\sim\eta_{2}$
$\Leftrightarrow$ $\exists_{\gamma\in \mathrm{u}(2^{n}-m),\eta_{1}=\eta_{2}+}$ . (4.1)

(4.2)

It is to be noted that the linear map $\sigma_{\Phi}$ : $\xi\in \mathrm{u}(2^{n})rightarrow\xi_{\Phi}^{*}=\xi\Phi\in \mathrm{V}\mathrm{e}\mathrm{r}(\Phi)$ is not
injective, where $\xi^{*}$ is the vector field defined in (3.14). In contrast to this, $\sigma$ is injective
in the case of principal fibre bundles. Because of the non-injectivity, we cannot expect
that the equation $\omega(\xi^{*})=\xi$ holds, which is one of the defining equations for $\omega$ to be a
connection form on a principal fibre bundle.

Factoring out the kernel of $\sigma_{O}$ with $\Phi$ expressed as in (3.4),

$\mathrm{k}\mathrm{e}\mathrm{r}(\sigma_{\Phi})=\{\xi=gg^{\uparrow}|\gamma\in \mathrm{u}(2^{n}-m)\}$ ,

we can make the map $\sigma_{\Phi}$ into a bijection $\sigma_{\Phi}’$ ,

$\sigma_{\Phi}’$ : $[\xi]\in \mathrm{u}(2^{n})/\mathrm{k}\mathrm{e}\mathrm{r}(\sigma_{\Phi})arrow\xi\Phi\in \mathrm{V}\mathrm{e}\mathrm{r}(\Phi)$ , (4.3)

where the quotient space $\mathrm{u}(2^{n})/\mathrm{k}\mathrm{e}\mathrm{r}(\sigma_{\Phi})$ is of course defined by another equivalence rel&
tion on $\mathrm{u}$(2“),

$\eta_{1}\sim_{\Phi}\eta_{1}$
$\Leftrightarrow$ $\exists_{\xi\in \mathrm{k}\mathrm{e}\mathrm{r}(\sigma_{\Phi}),\eta_{1}=\eta_{2}+\xi}$ . (4.4)

Proposition 4.2. The $\mathrm{u}(2")/\mathrm{k}\mathrm{e}\mathrm{r}(\sigma_{\Phi})$ is isomorphic with $\mathrm{u}(2^{n})/\mathrm{u}(2^{n}-m)$ under the iso-
morphism 2 defined as

Ad, : $[\xi]\in \mathrm{u}(2^{n})/\mathrm{u}(2^{n}-m)rightarrow[g\xi g^{\uparrow}]\in \mathrm{u}(2^{n})/\mathrm{k}\mathrm{e}\mathrm{r}(\sigma_{\Phi})$ . (4.5)

We define a map $\tilde{\sigma}_{\Phi}$ from $\mathrm{u}(2^{n})/\mathrm{u}(2^{n}-m)$ to $\mathrm{V}\mathrm{e}\mathrm{r}(\Phi)$ by

$\overline{\sigma}_{\Phi}=\sigma_{\Phi}’\circ \mathrm{A}\mathrm{d}_{g}$ . (4.6)

Since both $\mathrm{A}\mathrm{d}_{g}$ and $\sigma_{\Phi}’$ are bijections, $\tilde{\sigma}_{\Phi}$ becomes a bijection, and thereby we can define
a $\mathrm{u}(2^{n})/\mathrm{u}(2^{n}-m)$ valued 1-form $\omega$ on $V_{m}$ through

$\omega_{\Phi}(X)=(\tilde{\sigma}_{\Phi})^{-1}(X_{\mathrm{V}\mathrm{e}\mathrm{r}})$ , (4.7)

where $X_{\mathrm{V}\mathrm{e}\mathrm{r}}$ denotes the vertical component of $X\in T_{O}V_{m}$ . The $\omega$ is the connection form
for the connection defined in the previous subsection.

2This difformorphism is well-defined since $g\eta_{1}g^{\mathrm{t}}=g\eta_{2}g^{\mathrm{t}}+gg^{1}\Rightarrow g\eta_{1}g^{\mathrm{f}}\sim\iota g\eta 2\mathit{9}^{\dagger}$ if $\eta_{1}\sim\eta_{2}\in$

$\mathrm{u}(2^{n})$ .
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4.3 Explicit expression of the connection form

$\alpha\in \mathrm{u}(m),$ $\beta\in \mathbb{C}^{(2^{n}-m)\mathrm{x}m}$ . (4.10)

We define a linear map $\tilde{A}_{\Phi}$ of $\mathrm{u}(2^{n})/\mathrm{u}(2^{n}-m)$ to $\mathrm{u}(2^{n})$ by

