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Abstract

We study various topological properties of projective duality in al-
gebraic geometry by using the microlocal theory of sheaves developed
by Kashiwara-Schapira [21]. In particular, in the real algebraic case we
obtain some results similar to Ernstrém’s ones [9] obtained in the com-
plex case. For this purpose, we use constructible functions and their
topological Radon transforms. We also generalize a class formula (i.e.
a formula which expresses the degrees of dual varieties) in [10] to the
case of associated varieties studied by Gelfand-Kapranov-Zelevinsky
[12] etc. For the detail, see [26] and [27].

1 Introduction

We denote the projective space of dimension n over K (=R or C) by P, and
its dual space by PP,. These spaces are naturally identified with the following
sets. .

P, = {l|lisalinein K" through the origin}, (1.1)
P, = {H'| H'is ahyperplane in K**! through the origin}. (1.2)
Note that if we projectivize a hyperplane H' in K"*! we obtain a hyperplane

H in P,. Therefore in what follows we identify the dual projective space P2,
with the set

{H | H is a hyperplane in P,}. (1.3)
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Definition 1.1 Let V be a projective variety in P,. We define the dual
variety V* of V by

Vi={HeP,|3z€ VigNH st. T,V CTH} (CP}). (1.4)

When V is smooth, V* is the set of hyperplanes tangent to V. As we
see in the example below, even if V' is smooth, V* may be very singular in
general.

Example 1.2 (i) Let ¢, : P; — P, be the Veronese embedding given by
Z:yl—fz": 2"y ... 2yl y"] and set V = 1, (Py) C P,. Then
the dual V* C P}, is a hypersurface defined by the classical discriminant
for polynomials of degree n.

(ii) Forn > m, consider the Segre embedding tnm: PnXPm < Plnt1)m+1)-1
given by ([zo : --- : Zalifyo i -0 ym)) — e zay; -] Set
W = tam(Pn X Pr) C P(nt1)m+1)-1. Then the dual variety W* C
Plns1)(m+1)-1 has very pomplicated singularities and the dual defect
6*(W) of W (see (2.2) below) is n —m. Indeed, let M(y11),(m+1) be the
space of (n + 1) x (m + 1) matrices and identify the dual projective
space Pl 1y 1)1 With its projectivization P(M(n+1),(m+1))- Then the
dual W* C P, 1y(m41)-1 I8 explicitly written by

W* = P({A € M(ni1),(m+1) | rankA < m}). (1.5)

Therefore the dual W* admits a stratification defined by the ranks of
matrices.

Many mathematicians were interested in the mysterious relations between
projective varieties and their duals. Above all, they observed that the tan-
gency of a hyperplane H € V* with V is related to the singularity of the dual
V* at H. For example, consider the case of a plane curve C C P, over C.
Then a tangent line [ at an inflection point of C corresponds to a cusp of the

dual curve C*, and a bitangent (double tangent) line ! of C' corresponds to

an ordinary double point of C*. The most general results for complex plane
curves were found in the 19th century by Klein, Pliicker and Clebsch etc.
(see for example, [34, Theorem 1.6] and [38, Chapter 7] etc.).

In the last two decades, this beautiful correspondence was extended to
higher-dimensional complex projective varieties from the viewpoint of the
geometry of hyperplane sections. In particular, after . some important con-
tributions by Viro [37] and Dimca [8] etc., Ernstrém proved the following
remarkable result in 1994.
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Theorem 1.3 [9, Corollary 3.9] Let V C P, be a smooth projective variety
over C. Take a generic hyperplane H in P, such that H ¢ V*. Then for any
hyperplane L € V*, we have

x(VNL) = x(VNH) = (-1)r-tdmV=dmV g, (1), (1.6)

where x stands for the topblogical Euler characteristic and Euy.: V* — Z
is the Euler obstruction of V* (introduced by Kashiwara [17] and MacPherson
[24] independently).

Recall that the Euler obstruction Euy~ of V* is a Z-valued function on
V* which measures the singularity of V* at each point of V*. For example,
Euy. takes the value 1 on the regular part of V*. Moreover, if we take
a Whitney stratification U V> of V* consisting of connected strata, then

acA
Euy- is constant on each stratum V. The values of Euy+ on a stratum V

is determined by those on Vj’s satisfying the condition V' C —VE (for more
detail, see e.g. [18]).

