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ABSTRACT. The purpose of this note is to overview how we can construct the heat kernel
for (sub)-Laplacian in an explicit (integral) form with special functions. Of course such
cases will be highly limited. Nevertheless there will be lots of operators interesting on
nilpotent Lie groups. We will concentrate for the operators on nilpotent Lie groups and
their quotient spaces. Here we only treat with typical low-dimensional cases. So first
we discuss the heat kernel for Grusin operator in relation with the Mehler formula and
Hamilton-Jacobi theory and explain a general integral form of heat kernel on nilpotent
Lie groups from this point of view. And then we state a relation between the heat kernel
on Heisenberg group and that for Grusin operator. Also we construct an classical action
integral for a higher step Grusin operator.
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1. INTRODUCTION

It is known in the statistical mechanics that the heat kernel K;(z,y) is expressed as a
path integral

K(t,z,y) = / e~5Mdpu(y),
Pt(zry)
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hopefully with a suitable “infinite dimensional measure” du(v), where P;(z,y) denote the
path space connecting = to y at a time ¢ and the function S,(7) is called the classical
action and is given by

t
S0 =1/2 [ i(s)Pds,
0
By normalizing the time parameter ¢t = 1, this is also written as

1 _S1(w)
N e” = du(y), (1) =7(at))
Pl(Inll)

and in the Laplacian case it has an asymptotic expansion

d(z.y)?
K(t,2.9) ~ e “# ua(a, 1)1+ +0(0).

Here d(z,y) denotes the Riemanian distance of the point z and y. For the sub-Laplacian
cases the small time asymptotic expansion is more complicated (cf. [2]). There are inter-
esting arguments which will give us a reduction of the physics formula to a mathematically
fixed formula in a certain case (cf. [13]). Especially, if the space we are working on is
Euclidean, then we have only one segment (geodesics) which connects z and y, and the
path integral will reduce to just a function

————1 - Z;z :
@nty2© ’

, 1 &
the heat kernel of the Laplacian A = -3 ; —a—z—?

It was the first in the paper {12] that by a probabilistic argument the heat kernel of
the sub-Laplacian on three dimensional Heisenberg group was given in an explicit integral
formula, and then many papers were published to express the heat kernel for Laplacians
and sub-Laplacians on nilpotent Lie groups (see [1], [2], [3], [15] and also recent papers [13],
[5] or [6] for dealing with similar subject and calculations). In case of the sub-Laplacian
we will necessarily have an integral expression for the heat kernel, even if it reduces to a
fixed finite dimensional integral expression since there are many geodesics connecting two
points even locally. The first step of this is how we can suppose that the formula looks
like?

. . . 18  ,8 _

So in §2 we explain the case of Grusin operator G = 3\ 32 +z a—yz) following a
standard way of the spectral decomposition of selfadjoint operators and arrive at a form
as a natural conclusion. Then we discuss the functions in the formula from Hamilton-
Jacobi theory. In §3 we state a possible formula for the heat kernel on general nilpotent
Lie groups and explain an action integral and transport equation which will be satisfied
by the functions appearing in the formula. In §4 we give a relation between heat kernels
on Heisenberg group and Grusin operator in terms of fiber integration. Finally in §5
we solve a Hamilton system for a higher step Grusin operator and construct an action

integral based on the existence of the solution of the Hamilton system.
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2. GRUSIN OPERATOR

o? 62
Let g = — (5“‘2— + z‘z'é?

F : Ly(R?, dzdy) — Ly(R?, dzdn)

ﬂ)m)/ f%uw

a partial Fourier transformation.
Through this partial Fourier transformation, Grusin operator G is seen as

) be Grusin operator and denote by

acting on Ly(R2%, dzdn). When we regard the variable 7 as a constant, the heat kernel
L,(t,z,Z) of the operator
1( 6
L o= —2 | —u— 2,2
7 2 (0.1;2 wn )

for n # 0 is expressed as the sum of eigenfunctions V,,(z)

(Lo V)(o) = DIy g,

where
Va(z) = e V2° . (\/Inlz)
and

Ha(@) = (-1 T2

is the n-th Hermite polynomial:

K, (t, z,7) =i L \/|T7_Vn(l‘)V @

vt V7 2mnl
. _ —iinlt -2 (23+457) Inlz) Ha(+/In|Z) e—ntinl
(2.1) = Vlnle™#Me Z Jronnl
Then by the Mehler formula (cf. [17]) we know that (2.1) equals to
1 n —2{(2+%)? tanh 2 +(z~7)2 coth 2
22 T\ e e T e Ere o),

Note that |n|tanh |n| = ntanh# (and so on).
Also we have

llmIC (t,z,7)

= lim e~ H{(@+8)? tanh F+(z-8)?coth J} _ L-,-ﬁ
n—0 \/27r s1nh tn \/27r

is the heat kernel for the operator ———2.
Now we have the heat kernel K¢ = K g(t, z,y,7,7) of the Grusin operator G = F~1o
Lo F,

3



176

( ‘tgf) T,y) = /K (t,z,y,2,9)f(Z,9)dzdy;
K9(t,z,9,7,9)

/ e\/-——l(y—ﬁ)ne—-’}{(z+§:“)2 tanh % +(z~7)? coth 3,}} n
sinh ¢n

(2.3) - (273)3/2 dn.

In the above expression, if we still change the variable 7 to 1 (= time rescaling), then
it becomes the following form :

K(t,z, y,i,z’/‘)

_Q.L) -"l-{(a:+x)2 tanh J+(z—%)2 coth 3‘} ot
(24) (27Tt)3/2 / sinh T]dn
Put

s =" ot tanh” + (2 — ) coth”
S(z,z,n) = 4{(z+a:) tanh2+(:1: ) cothz}
and V(n) = , lgﬁnh_n’ and then we write this integral form (2.4) as

1 —y{y—-fn __ S(z.%n)

Now we construct the function S S(z,Z;n) by solving a Hamilton system with the
Hamiltonian 2H” 2H"(z,£) = €2 — 1?n*:
n
#(s) = %’i ¢,
o B
£(s) = o = zn?,
boundary condition : z(0) = z, z(t) =Z.

(2.6)

In fact this system is solved explicitly with the solution that
Zsinh sn + zsinh n(t — s)
sinh tn
Z cosh snp — z cosh(t — s)n
sinh tn

z(s) = z(s;t,2,Z,m) =

£(s) = &(st,2,2,m) = 2(s) =

bl

for any t,z,Z € R. With this solution, let ¢ = p(z, T, t;7) be the integral

(27) oo tin) = | #(s)6(s) — HY(a(s), £(s))ds.

This integral is called a classical action and is equal to

e(z,Z,t;m) = /0 z2(s)ds + E

— "5+ 2)tanh 2 + (7 - 2)? coth
(2.8) —4{($+z) tanh2+(x z) coth2},
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where the constant
E = £(s) — 2*(s)n* = £%(0) — &’
0 {4(2? + 7%) — 42T (e + &™)}

(et — e

is an invariant of the Hamilton system (2.6).
Here we know that the function ¢(z,Z, 1;n) coincides with the function S and it is a
solution of the Hamilton-Jacobi equation:

0 15}
—_ o N7 — T e —_
(2.9) mw(z,x,t,n)*—H (z aieo(w,w,t,n)) 0.

The function ¢ has a property that ¢(z,Z,1;tn) = te(z,T,t;n), and this implies that
the function S satisfies the equation, called generalized Hamilton-Jacobi equation:

o) 0
n ~ — ~~ —_ ~ — ~
(2.10) H"(Z, 8§S(z’ z,n) + nanS(w,x,n) S(z,z,n).

For each fixed t, z and n let V : T — £(0;¢,z,Z,7), then by the explicit expression of
the solution of the Hamilton system we have

NN fa
(2.11) V() = P (a: z cosh tn),

‘and

‘ v .. n
(212) 795(””) ~ Vsinhtp'

This function @)—, as a function of the parameter n (with ¢ = 1), is a solution of the

transport equationx(3.6)(see §3).

Summing up, we know that the functions in the integral form (2.3) coincide with the
functions (2.8) and (2.12) we constructed by solving the Hamilton system (2.6). In fact
by putting t = 1 (time rescaling) we have the functions S = S(z,Z, n) = ¢(zo, z, 1;n) and

%@) = V(n)(ck. (18], [10]).