$\tilde{A}_{\Phi}([\xi])=\mathrm{A}\mathrm{d}_{g}(\xi)\Phi\Phi^{\}}+\Phi\Phi^{\dagger}\mathrm{A}\mathrm{d}_{\mathit{9}}(\xi)=g\xi g^{\uparrow}\Phi\Phi^{\uparrow}+\Phi\Phi^{\uparrow}g\xi g^{\uparrow}$ , (4.8)

where $g$ is the matrix appearing in the singular decomposition of $\Phi$ . The $\tilde{A}_{\Phi}$ is an extension
of the inertia tensor for a multi-body system. According to the singular decomposition,

we have $\Phi\Phi^{\mathrm{t}}=mgg^{\uparrow}$ and further

$\tilde{A}_{\Phi}([\xi])=mgg^{\uparrow}$ , (4.9)

where $[\xi]\in u(2^{n})/u(2^{n}-m)$ is expressed as

$[\xi]=\{\xi=|\gamma\in \mathrm{u}(2"-m)\}$ ,

$\tilde{A}_{\Phi}$ is well-defined since $\gamma$ is not included in the R.H.S. of (4.9). Since $\mathrm{k}\mathrm{e}\mathrm{r}(\tilde{A}_{\Phi})=\{[0]\}$,
there exists the inverse map $\tilde{A}_{\Phi}^{-1}$ : $\mathrm{i}\mathrm{m}\tilde{A}_{\Phi}arrow \mathrm{u}(2^{n})/\mathrm{u}(2"-m)$.

Theorem 4.3. The connection form $\omega$ defined by (4.7) is rewritten as
$\omega_{\Phi}(X)=\tilde{A}_{\Phi}^{-1}(X\Phi^{\mathrm{t}}-\Phi X^{\mathrm{t}})$ , $X\in T_{\Phi}V_{m}$ . (4.11)

Proof. For $X\in T_{\Phi}V_{m}$ , we set $\omega_{\Phi}(X)=[\xi]$ . The vertical component of $X$ is written as
$\tilde{\sigma}_{\Phi}([\xi])=g\xi g^{\mathrm{t}}\Phi$ , while the horizontal component $X_{\mathrm{H}\mathrm{o}\mathrm{r}}$ should satisfy $\Phi X_{\mathrm{H}\mathrm{o}\mathrm{r}}^{\mathrm{t}}-X_{\mathrm{H}\mathrm{o}\mathrm{r}}\Phi^{\uparrow}=0$ .
For $X=g\xi g^{\uparrow}\Phi+X_{\mathrm{H}\mathrm{o}\mathrm{r}}$, we have

$X\Phi^{\dagger}-\Phi X^{\mathrm{t}}=g\xi g^{\uparrow}\Phi\Phi^{\uparrow}+\Phi\Phi^{\mathrm{t}}g\xi g^{\uparrow}+X_{\mathrm{H}\mathrm{o}\mathrm{r}}\Phi^{\uparrow}-\Phi X_{\mathrm{H}\mathrm{o}\mathrm{r}}^{1}=\tilde{A}_{\Phi}([\xi])$. (4.12)

Therefore, $X\Phi^{\uparrow_{-\Phi X\dagger}}\in \mathrm{i}\mathrm{m}\tilde{A}_{\Phi}$ and $\tilde{A}_{\overline{o}^{1}}(X\Phi^{\uparrow-}\Phi X^{\uparrow})=[\xi]=\omega(X)$ .

We can write out the connection form explicitly by using (4.11). We put $X\in T_{\Phi}V_{m}$ in

the form $X=\sqrt{m}gh^{\uparrow}$ , where $v\in \mathbb{C}^{m\mathrm{x}m}$ and $w\in \mathbb{C}^{(2-m)\mathrm{x}m}"$ . We then have

$X\Phi^{\uparrow}-\Phi X^{\uparrow}=mgg^{\uparrow}\in \mathrm{i}\mathrm{m}(\tilde{A}_{\Phi})$ . (4.13)

Setting $\omega_{\Phi}(X)=[\xi]$ and comparing (4.13) with (4.9), we can find that $\alpha\in \mathrm{u}(m)$ and
$\beta\in \mathbb{C}^{(2^{n}-m)\mathrm{x}m}$ are determined as follows: Since $\Lambda^{2}\alpha+\alpha\Lambda^{2}=v\Lambda-\Lambda v^{\uparrow}$ and

$( \alpha)_{jj}=\frac{1}{\lambda_{\dot{*}}^{2}+\lambda_{j}^{2}}(\lambda_{j}(v)_{1j}-\lambda_{1}\overline{(v)_{ji}})$ (4.14)
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and since $\beta\Lambda^{2}=w\Lambda$ ,

$( \beta)_{ij}=\frac{1}{\lambda_{J}}(w)_{ij}$ . (4.15)

Using these $\alpha$ and $\beta$ , we express $\omega(X)\in \mathrm{u}(2^{n})/\mathrm{u}(2^{n}-m)$ in an explicit manner:

$\omega ae(X1=$

$\frac{w_{2^{n}-m,2}:}{\lambda_{2}}$

$.::$

.