Hence Ernstrom’s result says that the jumping number of the topolog-
ical Euler characteristics of hyperplane sections of V' at L is expressed by
Euy. (L), that is, the singularity of the dual variety V* at L.

The aim of this article is to introduce our results in the real algebraic
case similar to this Ernstrém’s one and to survey its theoretical background.

2 Main results

Consider a real projective space X = RP,, of dimension n and its dual ¥ =
RP;. Let M C X be a smooth real projective variety and M* C Y its dual
variety.

We fix a u-stratlﬁcatxon Y= |_| Yoof Y = lRlP‘ consisting of connected

a€A
strata and adapted to M*. Note that ’I‘rotman [35] proved that this u-

condition is equivalent to famous Verdier’s w-regularity condition.

Definition 2.1 We define a Z-valued function ¢p: Y — Z on Y = RP;,
by
eu(H)=x(MNH) (HeY) (2.1)

Since the function ), is defined by the topological Euler characteristics
of hyperplane sections M N H of M, to obtain results similar to Ernstrém’s
formula (1.6) it suffices to describe the function ¢y in terms of the singular-
ities of M*. We will show that the whole function ¢ can be reconstructed
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from one value pp(y) at a point y € ¥ \ M* and the singularities of M*.

First of all, for the above u-stratification ¥ = U Y, of Y = RP;, we can

acA
prove the following basic result.

Proposition 2.2 The function @) 1s constant on each stratum Y,.

We denote the value of ) on Y, by ¢,. Our main results are recon-
struction theorems of ). Namely, we can determine all the values p,’s of
wum from only one value pp(y) at a point y € Y \ M* and the topology of
M*.

To state the first theorem, we introduce two notations concerning dual
varieties. Recall that the dual variety M* is usually a hypersurface in ¥ =
RP;.

Definition 2.3 (i) We denote the dual defect of M by
*(M)=(n-1)—dimM". (2.2)
(ii) For a conormal vector p € Ti., Y at y € My, consider the second
fundamental form
hyg: T,M* x T,M* — R, ’ (2.3)

with respect to the canonical (Fubini-Study) metric of Y = RPP;, and
set

Jg := t{positive eigenvalues of hy- 5} + 6*(M). (2.4)

Now, let us state our first main theorem which describes the values of ¢y,
onY \ M}

ing*
Theorem 2.4 ([26))

(i) Assume that 6*(M) > 0. Then on'Y \ M™ the function @y s constant.
Moreover for any y € My, there exists an neighborhood U of y such
that we have

pu=d- 1y + (-1)71yg . (2.5)

on U, where d is the value of opr on Y \ M* and p € T*r.“Y is a
conormal vector at y € My,
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(i) Assume that §*(M) = 0, that is M* is a hypersurface in Y = RP%, and
consider the following local situation. Let Y,, and Y,, be two strata in
Y \ M*, Ys an open stratum in M., such that Y5 C Yo, fori =1,2
and p € Tj(fr..‘Y a conormal vector at a point y € Yg pointing from Yy,
to Yy, (see Figure 2.4.1 below). Then we have

Pop — Py = (—1)‘]’? - (_I)J-i (=0,£2), (2.6)
1 , -
0s = { 5(‘/9&1 + Paz) i Pay F Can,s (2.7)
oy + (=) if Py = @ay.
Yﬁ 13‘
Y
Ye,
Yoo | e
Figure 2.4.1

Remark 2.5 (i) If we rewrite (2.5) by Euler characteristics, we obtain an
equality analogous to Ernstréom’s formula (1.6). Namely, we have

X(M L) = x(MnH) = (-1)% (2.8)

for any L € M,,, where H € Y \ M* is a generic hyperplane in ¥ =
RP;,

'S

(ii) In the case where M™ is a hypersurface, the complement of M* is
divided into several connected components in general. So when we
cross the hypersurface M™, the value of the function ) may jump. Our
formula (2.6) describes this jumping number in terms of the principal
curvature J5 of M. -

