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SPECIAL RIEMANNIAN GEOMETRIES MODELED ON THE
DISTINGUISHED SYMMETRIC SPACES

PAWEL NUROWSKI

ApsTtrRacT. We propose studies of special Riemannian geometries with struc-
ture groups Hi = SO(3) C SO(5), Hz = SU(3) C SO(8), H3 = Sp(3) C
SO(14) and Hy = F4 C SO(26) in respective dimensions 5, 8, 14 and 26.
These geometries, have torsionless models with symmetry groups G = SU(3),
G2 = SU(3) xSU(3), G3 = SU(6) and G4 = Eg. The groups H; and Gy con-
stitute a part of the ‘magic square’ for Lie groups. Apart from the Hy geome-
tries in dimensions ng, the ‘magic square’ Lie groups suggest studies of a finite
number of other special Riemannian geometries. Among them the smallest
dimensional are U(3) geometries in dimension 12. The other structure groups
for these Riemannian geometries are: S(U(3) x U(3)), U(6), E¢ x SO(2),
Sp(3) xSU(2), SU(6) x SU(2), SO(12) x SU(2) and E7 x SU(2). The respec-
tive dimensions are: 18, 30, 54, 28, 40, 64 and 112. This list is supplemented
by the two ‘exceptional’ cases of SU(2) x SU(2) geometries in dimension 8
and SO(10) x SO(2) geometries in dimension 32.

MSC classification: 53A40, 53B15, 53C10

1. MOTIVATION

The motivation for this paper comes from type II B string theory (see e.g. [1]),
where one considers n = 6-dimensional compact Riemannian manifold (X, g) which,
in addition to the Levi-Civita connection V€, is equipped with:

e a metric conection V7 with totally skew-symmetric torsion T,

e a spinor field ¥ on X.
Special Riemannian structure (X, g, VT, T, ¥) is supposed to satisfy a number of
field equations including;:

VIg =0, §T)=0, T-¥=pu¥, Ric¥ =0.

To construct the solutions for these equations one may proceed as follows.

o Let Y be an object (e.g. a tensor), whose isotropy under the action of SO(n)
is H ¢ SO(n). Infinitesimaly, such an object determines the inclusion of
the Lie algebra § of H in so(n).

e If (X, g) is endowed with such a T we can decompose the Levi-Civita con-

C
nection 1-form LI‘ € so(n) @ R onto I" € h @ R™ and the rest:

LC

I =T+3T.
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This decomposition is of course not unique, but let us, for a moment, assume
that we have a way of choosing it.
Then the first Cartan structure equation df + (I' + £7') A § = 0 for the

LC
Levi-Civita connection T° may be rewritten to the form
dd+TAG=~3TA0

and may be interpreted as the first structure equation for a metric connec-
tion I' € h ® R™ with torsion T € so(n) ® R™.
Curvature of this connection K € h ® /\2 R™ is determined via the second
structure equation:

K=d+TAT.

To escape from the ambiguity in the split Ii“c =T'+ 3T we impose the type
II string theory requirement, that T" should be totally skew-symmetric.
Thus we require that our special Riemannian geometry (X, g, T) must ad-
mit a split T' =T + 4T with T € A’R™ and T € h @ R™.

e Examples are known of special Riemannian geometries (e.g. nearly Kih-
ler geometries in dimension n = 6) in which such a requirement uniquely

determines I" and T.
This leads to the following problem: find all geometries (X, g, T) admitting the

unique split

LC

3
I =T+3T with Te AR* and TeheR"

In which dimensions n do they exist? What is T which reduces SO(n) to H for
them? What are the possible isotropy groups H € SO(n)?

2. SPECIAL GEOMETRIES (X, g, V7, T, ¥)

T e /\SR" was identically zero, then since jQR™" 5T = If?, the holonomy group
of (X, g) would be reduced to H C SO(n). All irreducible compact Riemannian
manifolds (X,g) with the reduced holonomy group are classified by Berger [2].