$. \frac{1({\rm Im} v_{mm})}{}\frac{w_{2^{n}-mn}-w_{\lambda_{m}}^{m}A\underline{w}_{\lambda^{\mathrm{J}}}\lambda_{m_{\mathrm{B}}}::_{\Phi}}{\lambda_{m}}$

.
$- \frac{w}{000\lambda:}\ln=\frac{\frac{\overline w_{11}}{\lambda_{\mathrm{l}}}}{\overline,:^{\lambda_{2}^{l}}w\lrcorner:}m$ $- \frac{w}{000\lambda:}2\alpha=\overline{\frac{-w_{\lambda_{1}}\mathrm{B}1}{\overline-w_{\lambda_{2}}B\mathrm{Z}:^{:}}m}$

$.:^{:}$

.

$-^{w_{0}}=_{\overline{\frac{w_{2^{\hslash}}==_{m,2}^{m,1}w_{2}\pi_{\lambda 1}}{=:^{\lambda_{2}}}}}2^{\hslash}-mn)00^{\lambda_{m}}::]$ .

(4.16)

4.4 Carrying a curve into a horizontal one

Let $\Phi(t)$ be a $C^{\infty}$ curve on $V_{m}$ . We would like to find a one-parameter group $a(t)\in$

$U(2^{n})$ which carries $\Phi(t)$ into a horizontal curve $\Psi(t)=a(t)\Phi(t)$ . We assume that $\Phi(t)$

is decomposed as $\Phi(t)=\sqrt{m}h(t)^{\uparrow}$ without loss of generality, because $g(t)$ can be

incorporated in $a(t)$ .

The horizontal subspace of $T_{\Phi}V_{m}$ is given by $\mathrm{H}\mathrm{o}\mathrm{r}(\Phi)=\{X\in T_{\Phi}V_{m}|X\Phi^{\mathrm{t}}-\Phi \mathrm{x}\dagger=0\}$ .
It then follows that $\Psi(t)=a(t)\Phi(t)$ is horizontal if and only if

gl $\in \mathrm{H}\mathrm{o}\mathrm{r}(\Psi)=(L_{a})_{*}\mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$, (4.17)

that is,

$a^{\mathrm{t}}\dot{\Psi}=a^{\uparrow}\dot{a}\Phi+\dot{\Phi}\in \mathrm{H}\mathrm{o}\mathrm{r}(\Phi)$ . (4.18)

This implies that

$\Phi\Phi^{\dagger}(a^{\uparrow}\dot{a})+(a^{\mathrm{t}}\dot{a})\Phi\Phi^{\mathrm{t}}=\Phi\dot{\Phi}^{\mathrm{t}}-\dot{\Phi}\Phi^{\mathrm{t}}$ , (4.19)

since $a^{\mathrm{t}}\dot{a}$ belongs to $u(2^{n})$ . We note here that if $a(t)\in Go$ $=U(2^{n}-m)$ , the isotropy
subgroup at $\Phi(t),$ $\Phi(t)$ is fixed, so that $\Psi(t)$ will not be expected to be horizontal. Thus,
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we may assume that $[a\dagger\dot{a}]$ is non-trivial in general. Using the linear operator $\tilde{A}_{\Phi}$ defined
by Eq. (4.8), we express this condition as $\tilde{A}_{\Phi}([a^{\mathrm{t}}\dot{a}])=\Phi\dot{\Phi}^{\uparrow}-\dot{\Phi}\Phi^{\uparrow}$ , so that

$[a^{\uparrow}\dot{a}]=-\tilde{A}_{\Phi}^{-1}(\dot{\Phi}\Phi^{\dagger}-\Phi\dot{\Phi}^{\mathrm{t}})$ . (4.20)

Eventually, we have a differential equation on the quotient space $\mathrm{u}(2^{n})/\mathrm{u}(2^{n}-m)$ :

$[a^{t}\dot{a}]=-\omega(\dot{\Phi})$ . (4.21)

It is possible to solve the equation on giving a certain representative element.

The tangent vector to the curve $\Phi(t)$ is put in the form $\dot{\Phi}(t)=\sqrt{m}h\dagger$ .

Hence, if we set $\omega(\dot{\Phi})=$ , we have $\beta=0\in \mathbb{C}^{(2^{n}-m)\mathrm{x}m}$ from Eq. (4.15).

Similarly, $\alpha\in \mathrm{u}(m)$ is determined by Eq. (4.14). If we assume that

$\dot{h}\dagger h=0$ , (4.22)

we have $\alpha=0$ . Then, (4.21) reduces to

$[a^{\uparrow}\dot{a}]=O$ $\Leftrightarrow$ $\dot{a}=a$ . (4.23)

The solution is expressed as $a(t)=a(\mathrm{O})$ . The curve $\Psi(t)=\sqrt{m}ah^{\mathrm{t}}$ be-

comes horizontal for arbitrary constant $a\in U(2^{n})$ , since

$\Phi(t)$ .