Next, we state our second main theorem which reconstructs the values of

"

QDM on sing"

Theorem 2.6 ([26]) Let k¥ > codimy M*. Suppose that the values p,’s on
Yy 's satisfying codimy Y, < k are already determined. Then the value pg on
Y satisfying codimy Y = k + 1 ts given by

= Y e WETENB)-xE%0B)  (29)
a: YoNB#0
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Here we set B = B(y,&)N{y < 0} by taking a small enough open ball B(y,€)
centered at a point y € Yz and and a real-valued real analytic function 3
defined in a neighborhood of y satisfying ¥=1(0) D Y and

(v;grady(y) € T, Y\ U TR.Y (2.10)

o

(see Figure 2.5.1 below).

Mll!

Figure 2.5.1

By Theorem 2.6, we can recursively determine the values ¢,’s of ) by
induction on the codimensions of strata Y,’s. Note that this representation
of the function s is completely analogous to that of the Euler obstructions
in [18].

Example 2.7 Consider a smooth projective curve M defined by the homo-
geneous equation z* + 2%z + z* — 932 = 0 in RP, (see Figure 2.6.1 below).

Figure 2.6.1

Then the dual curve M* C RP3 has a shape as in Figure 2.6.2 below.
More precisely, as a u-stratification of Y = RP; adapted to M*, we can take
Y =| i1, Y: in Figure 2.6.2. Since the last strata Yy; is contained in the line
at infinity (~ RP;) of RIP; it does not appear in the figure.
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codimy Yy = 0

COdlIIlle =0
codimyY; =0
codimyYs =1
COd.lmyY4 =1

codimy Y; =1
COdimy}/s =]

codimyY; =1
codimy Ys = 2
codimy Yy = 2

Figure 2.6.2 codimy Yyg = 2

Now let us apply our two main theorems to this case. Denote by ¢; the
value of the function ¢js on Y;. Then we can easily see that g is 0. Starting
from this value @ = 0, we can recursively determine all the values ¢;’s of

o as follows.

Figure 2.6.3

For example, by Theorem 2.4 the values ¢; and @3 on Y; and Y; respec-
tively can be calculated in the following way.

01 = @o+ (-1)} = (-1 =2, (2.11)
1
3 = -2'(<Po +¢1) =1 (2.12)

Moreover, by Theorem 2.6 the value ;9 on Yjg is determined by ¢1, ¢, ¢s
and g as follows. -

ero0=¢1-0+@s-14+@2-(=1)+ps-14¢;-0=2. (2.13)
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In this case, we can easily check these results simply by counting the in-
tersection numbers of M and lines in RIP,. Namely, our results are the
generalization of this very simple example to higher dimensional cases.

3 Theoretical background

Since the function ), in our main theorems is constant on each stratum
of Y, we consider a class of such functions to study ¢y, which are called
constructible functions.

Definition 3.1 Let X be a real analytic manifold. We say that a function
¢: X — Z is constructible if there exists a locally finite family {X;} of
compact subanalytic subsets X; of X such that ¢ is expressed by

o= th (c; € Z). (3.1)

We denote the abelian group of constructible functions on X by CF(X).

We define the operations of constructible functions in the following way. .

Definition 3.2 ([21] and [37]) Let f: Y — X be a morphism of real ana-
lytic manifolds.

(i) (The inverse image) For ¢ € CF(X), we define a function f*¢ €
CF(Y) by

Froly) = e(F (W) (3.2)
(ii) (The integral) Let ¢ = qu x. € CF(X) such that supp(yp) is com-

T

pact. Then we define a topological (Euler) integral / ¢ € Zof p
X
by

/X 0= 3 x(X) (3.3)

(iii) (The direct image) Let ¢ € CF(Y) such that f lsupp(y) : SUPP(%) — X
is proper. Then we define a function / v € CF(X) by
f ,

(-/f w) (z) = /Y(‘/’ “1f1(2)- (3.4)
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From now on, we shall use various notions concerning derived categories of
constructible sheaves. For the detail of these notions, see [21] etc. We denote
by D*(X) the derived category of bounded complexes sheaves of Cx-modules
on X. Its full subcategory consisting of complexes whose cohomology sheaves
are R-constructible is denoted by D%__(X).