These are:

e cither symmetric spaces G/H, with the holonomy group H C SO(n)
e or they are contained in the Berger’s list:

Holonomy group for g | Dimension of X | Type of X Remarks

SO(n) n generic

U(n) 2n,n >2 Kahler manifold Kahler

SU(n) 2n,n>2 Calabi-Yau manifold | Ricci-flat,K&hler
Sp(n)-Sp(1) dn,n > 2 quaternionic Kahler | Einstein

Sp(n) dn,n >2 hyberkiihler manifold | Ricci-flat,Kahler
G, 7 G5 manifold Ricci-flat
Spin(7) 8‘ Spin(7) manifold Ricci-flat
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We may relax T' = 0 for geometries with H from Berger’s theorem in at least
two ways:

e relax T = 0 condition to T € A*R™ for H from the Berger’s list. This
approach leads e.g. to nearly Kihler geometries for H = U(n), special
nonintegrable SU(3) geometries in dimension 6, special nonintegrable G2
geometries in dimension 7, etc.

e relax T = 0 condition to T € A® R™ for H corresponding to the irreducible
symmetric spaces G/H from Cartan’s list.

In this note we focus on the second possibility. Here the simplest case is related
to the first entry in Cartan’s list of the irreducible symmetric spaces, namely to
G/H = SU(3)/SO(3). Thus, one considers a n = 5-dimensional manifold X =
SU(3)/SO(3) with the irreducible SO(3) action at each tangent space at every
point of X. In such an approach X = SU(3)/SO(3) is the integrable (T' = 0)
model for the irreducible SO(3) geometries in dimension 5. °

Friedrich [7] asked the following questions: is it possible to have 5-dimensional
Riemannian geometries (X, g, VT, T, ¥) for which the torsionless model would be
G/H = SU(3)/SO(3)? If so, what is T for such geometries?

In a joint work with Bobieriski [3] we answered these questions as follows:

e Tensor Y whose isotropy group under the action of SO(5) is the irreducible
SO(3) is determined by the following conditions:
1) Tijr = Yiijiy, (totally symmetric)
ii) Yy =0, (trace-free)
itl) ki Yimi + YTiji Lhmi + Tati X jmi = GjkGim + 91 9km + Gkl Gjm.

e A 5-dimensional Riemannian manifold (X, g) equipped with a tensor field
T satisfying conditions i)-iii) and admitting a unique decomposition LI(‘: =
[+ 3T, with T € A’R® and T € 50(3) ® R® is called nearly integrable
irreducible SO(3) structure.

e We have examples of such geometries. All our examples admit transitive
symmetry group (which may be of dimension 8, 6 and 5)

e In particular, we have a 7-parameter family of nonequivalent examples
which satisfy

VIw =0, §(T)=0, T¥=pu¥

i.e. equations of type IIB string theory (but in wrong dimension!). For
this family of examples T' # 0 and, at every point of X, we have two 2-
dimensional vector spaces of VT-covariantly constant spinors ¥. Moreover,

since for this family K = 0, we also have Ric¥" = 0.

3. DISTINGUISHED DIMENSIONS

A natural question is [8]: what are the possible dimensions n in which there
exists a tensor Y satisfying:
i) Yije = Tiije), (total symmetry)
11) ’r,-jj =0, (no trace)
i) TjkiTimi + Y1jiThmi + Thti Ljmi = gjx9im + 915 9km + Grigim?
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In dimension n = 5 tensor T has the following features [3]:

e Given T;j; we consider a 3rd order polynomial w(a) = T;jxa;ajar, where
a; €R,1=1,2,3,4,5. We have:

w(a) = 6v3aja2a3 + 3V3(a? — a2)ay — ( 3a? + 3a2 — 6a3 — 6a2 + 242 )as
o Note that:
_ as — \/§a4 \/§as \/.3-02
(3.1) w(a) = det \/§a3 as + \/§a4 \/§a1
\/502 \/gal —2as

The last observation led Bryant [4] to the following answer to our question from the
beginning of this section: if tensor T with the properties i)-iii) exists in dimension
n = 5, then it also exists in dimensions n = 8, n = 14 and n = 26. This is because
in addition to the field of the real numbers R, we also have C, H and O.