4.5 Horizontal curve from the search geodesic

We take up the geodesic (2.26) for the search algorithm to make it into a horizontal
curve. We first make a singular decomposition of the geodesic.

Proposition 4.4. For $t \in[\frac{\theta}{2}, \frac{\theta}{2}+\pi]$ , the geodesic (2.26) admits the singular decomposi-
tion:

$\Phi(t)=\sqrt{m}g(t)h^{\uparrow}$ , (4.24)
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where $h\in[h_{1}, \cdots, h_{m}]\in U(m)$ is given by $h_{1}= \frac{1}{\sqrt{m}}[1, \cdots, 1]^{\mathrm{T}}$ , and by a system
$\{h_{2}, \cdots, h_{m}\}$ which forms an orthonormal basis of the $(m-1)$-dimensional subspace
of $\mathbb{C}^{m}$ which is perpendicular to $h_{1}$ , and where $\Lambda(t)$ is expressed as

$\Lambda(t)=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}[\lambda_{1}(t), \lambda_{2}(t), \cdots, \lambda_{2}(t)]$ ,

$\lambda_{1}(t)=\sqrt\cos^{2}(t-\frac{\theta}{2})+\frac{2^{n}-m}{m(2^{n}-1)}\sin^{2}(t-\frac{\theta}{2})$ ,
(4.25)

$\lambda_{2}(t)=\sqrt{\frac{2^{n}}{m(2-1)}}"\sin(t-\frac{\theta}{2})$ .

The column vectors $h_{2},$ $\cdots,$ $h_{m}$ are expressed with $V_{1}\in U(m-1)$ as

$[h_{2}, \cdots, h_{m}]=HV_{1}$ , (4.26)

where $H$ is the $m\cross(m-1)$ matrix given by

$H=[^{-\frac{m-1}{=^{1}(m_{1}\sqrt=:\sqrt(m-1)m\sqrt(m_{1}1)m1)m\sqrt{(m-1)m}}}$

$::::::0$

$-\cdot\sqrt{23}\sqrt{\mathit{2}3}.\ovalbox{\tt\small REJECT}_{23}^{2}11:$

.
$-\cdot\sqrt{12}\sqrt{12}0]0_{1}1:$ . (4.27)

Since the assumption (4.22) is satisfied, $\Psi(t)=\sqrt{m}ah^{\uparrow}$ becomes horizontal for

arbitrary constant $a\in U(2^{n})$ . a

We request the horizontal curve $\Psi(t)$ to start with the same point as the original curve:
$\Psi(\frac{\theta}{2})=\Phi(\frac{\theta}{2})=A$. The initial state $A$ admits a singular decomposition:

$A=\sqrt{m}gh^{\uparrow}$ ,

where $g=[g_{1}, \cdots,g_{2^{n}}]$ is given by

$\Lambda_{A}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}[1,0, \cdots, 0]$ , (4.28)

$g_{1}= \frac{1}{\sqrt{2^{n}}}[1, \cdots, 1]^{\mathrm{T}}$ , (4.29)

3The reaeon why $h\in U(m)$ is constant is that three matrix $W^{\mathrm{t}}W$ , $A^{\mathrm{t}}A$ and $(A^{\mathrm{t}}W+W^{\mathrm{t}}A)$ are
diagonalized by same unitary matrix.
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and by $\{g_{2}, \cdots,g_{2^{n}}\}$ which forms an orthonormal $\mathrm{b}\mathrm{a}s$is of subspace which is perpendicular
to $g_{1}$ and is expressed as

$[g_{2}, \cdots, g_{m}]=KV_{\mathit{2}}$ , (4.30)

by using $V_{2}\in U(2^{n}-1)$ and where the $2^{n}\cross(2^{n}-1)$ matrix $K$ given by

$::::::0$

$-=_{1:}^{1}\sqrt{23}\sqrt{23}232$

$-_{\tau_{12}^{1}}7^{\frac{1}{1\cdot 2}}00]:$ . (4.31)

Hence, the horizontal curve defined, by using this $g$ , to be

$\Psi(t)=\sqrt{m}gh^{\uparrow}$ , $t \in[\frac{\theta}{2},$ $\frac{\theta}{2}+\pi]$ (4.32)

satisfies $\Psi(\frac{\theta}{2})=A$ . The horizontal curve $\Psi(t)$ is put in the form

$\Psi(t)=\sqrt{m}[g_{1}$ $KV_{2}][h_{1}$ $HV_{1}]^{\uparrow}$

$=\sqrt{m}(\lambda_{1}(g_{1}h_{1}^{\uparrow})+\lambda_{2}KVH^{\uparrow})$ (4.33)

$= \sqrt{m}(\lambda_{1}\frac{1}{\sqrt{m}}A+\lambda_{2}KVH^{\uparrow})$ ,

where $V=(V_{2})$ . Since $V_{1}\in U(m-1)$ and $V_{2}\in U(2^{n})$ are arbitrary, the matrix

$V$ is an arbitrary $(2^{n}-1)\cross(m-1)$ matrix satisfying $V^{\uparrow}V=1_{(m-1)}$ .