Recall also that the Grothendieck group Kg-.(X) of D} _C(X ) is a quo-
tient group of the free abelian group generated by objects of D§__(X) by the
subgroup generated by :

[F] = [F]=[F"] (F' — F — F" X3 is a distinguished triangle).
(3.5)

Then the natural morphism

X: Kae(X) — OF(X) (3.6)

defined by x([F (:z:) E( 1YdimH?(F), (z € X) is an isomorphism.
j€Z

Moreover, by the isomorphism x: Kr_.(X) — CF(X ) the operations of

constructible functions that we introduced in Definition 3.2 correspond to

those for R-constructible sheaves. For example, let f: Y — X be a mor-

phism of real analytic manifolds and for ¢ € CF(Y) take an object G €

b _o(Y) such that ¢ = x(G). Then we have x(Rf.G) = /dz in CF(X). In

the same way, we can slightly generalize the notion of topological integrals
of constructible functions as follows.

Definition 3.3 ([26]) Let U be a relatively compact subanalytic open subset
of X and ¢ € CF(X). Take an object FF € D}_.(X) such that ¢ = x(F)
and set

/Uso = X(RT(U; F)). (3.7)

We can easily check that the definition above does not depend on the
choice of F such that ¢ = x(F). Note that we do not have to assume that
-the support of ¢ is compact in U as in the usual definition (Definition 3.2
(ii)). Using this slight modification of the notion of topological integrals, we

can express the R.H.S of (2.9) simply by / wm- In fact, we used this fact
B

in the proof of Theorem 2.6.

Now, let X be a real analytic manifold and denote by .¥x the sheaf of
conic (Ryo-invariant) subanalytic Lagrangian cycles in the cotangent bundle
T*X of X. Its global section H°(T*X; %) is the abelian group of conic
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subanalytic Lagrangian cycles in 7*X. In 1985, Kashiwara [19] constructed a
group homomorphism CC: Kg_.(X) — HO(T*X; ¥x) and associated with
each [F] € Kg-.(X) a Lagrangian cycle CC([F]) in T*X. This Lagrangian
cycle CC([F]) is called the characteristic cycle of [F] € Kgr—(X). The
following very important theorem was proved also in [19] (see [21] for the
detail).

Theorem 3.4 [21, Theorem 9.7.11] There ezists a commutative diagram
HYT*X; ) (3.8)

Kp-o(X) - CF(X)

X

in which all arrows are isomorphisms.

By this theorem, we can reduce the problem of constructible functions
(sheaves) to that of Lagrangian cycles.

4 Outline of the proof of main theorems

In this section, we give an outline of the proof of our main theorems. Let
X = RP, and Y = RP; as before. Consider the incidence submanifold
S={(z,H)e X xY |z € H} of X xY and the diagram

XxY (4.1)

where p; and p, are natural projections and f and g are restrictions of p;
and ps to X and Y respectively.

Definition 4.1 Let ¢ € CF(X). We define the topological Radon transform
Rs(p) € CF(Y) of ¢ by

Rse) = [ 1o, (42)

In particular, for a real analytic submanifold M of X = RP, and a |

hyperplane H in X = RP, (<= H €Y = RP},) we have

Rs(Lu)(H) = x(MNH) (= ou(H)). (4.3)
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Therefore for the study of the function ¢y € CF(Y) it suffices to study
the topological Radon transform Rg(1ps). Using the isomorphisms in Theo-
rem 3.4, instead of the topological Radon transform Rg: CF(X) — CF(Y)
itself, we studied the corresponding operation for Lagrangian cycles (charac-
teristic cycles). Then we found an isomorphism