3. HEAT KERNEL ON NILPOTENT GROUPS

On the Lie group G the heat kernel for the (left)invariant (sub)-Laplacian A = —% Z X?
takes the form k(¢,g~! - h) with a smooth function k(t, g) € C*(R; x G) satisfying

0
(3.1) (52 + A)k(t, 9)=0
(3.2) 1&1)1 k(t,g) = 8., 0. is the & function at the identity element e € G.

So, if the heat kernel would be given by a function k(t, g) of an integral form

1

_flm)
(3.3) o~ [ e Vigmdy

5
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with a function f = f(g,n) € C®(G xR?) which we take a function defined by the integral
similar to (2.7) with a modification of the term v/—=1(y — §)n (we call f a complez action
function), then the function V' = V/(g,n) (we call it a volume element) will satisfy an
equation (called transport equation).

Now we shall state these equations. Let H be the Hamiltonian of the (sub)-Laplacian A
and the function f satisfies the equation, called generalized Hamilton-Jacobi equa-
tion:

(3.4 H@ 1)+ S (@) = f(@y)

And then with one solution of this equation we assume that the function V satisfy the
equation, called transport equation:

(3.5) Zm% + (Z XHXWV) - (AF) +N -1 v) =0

Especially, if the function V' does not depend on the space variables then, this equation
reduces to

(36) Y nge—(A()+ N -0V =

The function (2.12) is a solution of this equation.

If we have these two functions f and V satisfying the generalized Hamilton-Jacobi
equation and transport equation then these will give the heat kernel. In the paper [1] it
was proved that for the sub-Laplacian on any two step nilpotent Lie group the heat kernel
is given by the integral (3.3) with a complex action f and a a volume element V. In fact
both of them are explicitly given in terms of hyperbolic functions. The complex action
function is constructed by solving a Hamilton system (~ bi-characteristic equation) under
initial-boundary conditions and the volume element is constructed from the Jacobian of
the correspondence similar to the map (2.11) between boundary condition and initial
condition of the Hamilton system (see (8] for an aspect of functional calculus).

4. HEISENBERG GROUP AND GRUSIN OPERATOR

In the this section we just describe the heat kernel of the three dimensional Heisenberg
group and discuss a relation with that for Grusin operator.

Let H be the three dimensional Heisenberg group and denote its Lie algebra by § whose
basis we denote by {X, Y, Z} with the bracket relation [X, Y] = Z. We identify H and
b through the exponential map exp : § — H and denote by X, ¥ and Z the left invariant

vector fields corresponding to X, Y and Z respectively. Then A,,, = —1 ()? 24¥2) i

a sub-Laplacian on H. Let Ny = [{tY }scr] be a subgroup generated by the element Y
The map p : H — R? defined by

p:HEY 3 g=zX+yY +2Z = (z,y,2) = (u,v) €R?

1
u=z, v=z+§xy
6
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realizes the projection map
H= R3 d Ny\H -’—\—’IR2.
In fact, this is a principal bundle and the trivialization is given by the map

Ny x (Ny\H) 2R x R? 3 (g;u,v) — (2,9,2) € R:=H
(4.1) (a;u,v) = (u,0,v — —;-au).

Then the left invariant vector field X = —@— — Qﬁ descends to the vector field —?— and

F) 20 Ou
0 =z z z

Y = — + == descends to u-g— So the sub-Laplacian A, on H and Grusin operator
Oy 20z ov

commutes each other through the map p:
(4.2) Dgpop=p 0G.