5 Horizontalization of the algorithm

5.1 Purpose

One of problems in performing the search algorithm is that we have to control too much
parameters. It would be preferable to reduce them for implementing the algorithm on the
real quantum computer.
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When we express the element of $(V_{n})_{1}^{m}$ as
$\Phi=[\phi_{1}, \cdots, \phi_{m}]\in(V_{n})_{1}^{m}$ , (5.1)

using $m$ column vectors $\phi_{i}(i=1, \cdots, m)$ , the norm $||\phi_{i}||$ of each column vector is proved
to be invariant under Grover’s algorithm. Hence, it is reasonable to recognize that each
column vector expresses a state of an $n$-qubit register. The operations given in Grover’s
algorithm are expressed as

$\Phirightarrow[a_{1}\phi_{1}, \cdots, a_{m}\phi_{m}]$ , $a_{i}\in U(2^{n})$ , (5.2)

which means that we control the registers one by one (Fig.5.1). Since each elements of
$U(2^{n})$ includes $(2^{n})^{2}=4^{n}$ real parameters, We have to control at most $4^{n}\cross m$ parameters,
which seems too much from the viewpoint of implementation. Actually we don’t use all
the parameters, but the Grover operators should be designed to bring the initial state $A$

to all the possible target states, $W_{d},$ $d\in D$ , where $D$ is the set of all the labels.

We here use the idea of the left $U$(2“) action,

$L_{a}(\Phi)=a\Phi=[a\phi_{1}, \cdots, a\phi_{m}]$ . (5.3)

The operation $\Phi_{\ulcorner}\neq L_{a}(\Phi)$ means that all the $n$-qubit registers are controlled by the same
unitary operator $a\in U(2^{n})$ (Fig. 5.2). The operation $L_{a}$ has only $4^{n}$ parameters, which
is $m$ times less than ordinary operations (5.2), so that it would be easy to move the state
in the same orbit of left $U(2^{n})$ action. It is to be noted that all the target states are lying
in the same orbit. We shall refer to the orbit as the target orbit.

Fig. 5.1: Ordinary operations Fig. 5.2: Operations by same operator

We construct a new algorithm taking the above characteristics into account. Our algo-
rithm is broken up into two parts. First, we reach the target orbit from the initial point
$A$ with less steps than the ordinary algorithm by a horizontalized Grover algorithm. The
point $A’$ of arrival in the target orbit is called the relay state, which is the nearest point
fr$o\mathrm{m}$ the initial point $A$ . Then, we proceed to perform the search algorithm in the target
orbit. The sketch of the original algorithm and that of the new algorithm are described
as in Fig. 5.3, and Fig. 5.4, respectively.
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Fig. 5.3: The Original algorithm Fig. 5.4: The new algorithm

5.2 Generalization of the Grover operator

Grover’s algorithm connects two states $A$ and $W_{d},$ $d\in D$ , by the Grover operator
$G=-I_{A}\circ I_{W_{d}}$ , where $D$ is the set of all the labels. The operator $G$ rotates quantum
states on the plane $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathrm{C}}\{A, W_{d}\}$ . If we are given an arbitrary initial state $\Psi_{1}$ and an
arbitrary target state $\Psi_{2}$ under the condition that $(\Psi_{1}, \Psi_{2})\neq 0$ , we can perform a rotation
operation on $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{\Psi_{1}, \Psi_{2}\}$ .

The generahzed Grover operator is given by

$G=-I_{\Psi_{1}}\circ I_{\Psi_{2}}$ , (5.4)

where $\Psi_{1}\in(V_{n})_{1}^{m}$ , and where the unitary operators $I_{\Psi_{1}}$ and $I_{\Psi_{2}}$ are, respectively, defined
by

$I_{\Psi}.$ : $(V_{n})_{1}^{m}arrow(V_{n})_{1}^{m}$ , $\Phi\vdasharrow\Phi-2(\Psi:, \Phi)\Psi_{1}$ $i=1,2$ . (5.5)

Setting $c:=(\Psi_{1}, \Psi_{2})$ , we define another state vector $R$ by

$R= \frac{1}{\sqrt{1-c^{2}}}\Psi_{1}-\frac{c}{\sqrt{1-c^{2}}}\Psi_{2}$. (5.6)

We note that $R$ and $\Psi_{2}$ form an orthonormal system. An easy calculation shows that

$G(\Psi_{2})=(1-2c^{2})\Psi_{\mathit{2}}-2c\sqrt{1-c^{2}}R$ (5.7)
$G(R)=(1-2c^{2})R+2c\sqrt{1-c^{2}}\Psi_{2}$ . (5.8)