We now change expression (3.1) into

as — ﬁ% \/§a3 \/5012
(32) w(a) = det A = det \/5?1-3 as + \/3-114 \/§a1
V3a, V3a, —2as
where a; € R,1=1,2,3,...n and
o for n = 5 we have:

a1 = a1
Q2 = Qa2
g = Q3
e for n = 8 we have
a1 = ai+agl
a2 = Qa9 + a7i
ag = ag-+agi
e for n = 14 we have:
o1 = a1+ aei+ agj+ aigk
a2z = a2+ a7+ annj+ azk
as = ag+ agi+ aisj+ ausk
e for n = 26 we have:
a1 = a1+ ael+ agj+ arok + a15p + a16q + a17r + a;8s
az = a2+ ari+anj+ a2k + a19p + az0q + @211 + ages
az = a3+ agl+ aizj + a14k + agap + az4q + assr + ages

with i imaginary unit, i, j, k imaginary quaternion units and i,j, k,p,q,r, 8 imaginary
octonion units. Remarkably, modulo the action of the O(n) group, the symbol det
in the above expression is well defined by the demand that the Weierstrass formula

det A = Z SgOT Ajn(1)A2n(2)Asn(a)
TES3

assumes real values.
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Now, we have the following theorems [5, 6].
Theorem 1
For each n = 5,8,14 1 26 tensor Y given by

Yijkaiajar = w(a) = det A

satisfies i)-iii).
Theorem 2
In dimensions n = 5, 8, 14 i 26 tensor T reduces the GL(n,R) group via O(n) to
a subgroup H,, where:
e for n = 5 group Hj is the irreducible SO(3) in 8O(5);
Here, the torsionless compact model is: SU(3)/SO(3)
e for n = 8 group Hj is the irreducible SU(3) in SO(8);
Here, the torsionless compact model is: SU(3)
e for n = 14 group Hyy is the irreducible Sp(3) in SO(14);
Here, the torsionless model is: SU(6)/Sp(3)
e for n = 26 group Hag is the irreducible F4 in SO(26);
Here, the torsionless compact model is: Eg/F4

Theorem 3

e The only dimensions in which conditions i)-iii) have solutions for ;i are
n =5,8,14, 26. '

e Modulo the action of O(n) all such tensors are given by det A, where A is a
3 x 3 traceless hermitian matrix with entries in R, C, H, Q, for the respective
dimensions 5,8,14,26.

Idea of the proofs:

e The theorems follow from Cartan’s works on isoparametric hypersurfaces
in spheres [5, 6].

e A hypersurface S is isoparametric in S"~! iff all its principal curvatures are
constant.

e Cartan proved that S is isoparametric in

S" ! ={a* e R"| (a 1_)2+ (@®)? + ...+ (a")? =1}
and has 3 distinct principal curvatures iff $ = S”~! N P,, where
P, = {a' € R" | w(a) = c = const € R}

and w = w(a) is a homogeneous 3rd order polynomial in variables (a?) such
that

ciii) |Vw|2 =9 [ (a1)2 + (02)2 + o+ (an)Z ]2'

e He reduced the above differential equations for w = w(a) to equations for
a certain function with the properties of a function he encountered when
solving the problem of finding Riemannian spaces with absolute parallelism.
He proved that such function give rise only to w = w(a) given by formula
(3.2). Of course, Cartan s conditions cii)-ciii) for the polynomia.l w = w(a)

T such that w(a) = Tira a’a’c
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These three theorems lead to the idea [8] of studies of Hj structures in dimensions
ni = 5,8, 14, 26.

Definition

An Hj structure on a ny-dimensional Riemannian manifold (M, g) is a structure

defined by means of a rank 3 tensor field T satisfying
i) Yije = Y (ijk)s
i) Yij; =0,
ill) Yk Yimi + Yiji Thmi + TktiTjmi = gikGim + Q15 Gkm + GriGim.-
An H; structure is called nearly integrable iff
VET(X, X, X)=0, VX ecTl(TM).

4. NEARLY INTEGRABLE Hj; STRUCTURES AND CHARACTERISTIC CONNECTION

Now a natural question is: what are the necessary and sufficient conditions for
a Hj structure to admit a unique decomposition -
LC
I =T +1T with Te€bh®R* and Te A’R™?
If such a unique decomposition exists, the connection I is called characteristic
connection of the Hj structure.