U HYT*X; &x) = H(T*Y; %), (4.4)

where we set 7*X = T*X \ T3 X and T*Y = T*Y \ T3Y (the zero-sections
are removed). Moreover this operation ¥ is (up to some sign £ = +1) the
1somorphxsm of Lagrangian cycles induced by the canonical diffeomorphism
&: T*X = T*Y which coincides with the classical Legendre transform in
the standard affine charts of X = RP, and Y = RP%. Since the characteristic
cycle CC(1y) of 1)y € CF(X) is the conormal cycle [T X] in T* X, the char-
acteristic cycle CC(Rs(1x)) of the topological Radon transform Rs(l M) =
ou is e[®(T3X)]. Set ty: T*Y — Y and N = (y 0 ®)(T% X) C Y. Then
we can easily prove that N coincides with the dual variety M* of M, which
is a closed subanalytic subset of ¥ = RP;, (in classical terminology we call
it a caustic or Legendre singularity). Moreover it turns out that the closure
T;,MY of the conormal bundle 7, Y in T"Y is nothing but (T3, X) (see
[16] for a similar argument). Then by using this very nice property of the
characteristic cycle CC{ipy) we can reconstruct the function ¢p from the
geometry of the dual variety M* = N. Theorem 2.6 was proved in this way.
To prove Theorem 2.4, we have to determine the sign ¢ = +1, which is the
most difficult part of our study. We could determine it by employing the the-
ory of pure sheaves in [21]. More precisely, we expressed the Maslov indices
of the Lagrangian submanifolds T3, X and Ty, Y by the principal curvatures
of M and N respectively with the help of results in [11].

Remark 4.2 By the same argument as above, we can give a more transpar-
ent proof to the main results of Ernstrom [9] in the complex case. -

5 Grassmann cases and class formulas

5.1 k-dual varieties

We shall generalize the situation considered in the previous sections to Grass-
mann cases and obtain similar results. Let 0 < k¥ < n — 1 be an integer.

Recall that the Grassmann manifold consisting of k-dimensional planes
in P, is defined by

Gnr = {L'| L isa (k+1)-dimensional linear subspace in K"*'} (5.1)
= {L| L is a k-dimensional linear subspace in P,}. (5.2)
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Note that Gno = P, and Gnn-1 = P,. Then the notion of dual varieties is
generalized to Grassmann cases as follows.

Definition 5.1 Let V C P, be a projective variety. We define the k-dual
variety V¥ of V by

V# = [LE€Gni | 32 € VegNLst. VHL at z} (CGnx). (5.3)

If k = n—1 the k-dual V* C G, ~ P}, is nothing but the classical dual
variety of V. In [12], Gelfand-Kapranov-Zelevinsky called V*) the associated
variety of V and showed that V{n—dimV-1) jg 5 hypersurface.

5.2 Topological class formulas

From now on, we always assume that the ground field Kis C. Let V C P,
be a projective variety over C and 0 < kK < n — 1 an integer. Assume that
V& is a hypersurface in G, .

Definition 5.2 [12, Proposition 2.1 of Chapter 3] Consider the Pliicker em-
bedding:

VUC) - G’n,k C P(:ﬁ)—l' (5.4)

We call the degree of the defining polynomial of V* in P(y41); the degree
of V¥ and denote it by deg V*.

In [27], we proved the following topological class formula (i.e. a formula
which expresses the degrees of dual varieties) for k-dual varieties by using
Ernstrém’s result [9] and some elementary formulas on constructible func-
tions.

Theorem 5.3 ([27]) In the situation as above, for generic linear subspaces
L1 ~Pi_q, Ly =Py and L3 =~ Pryy of P, we have

deg V(k) = (——l)(n-k)'('dimv'*'l { Euv -2 Euv + / Euv} . (5.5)
Ly Lo L3

Corollary 5.4 Let L ~ Py, be a generic (k+1)-dimensional linear subspace
of P, and consider the usual dual variety (VNL)* C P, of VAL CL
Pry1. Then we have

deg V™ = deg(V N L)". (5.6)
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The formula in Theorem 5.3 expresses the algebraic invariant deg V)
of V) by the topological data of V. In the case where k = n — 1, we thus
reobtain the topological class formulas obtained by Ernstrém [10], Parusinski
and Kleiman [22] etc. See [34, Section 10.1] for an excellent review on this
subject. In a forthcoming paper {28], from these topological class formulas
we derive various more computable class formulas which extend the previous
results obtained by Teissier and Kleiman [23] etc.
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