On setting $\sin\frac{\theta}{2}:=c$, Eqs. (5.7) and (5.8) is put in the form

$G\{R, \Psi_{2}\}=\{R, \Psi_{2}\}$ , (5.9)
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which shows that $G=-I_{\Psi_{1}}\mathrm{o}I_{\Psi_{2}}$ acts as a rotation operator on $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{\Psi_{1}, \Psi_{2}\}$ . One
applies the Grover operator $G$ to the initial stat$e\Psi_{1}$ successively. Then, the sequence

$G^{k}( \Psi_{1})=\{\cos(k+\frac{1}{2})\theta\}R+\{$ (5.10)$\sin(k+\frac{1}{2})\theta\}\Psi_{2}$

is generated in $(V_{n})_{1}^{m}$ . If $c=(\Psi_{1}, \Psi_{2})$ is small enough, $i.e.,$ $\frac{\theta}{2}\sim c,$ $G^{k}(\Psi_{\mathit{2}})$ gets close to
$\Psi_{2}$ when $k= \frac{\pi}{4c}-\frac{1}{2}$ .

Once an initial state $A’$ different from $A$ is given, it is possible to construct a searching
algorithm starting with $A’$ . In choosing the initial point $A$‘, a condition must be satisfied,
that is, $c=(A^{j}, W_{d})$ should be independent of the label $d\in D$ . This is because we must
determine the number of operations $k$ for any target state $W_{d}$ before knowing where $W_{d}$

is.

5.3 Relay state

Let $S$ be the $U(2^{n})$ orbit through the target state $W_{d},$ $d\in D$ . As is easily seen, $S$ is
diffeomorphic to $U(2^{n})/U(2^{n}-m)$ , since the rank of the target state is $m$ . The orbit $S$

is identified with the Stiefel manifold: $S=\{\Phi\in \mathbb{C}^{2^{n}\mathrm{x}m}|\Phi^{\mathrm{t}}\Phi=1_{m}\}$ . It is to be not$e\mathrm{d}$

that all the possible target states lie in the same orbit $S$ .

We wish to bring the initial state

$A= \frac{1}{\sqrt{2^{n}}}\in(V_{n})_{1}^{m}$ (5.11)

into a state $A^{j}$ in the orbit $S$ by using the generalized Grover operator. We will take
$A’\in S$ as the nearest point from $A$ . We will prove father that $A$ and $A’$ are connected by
a horizontal geodesic.

Our aim in this section is to prove the following theorem.

Theorem 5.1. Let $A’\in S\subset(V_{n})_{1}^{m}$ be

$A’= \frac{1}{\sqrt{m}}A+KVH^{\mathrm{t}}$ , (5.12)

where the matrices $K$ and $H$ are defined in Eqs. (4.31) and (4.27), respectively, and
where $V$ is an arbitrary $(2^{n}-1)\cross(m-1)$ matrix which satisfies

$V^{\mathrm{t}}V=1_{m}$ . (5.13)
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Then, the following statements are true:
1. $A’$ is the point in $S$ nearest from the initial point $A$ .
2. The geodesic through $A’$ and $A$ is horizontal.

In the final part of Section 4, we made the geodesic for the search algorithm into the
horizontal curve $\Psi(t)$ given in Eq. (4.33). The curve $\Psi(t)$ reaches the target orbit at
$t= \frac{\pi}{2}$ , with the value $A’$ .

The distance in the state space $(V_{n})_{1}^{m}$ is defined to be the shorter length of those
geodesic segments joining two unit vectors. Since the geodesic on $(V_{n})_{1}^{m}$ is a great circle
with radius 1, the distance is equal to the angle between two unit vectors. Therefore the
distance can be evaluated by the inner product of two unit vectors.

Our task is now to find $A’\in(V_{n})_{1}^{m}$ such that

maximize $(A’, A)= \frac{1}{m}{\rm Re}(\mathrm{t}\mathrm{r}A^{\prime\dagger}A)$ ,
(5.14)

subject to $A^{\prime\dagger}A’=1_{m}$ .

We note here that $A^{\prime\dagger}A’=1_{m}\Leftrightarrow A’\in S$ .

We use the method of undetermined multipliers. Let Her$(m)$ be the set of $m\cross m$

Hermitian matrices. Since the constraint $A^{\prime\dagger}A’-1_{m}=0$ is an equation for the Hermitian
matrix, we take a Lagrange multiplier St in Her$(m)$ . The Lagrangian form is defined as

$L(A’, \Omega)=(A’, A)+(\Omega,$ $(A^{\prime\dagger}A’-1_{m}))$

$= \frac{1}{m}{\rm Re}(\mathrm{t}\mathrm{r}A^{\prime\dagger}A)+\frac{1}{m}{\rm Re}(\mathrm{t}\mathrm{r}\Omega(A^{\prime\dagger}A’-1_{m))}$ .
(5.15)

An extremal point $A’$ and $\Omega$ satisfy

$\frac{\partial L}{\partial A’}=\frac{1}{m}(A+2A’\Omega)=0$, (5.16)