By the left invariance of Ay, the heat kernel K H(t. g, h) € C®°(R4 x H x H) of Asyp
takes the form KH(t; g, h) = k¥ (¢; g71 - h) with a smooth function kH(t,g) € C=(Ry xH).
This function is given as (cf. [1]):

V—1nz- % cot! (@2412)
@) B0 = Km0 = g [ o

(@nt)? Zsmnd
Now by (4.1) and (4.2) we have
+00
[ @), mae - 1/20)de

= K9(t, (z, 2+ 1/2zy), (u,v))

that is, the fiber integration of the function X H(t; g, h) along the fiber of the map p gives
the heat kernel of the Grusin operator. '

5. HIGHER STEP GRUSIN OPERATOR

Higher step Grusin operator is defined as

1,0 0
1 W L2 )
(5.2) g (g +e ay2)
All these comes from a sub-Laplacian on a suitable nilpotent Lie group Gg+1, i-e., let gi41
be a Lie algebra with the basis {Xp, - - -, Xi} such that bracket relations are defined by

[XO)XI] = X27 [X()y XZ] = X3a Tty [XOPX}C'—I} = Xk, [XOa Xk] = 0,

and all other are zero. Gy.; is the corresponding simply connected group and we identify
it with gg41 through the exponential map.

Let A be a subgroup of G, generated by {X1,- -+ , Xk-1}, then N'\Gi., is isomorphic
to R? and the sub-Laplacian on G4y

1

~5 (e + %)

descends to L, 8 2
(5 + " 53
7
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This group is a special class of Carnot group (cf. [5]), and Engel group is such an one of
dimension 4 (we ignore a constant in front of z?).

Until now we have no explicit expression for the heat kernel on nilpotent Lie group of
step greater than 3. In this final section we construct the classical action integral of a
higher step Grusin operator

100 &
@ = (=
g (3 7 te By )
Through the partial Fourier transformation J we consider the operator (cf. [19], [20])
1,8
L(Z) = ——(5—2- -z 772).
As in §1, for each fixed 5 # 0 the heat kernel KL’ (t,z,Z) of the operator L$,2) has a form

Folx t,2,%) = |n|- Ze /i) g <\/_:c)<pk( 171’)

with the normalized eigenfunctions of L§2):

( 1 ‘Pk) () = M pr(z), 0< A S Agyt e, /|<p(a:)]2da: =1.

The heat kernel of a higher step Grusin operator F~1o0Gy 0 F = . (—-62—— +z 8y2) will

be
% / e/Tw-ImicLY (3 2 7)dn.
It is not clear that this has a similar form with (2.8) or (2.4). We construct here an
action integral by solving a Hamilton system similar to (2.6), which solution is given in

terms of elliptic functions and we will know that the action integral satisfies Hamilton-
Jacobi equation.

Let H" = H"(z,£) = %(52 - 334772) be the Hamiltonian of the operator L'?, and
" consider the Hamilton system:
2(s) = €, £(s) = —H}(=,£) = 22°n?
with the boundary condition
z(0) = xo, z(t) =z, ( Zo, x and ¢ # 0 should be taken arbitrary).
The system reduces to a single non-linear equation:
(5.2) & =24y, with the boundary condition z(0) = zo, z(t) = z.

It is enough to consider the cases except zo = 0 = z, for which we have the trivial
solution z(s) = 0. Then, by the transformations s - ¢t — s and z(s) — —z(s), it is
enough to consider the two cases of the boundary data with ¢ > 0:

(I) zo L0 <z,
(II) 0<z9< 2.

We describe the solution:

180



Case I Let 2o <0 < 2.

Let E > 0 and the function h(y, E) be

4 du
b, B) = | —mm—s,
®.£) o VUuin?+ E

then for each fixed y the function h(y, E) is monotone as a function of E > 0, and for
each fixed z > 0 > z; it takes values from 0 to oo when E moves from oo to 0. So put

E = E(zo, z,t;n) be the unique constant such that

* du
Lo vV U47]2 +E

=t>0.

Now since the function h(y, E(zo, £, ;1)) (—00 < y < +00) is monotone, let z(s; E(zo, z,t; 7))

be its inverse function, i.e.,
/T(SQE(zOyzat;n)) du
20 Vutn? + E(o,7,tm)
then 2(s; E(zo, z,t; 1)) is the unique solution of the equation (5.2).

s,

Case II.  Let 0 < g < z. Then we need to divide into three cases.