The answer to the above question is given by the following theorem [8].
Theorem 4
Every Hj structure that admits a characteristic connection must be nearly inte-
grable.
Moreover, _

o In dimensions 5 and 14 the nearly integrable condition is also sufficient for
the existence of the characteristic connection.

e In dimension 8 the spaces h; ® R* and /\31R"'= have 1-dimensional intersec-
tion V;. In this dimension a sufficient condition for the existence of char-
acteristic connection I' is that the Levi-Civita connection ti‘c of a nearly
integrable SU(3) structure does not have V; components in the SU(3) de-
composition of 50(8) ® R® onto the irreducibles.

o In dimension 26 the Levi-Civita connection LIQ of a nearly integrable F4
structure may have values in 52-dimensional irreducible representation Vs2
of F4, which is not present in the algebraic sum of {4 ® R* and /\3IR”’°. The
sufficient condition for such structures to admit characteristic T is that LI'(‘J
has not components in V.

Definition
The nearly integrable Hj, structures described by Theorem 4 are called restricted

nearly integrable.
Now we discuss what the restricted nearly integrable condition means for a Hj

structure:
e If n;y = 5 then, out of the a priort 50 independent components of the Levi-
Lc
Civita connection T", the restricted nearly integrable condition excludes
25. Thus, heuristically, the restricted nearly integrable SO(3) structures
constitute ‘a half’ of all the possible SO(3) structures in dimension 5.
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e If n; = 8 the Levi-Civita connection has 224 components. The restricted
nearly integrable condition reduces it to 118.

e For ny = 14 these numbers reduce from 1274 to 658.

e For nj = 26 the reduction is from 8450 to 3952.

To discuss the possible torsion types of the characteristic connection for Hy geome-
tries we need to know that:

e there are real irreducible representations of the group SO(3) in odd dimen-
sions: 1,3,5,7,9...

e there are real irreducible representations of the group SU(3) in dimensions:
1,8,20,27,70...

e there are real irreducible representations of the group Sp(3) in dimensions:
1,14,21,70,84,90,126,189,512, 525...

e there are real irreducible representations of the group Fy4 in dimensions:
1,26,52,273,324,1053, 1274, 4096, 8424. ..

For each of the possible dimensions ny, = 5, 8, 14, 26 we denote a possible irreducible
j-dimensional representation of the Hy group by ™*V;. Then we have the following
theorem [8].

Theorem 5

Let (M, g,Y) be a nearly integrable Hj structure admitting characteristic connec-
tion . The Hj irreducible decomposition of the skew symmetric torsion T of I is
given by:

e T €5, %V3, : for ny =5,
o TeclVnatyatVrady, for ny, = 8,
o T € ¥4Vigo @ 4Vay @ Voo ® 14V, for ng = 14,
o T € 2Vigrs @ 26Vips3 & %6 Vars, for ny = 26.

Example [8]: SU(3) structures in dimension 8
Among many interesting features of these structures we mention the following:

e We have examples of these structures admitting a characteristic connection
with nonzero torsion. ' :

o All our examples admit transitive symmetry group, which can has dimen-
sion < 16.

¢ We have 2-parameter family of examples with transitive symmetry group of
dimension 11, with torsion T € V57 and the Ricci tensor RicF of the char-
acteristic connection I with 2 different constant eigenvalues of multiplicity
5 and 3

¢ We have another 2-parameter family of examples with transitive symmetry
group of dimension 9, with vectorial torsion T € 8V and with the Ricci
tensor Ricl of the characteristic connection I' with 2 different constant
eigenvalues of multiplicity 4 and 4.

e In the decomposition of A’R8 onto the irreducible components under the
action of SU(3) there exists a 1-dimensional SU(3) invariant subspace 8v,.

o This space, in an orthonormal coframe adapted to the SU(3) structure, is
spanned by a 3-form

=T A+ AT+ T3 AG® 65 NOT NGB,
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where (11,73, 73) are 2-forms

n o= AP+ AR VI A
o= LA +6*AN6%2+ V3P A
o= 0PN +204N6°

spanning the 3-dimensional irreducible representation 3 /\§ =~ s0(3) associ-
ated with SO(3) structure in dimension 5.