$\frac{\partial L}{\partial\Omega}=A^{\prime\dagger}A’-1_{m}=0$ . (5.17)

From these equations, we have

$\Omega^{2}=\frac{1}{4}A^{\uparrow}A=\frac{1}{4}$ (5.18)
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Using these equations, we can reduce the problem to the following:

minimize $\mathrm{t}\mathrm{r}(\Omega)$ ,

subject to $\Omega^{2}=\frac{1}{4}$
(519)

Lemma 5.2. The solution to the minimization problem (5.19) is given by

$\Omega=-\frac{1}{2\sqrt{m}}$ (5.20)

Hereby, $A$ and $A\dagger$ satisfy

2$A’\Omega+A=0$ , $\Omega=-\frac{1}{2\sqrt{m}}$ , (5.21)

and

$A^{\prime\dagger}A’=1_{m}$ . (5.22)

We may put the element $A’$ in the form $A’=sA+C$, where $s\in \mathrm{R}$ and where $C=(c_{kl})\in$

$\mathbb{C}^{2^{n}\mathrm{x}m}$ satisfies

$(A, C)=0$ $\Leftrightarrow$ $\mathrm{R}e\sum_{k=1}^{2^{n}}\sum_{l=1}^{m}c_{kl}=0$ . (5.23)

Then, Eq. (5.21) implies $(1-s\sqrt{m})A+2C\Omega=0$ , so that

$\sum_{l=1}^{m}\mathrm{c}_{kl}=\sqrt{\frac{m}{2^{n}}}(1-s\sqrt{m})$ . (5.24)

Hence, from Eq.(5.23), we have

$s= \frac{1}{\sqrt{m}}$ , $\sum_{l=1}^{m}c_{kl}=0$ . (5.25)

The second equation in Eq. (5.25) implies that $C$ is put in the form $C=BH^{\mathrm{t}}$ , where the
matrix $H$ defined in Eq. (4.27) and an arbitrary matrix $B\in \mathbb{C}^{2^{n}\mathrm{x}(m-1)}$ . Hence, we can
express the $A’$ as

$A’= \frac{1}{\sqrt{m}}A+BH^{\uparrow}$ (5.26)
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We note here that the matrix $H$ satisfy:

$AH=0$, (5.27)

$H^{\mathrm{t}}H=1_{m-1}$ , $HH \dagger=1_{m}-\frac{1}{m}$ (5.28)

From Eqs. (5.17) and (5.26), we have

$A^{\prime\dagger}A’= \frac{1}{m}A^{\mathrm{t}}A+\frac{1}{\sqrt{m}}(A^{\mathrm{t}}BH^{\uparrow}+HB^{\mathrm{t}}A)+HB^{\uparrow}BH^{\mathrm{t}}=1_{m}$, (5.29)

and further

$B\dagger B=1_{m-1}$ (5.30)

by multiplying (5.29) by $H^{\uparrow}$ and $H$ from the left and the right, respectively. Then, we
have $A\dagger BH^{\mathrm{t}}+HB^{\uparrow}A=0$ from Eq. (5.29), and further $A^{\uparrow}B=0$ by multiplying $H^{\mathrm{t}}$ from
the left. The matrix $B$ satisfying Eq. (5.30) and $A\dagger_{B}=0$ proves to be expressed as
$B=KV$, where $K$ is defined in Eq. (4.31), and where $V$ is a $(2^{n}-1)\cross(m-1)$ matrix
satisfying

$V^{\uparrow}V=1_{m-1}$ . (5.31)

Consequently, the matrix $A’$ is put in the form

$A’= \frac{1}{\sqrt{m}}A+KVH\}$ . (5.32)

It is easy to verify that Eq. (5.32) satisfies Eqs. (5.16) and (5.17) for any $V\in \mathbb{C}^{(2^{\hslash}-1)\mathrm{x}(m-1)}$

subject to Eq. (5.31).

We shall prove the following proposition.

Proposition 5.3. The geodesic connecting the initial point $A$ and the extremal point $A’$

is horizontal, which is expressed as

$\Phi(t)=R\cos t+A’\sin t$ , (5.33)

where $R$ is defined to be $R=\sqrt{1-\mathrm{c}}^{1}1\ovalbox{\tt\small REJECT}^{\mathrm{c}}A-A’-$ with $c=(A, A’)$ .