: I z du
II-1. Let0<tg_°____=/ o

Then for such t and z > zo we have a unique value E = E(zo, z,t;n) > 0 such that

/ * du _
w0 VUl + E ‘
The solution z(s; E(zo, z,t;n)) of (5.2) is then given by the integral
xz(s,E(z0,z,t;n)) du
/ du
z0 \/u4772 + E(mo,x,t;ﬂ)

IL-2.
gl —z! z du
We assume —2——— <t < / — and fix the unique value E = E(zo, z,t; 1)
Il Jzo V/utn® p zon?
(0 > E > —z}n?) such that / S E—— t, then the solution of (5.2) is
20 VU2 + E(z0, T, ;)
given by
/I(S;E(Zo,z,t;ﬂ)) du
=8
2o Vuin? + E(zo, z,t;1)
I1-3.

T
Let t > / e
zo \/ u4772 - 3?3772
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Then we take the unique value a = a(2, z,t;n) (a(zo,z,t;n) can be chosen uniquely
in 0 < a(zg, ,t;n) < zp) such that

@ du “" d

5 N N S S
The monotonicity of the sum of integral (5.3) with respect to the variable a € (0, z,) will
be seen by the coordinate change u = va in the integral. ’

Here put E = E(zo, z,t;n) = —a(%o, Z,t; 7)*n?, then the unique solution of (5.2) exists
and is described as follows:

R du hen f he sol (s)
Puts——-—/» , then for s < s; the solution z(s) =
' To \/’U47)2 - G,(:Z}O, z, t) 7))4772 '

z(s; E(zo, z,t;m)) is defined by the integral

z(3) du
p— = 8
Zo '\/U4772 + E(l‘o, z, ta 77)

and for 8; < s the solution z(s) = z(s; E(zo, z,t;7n)) is defined by the integral

z(s) du
a \/U4’l72 + E(an z, t; 77)

Note that lim z(s) = a(zo,z,t;n) and lim Z(s) = 0, so this solution coincides with
§—81+0 s§—s1%0

the solution of (5.2) under the initial condition z(s;) = a(zo,z,t) and (s;) = 0. The
case t # 0, 0 < zo = z should be understood as being included in the case II-3.

The solution z(s) satisfies a relation z(st; E(zo,z,t;n)) = z(s; E(zo,z,1;tn)), and
E("L'O’ z, 1 tﬂ) = tzE(.Z'(), z,t; 77)

Hence we could know the existence of the solution of (5.2), z(s; E(z,, z,t; 7)), for arbi-
trary boundary data z(0) = %o, z(t) = z (o, 2, t # 0 can be taken arbitrary). Although
all these are expressed in terms of elliptic functions (sn-function, cn—function and so on,
cf. [21} and [14]), we do not here rewrite them in terms of elliptic functions.

= 8§ — 81.

i > x
x(0)=x0 0| x=x(t)

FIGURE 1. €2 = n’z* + E with E > 0 (Case I and Case II-1).

10

182



FIGURE 2. ¢% = p’z* + E with E < 0 (Case II-2 and Case II-3).

Now based on the existence of the solution of (5.2) we can define the (classical) action
integral f:

t
(5.4) fanz,tim) = [ a(s)ele) ~ H1(alo), ().
By the relation #(s)? = n%z(s)* + E(zy, z,t; n), this integral equals to

t
f(zo, z,t;m) = 1 / z(s)*ds + %E(wo,z,t; n)
0

s [© v t
= dy + = E{zg,z,t;m
7 zo VY12 + E(z0,2,t;7) Y73 (@ )

1 t
:I:g{l‘ 554772 + E("EO’ z, t7 77) — Xy \/5504772 + E(.'Bo, z, t; 77)} + —E((Eo,z‘, ta 77)

( (8) = #(s) = £/7%(8)n2 + E(z0, 2, t; n))

f is a solution of Hamilton-Jacobi eqﬁation % f+ H(z,Vf) = 0 and also satisfies the
generalized Hamilton-Jacobi equation

(5.5)

H(z,Vf)+ n;%f(wo,w, 1;m) = f(zo,z,1;7),

which is proved by making use of the relation: tf(zo,z,t;n) = f(o, z, 1; tn).

Finally we note that our arguments above are also valid to show the existence of the
solution for the Hamilton system (5.2) of general higher step Grusin operator and so we
have an action integral similar to (5.5).
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