o The 3-form 9 can be considered in R® without any reference to tensor Y.

o It is remarkable that this 3-form alone reduces the GL(8,R) to the irre-
ducible SU(3) in the same way as YT does.

e Thus, in dimension 8, the Hj structure can be defined either in terms of
the totally symmetric X or in terms of the totally skew symmetric 1.

e In this sense the 3-form ¢ and the 2-forms (71,72, 73) play the same role
in the relations between SU(3) structures in dimension eight and SO(3)
structures in dimension five as the 3-form

d=01NO® +oa N+ 03 NET +0° NGB NGT
and the self-dual 2-forms

o1 = 6 A B3 + 6% A B2
g = G*NO+63N62
o3 = NP +B NG

play in the relations between G structures in dimension seven and SU(2)
structures in dimension four.

5. THE MAGIC SQUARE AND SPECIAL GEOMETRIES MODELED ON DISTINGUISHED
SYMMETRIC SPACES

Looking at the torsionless models X} for the Hj structures given in Theorem 2
we see that each group Hj has its associated group Gy such that Xy = Gj/Hjy.
Remarkably the Lie algebras of the groups Hy and Gy constitute, respectively, the
first and the second column of the celebrated ‘magic square’ of the Lie algebras
[9, 10]:

50(3) | su(3) | sp(3) | fa
su(3) | 25u(3) | su(6) | es
sp(3) | su(6) | s0(12) | ey

fa ¢g e7 ¢s

Let Gk, Gr and G denote the respective compact Lie groups corresponding to
the Lie algebras of the second, third and the fourth columns of the magic square.
The observation opening this section suggests that the pairs (G, Gx) and (G, Gy),
with the homogeneous spaces Gy/Gy, and G /Gy may model T = 0 cases of other
interesting special Riemannian geometries with skew-symmetric torsion. This sug-
gestion should be a bit modified, since the homogeneous spaces Gx/Gx and Gy /Gy
are reducible. To have irreducible symmetric spaces we need

e either to take the Lie groups G corresponding to the third column of the
magic square and divide them by the compact Lie groups corresponding to
the Lie algebras from the following table:
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su(3) ®R

2su(3) e R

su(6) ® R
e ®R

e or we need to take the Lie groups Gy, corresponding to the forth column of
the magic square and divide them by the compact Lie groups corresponding
to the Lie algebras from the following table:

sp(3) © su(2)

su(6) & su(2)

50(12) @ su(2)
e7 @ su(2)

This leads to twelve torsionless models of special Riemannian geometries [8] given

in the table below:

SU(3)/S0(3) Sp(3)/U(3) F4/(Sp(3) x SU(2))
SUB) | SU(B)/S(UG) x UB)) | Ee/(SU(6) x SU(2)

SU(6)/Sp(3) SO(12)/0(6) E;/(SO(12) x SU(2))
Ee/F,; E7/(E6 X 80(2)) Eg/(E'( X SU(2))

It is an interesting question if these 12 symmetric spaces can be deformed to obtain
twelve classes of special geometries X with totally skew symmetric torsion and the
characteristic connection. The dimensions n of X and the structure groups of the
characteristic connection for these geometries are given in the table below:

n = | Structure n= Structure group n= Structure
ng | group Hy || 2(ng + 1) 4(nk + 2) group
5 | SO(@3) 12 U3) 28 Sp(3) x SU(2)
8 SU(3) 18 S(U@3) x U(3)) 40 SU(6) x SU(2)
14 Sp(3) 30 U(6) 64 S0O(12) x SU(2)
26 Fy 54 Eg x SO(2) 112 E; x SU(2)

A quick look at the Cartan’s list of symmetric spaces shows that this list should be
supplemented by two exceptional cases:

1) dim X = 8, with the structure group SU(2) xSU(2) and with the torsionless
model of compact type X = G3/(SU(2) x SU(2)) .

2) dim X = 32, with the structure group SO(10) x SO(2) and with the tor-
sionless model of compact type X = Eg/(SO(10) x SO(2))

Besides the geometries from the first column of the above table, and besides the
exceptional geometries of case 1) above (see [8]), we do not know what objects T
reduce the O(n) groups to the structure groups included in the table.
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