Proof. The geodesic is horizontal if and only if $RA^{\prime\dagger}=A’R^{\mathrm{t}}$ on account of Eq. (3.19).
This condition is equivalent to $A’A^{1}=AA^{r\uparrow}$ . Since $A$ is expressed as Eq. (5.12), we have

$A’A^{\uparrow}= \frac{1}{\sqrt{m}}AA^{1}+KV(AH)^{\uparrow}=\frac{1}{\sqrt{m}}AA^{\uparrow}$ , (5.34)

where we have used Eq. (5.27). In the same manner we have $AA^{\prime\dagger}=\tau_{m}^{1}AA^{\uparrow}$ . Hence,
$A’A^{\mathrm{t}}=AA^{\prime\dagger}$ holds.
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5.4 Horizontalization

As for the ordinary Grover’s algorithm, we need $O(\sqrt{2^{n}})$ steps to reach the target orbit
$S$ , because the sequence don’t reach the target orbit until it reaches a target point. Hence,
all the $O(\sqrt{2^{n}})$ steps should be implemented to the set of $m$ registers.

The horizontal Grover’s algorithm is performed by operating a generalized Grover op-
erator,

$G=-I_{A’}\circ I_{A}$ , (5.35)

to the initial state $A$ successively, where the state $A’$ is the relay state defined in Eq.
(5.12). Since we have

$c=(A’,A)= \frac{1}{\sqrt{m}}$ , (5.36)

the number of operations $G$ needed for reaching $A’$ is equal to

$k= \frac{\pi}{4c}-\frac{1}{2}=\frac{\pi\sqrt{m}}{2}-\frac{1}{2}=O(\sqrt{m})$ . (5.37)

Since we have assumed that $2^{n}>m$ , we can reach the target orbit $S$ by less operations
than the original algorithm.

5.5 Algorithm in the target orbit

The horizontal Grover’s algorithm carries the initial state $A$ into the relay state $A’$ in
the $U(2^{n})$ orbit $S$ through the target state $W_{d},$ $d\in D$ . Now, we would like to perform
the algorithm in the target orbit $S$ to bring the relay state $A’$ to the target state $W_{d}=$

$[e_{d_{1}}, \cdots, e_{d_{m}}]$ .

Our first trial is to apply the generalized Grover’s search algorithm illustrated in Section
5.2 with initial state $A’$ . A condition should be satisfied, that is, $c=(A’, W_{d})$ has to be
independent of the label $d\in D$ . For a matrix $V$ in Eq. (5.12) such that ${\rm Re}(V)=$

$O_{2^{n}-1,m-1}$ , the condition is satisfied. However, the sequences generated by this algorithm
don’t run in the target orbit, so that we need to push the sequences into the target orbit
somehow or other.

Our second attempt is to apply a unitary operation to the state $A’$ . Let the state $A’$

be put in the form $A’=[A_{1}’, \cdots, A_{m}’]$ . Since $A’$ and $W_{d}$ are sitting in the same orbit,
there exists a unitary operator $a_{d}$ such that $A’=a_{d}W_{d}$ . Let $a_{d}=[a_{1}, \cdots , a_{m}]$ . Then, one
has $a_{d_{j}}=A_{j}’$ . Since $A^{\prime\dagger}A’=1_{m}$ , we can form an element $a$ in $U(2”)$ by adding certain
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column vectors $A_{m+1}’,$ $\cdots,$
$A_{2^{n}}’$ to $A_{1}’,$

$\cdots,$ $A_{m}’,$ $a’=[A_{1}’, \cdots, A_{2^{n}}’]$ . Once $a’$ is fixed, $a_{d}$

is expressed as

$a_{d}=a’P_{d}$ , (5.38)

where $P_{d}\in U(2^{n})$ is a matrix which represents the permutation of the column vectors of
$a’$ such that $a_{d_{j}}=A_{j}’$ holds. Then, we have

$(a_{\mathrm{d}})^{\uparrow}A’=W_{d}$ , (5.39)

which shows that we can approach $W_{d}$ by applying the unitary operator $a_{d}^{\uparrow}$ to the relay
state $A’$ .

6 Conclusions

In this article, we analyzed the fibre bundle structure related to Grover’s search algo-
rithm with proposing the horizontal version of the algorithm. After a review of quantum
computation and Grover’s search algorithm in Section 2, we illustrated the fibre bundle
structure and its connection in Section 3 and 4. Though the geodesic which the searching
sequence $G^{k}(A)$ traces is not horizontal, we succeeded in carrying it into a horizontal
curve by means of the connection form, which gave us the idea of horizontalizing the
algorithm.

In Section 5, the main part of this article, we explained the meaning of the left $U(2^{n})$

action from the viewpoint of control, claiming that it is easier to perform operations on
the states in the same orbit. In view of this, we tried to reach the target orbit with as
a few steps as possible. We found the nearest point, the relay point, in the target orbit
and reached it by applying the generalized Grover operator successively, which we named
“horizontal” Grover’s search algorithm. Our new algorithm needs only $O(m)$ steps to
reach the target orbit, while the ordinary algorithm needs $O(N)$ steps.

We here make a concluding remark on a future work. In the final part of Section 5,
the unitary operation was expressed which carries the relay state to the target state. It
should be implemented by a sequence of some $e$lementary quantum gates, which was not
easy to accomplish. However, it must be possible, since all the unitary operation can be
implemented by the set of universal gates [1].
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