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BI-LAGRANGIAN AND CAUSAL STRUCTURES
ON SYMMETRIC SPACES

SOJI KANEYUKI

INTRODUCTION

This is a brief survey of my recent work on the geometry of hyperbolic (semisimple) adjoint
orbits of semisimple Lie groups. In §1, we give a geometric characterization of those orbits,
namely, homogeneous parakihler manifolds and their equivariant compactification. In §2, we
consider a more specific object, parahermitian symmetric spaces. The automorphism groups
of double foliations are considered by using the compactification. In §3, we consider much
more specific one, parahermitian symmetric spaces with causal structures. We determine
the causal automorphism groups by using the compactification.

1. HOMOGENEOUS PARAKAHLER MANIFOLDS
Let us consider the two series of composition algebras (with unit) over R:

R—-C—oH- O, (division series)

C-H->0. (split series)

To each member of the division series there corresponds a geometric structure —complex,
quaternionic, or octonionic structure on a manifold. One may expect the similar situation
for the split series. The algebra of paracomplez numbers C' is the algebra {al +bj : a,b €
R, j2 = 1}, which is isomorphic to the sum R&R. P. Libermann [13] considered the geometric
structure corresponding to C', so-called the paracomplex structure.

We say that (M, F*) is a paracomplez manifold, if F* are two n-dimensional completely
integrable transversal distributions on the 2n-dimensional smooth manifold M. In this case
the tangent bundle T'(M) is expressed as the Whitney sum

T(M)=F* @ F-. (1.1)
Let I = (Ip)pem be the (1,1)-tensor field defined by

-1 onF, peM,
P71 -1, on F,.

A paracomplex structure F'= usually occurs with a symplectic structure on M.

Definition 1.1 ([7]). (M, F*,w) is a parakdhler manifold, if (M, F*) is a paracomplex
manifold and w is a symplectic form on M such that F* are Lagrangian distributions. In
this case F'* is called a bi-Lagrangian structure.

On a parakihler manifold (M, F£,w) one can define a parakihler metric g byk
9(X,Y) =w(IX,Y),
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where X,Y are vector fields on M. g is pseudo-Riemannian of signature (n,n). There
are two kinds of automorphism groups on a parakshler manifold: Aut(M, F%) is the sub-
group of the diffeomorphism group Diff (M) consisting of elements leaving the bi-Lagrangian
structure F** invariant, while Aut(M, F*,w) is the subgroup of Aut(M, F%) consisting of
symplectomorphisms. Note that the latter one is the closed subgroup of the isometry group
of the parakiihler metric. But the former one is not finite-dimensional in general.

Let G be a connected Lie group and H be a closed subgroup. Suppose that G acts on
M := G/H almost effectively. Let (F*,w) be a parakiihler structure on M. We say that
(M = G/H,F*,w) is a homogeneous parakihler manifold, if F* and w are G-invariant.
In the following we will give a brief survey on how to construct homogeneous parakiihler
manifolds and their compactifications ([7], [4]).

Definition 1.2. Let g be a Lie algebra, u* two subalgebras, and let p be an alternating
bilinear form on g. We say that (u®, p) is a weak dipolarization in g, if the following conditions
are satisfied:

(WD1) g=ut+u-,

(WD2) utnu- ={X €g:p(X,g) =0},

(WD3) p(u*,ut) =0,

(WD4) pis a cocycle in the sense of Lie algebra cohomology.

One has a one-to-one correspondence between homogenous parakihler structures on G/H
(up to covering) and weak dipolarizations (u*, p) in g = Lie G such that h = u* Nu~, where
h=LieH.

Definition 1.3 ([7]). Let g be a Lie algebra, u* two subalgebras, and let f be a linear form
on g. We say that (u*, f) is a dipolarization in g, if the following conditions are satisfied:
(D1) (u*,f) and (u~, f) are polarizations in g.
(D2) g=u*+u".

It follows that (u*, f) is a dipolarization, if and only if (u*,df) is a weak dipolarization.
Hence we have only to consider dipolarizations, as long as we are concerned with homoge-
neous parakihler structures on a coset space of a semisimple Lie group.

From now on, we assume G to be semisimple. Then, homogeneous parakihler structures
on G/H (up to covering) are in one-to-one correspondence with dipolarizations (ut, f) in
g = Lie G such that h = u* Nu~. We want to consider the relation between dipolarizations
in g and Z-gradings of g. Let Z; € g be the dual element of f with respect to the Killing
form B of g, that is,

B(Z;, X) = f(X), X € g.

Zy is called the characteristic element of the dipolarization (u*, f). Sometimes we use the
notation (u*, Zy), instead of (u%, f). The element Z; is semisimple in g, but not hyperbolic
in general (Recall that a semisimple element X € g is hyperbolic, if ad X has only real
eigenvalues). By using a result of [14], it can be shown that u* are parabolic subalgebras.
Furthermore, the intersection u™ Nu~ coincides with the centralizer ¢(Z;) of Z; in g. For
a semisimple Z-graded Lie algebra (shortly GLA) g = 3",__ g of the v-th kind, the
unique element Z € g, satisfying the condition ad Z|;, = k1, —v < k < v, is called the
characteristic element of the grading. Note that Z is hyperbolic and the centralizer ¢(2)
coincides with go. For a semisimple Lie group G, the orbit of AdG through a hyperbolic
element in g = Lie G is called a hyperbolic orbit.



Theorem 1.4. ([4]) Let G be a connected semisimple Lie group and H a closed subgroup.
Then the following three are equivalent:
(i) The coset space M = G/H is homogeneous parakéhler manifold,
(ii) H is an open subgroup of the Levi subgroup of a parabolic subgroup of G,
(iii) M is a G-equivariant covering manifold of a hyperbolic Ad G-orbit.

For the proof, choose the dipolarization (u*, Z;) in g corresponding to the homogeneous
parakshler structure on M. The crucial point of the proof is to construct a grading g =
> »—_, 8; With characteristic element Z, satisfying the following two conditions:

Ut = Zﬂik, ut Nu” = ¢(Zy) =c(Z) = go- (1.2)
k>0
As a conclusion of Theorem 1.4, we have that among adjoint orbits of a semisimple Lie
group, a hyperbolic orbit can be characterized geometrically as a homogeneous parakihler
manifold.

Next we will mention the compactification of homogeneous parakdhler manifold. Let
g = 3.r__, 8 be a semisimple GLA with characteristic element Z. Let G be a connected
Lie group with g = LieG, and let Gy be the centralizer of Z in G. Then the coset space
M = G/G, is a hyperbolic G-orbit, and hence a homogeneous parakéhler manifold. Let
U#* be the parabolic subgroups corresponding to u* in (1.2), and let us consider the flag
manifolds M* = G/U*. We denote by o, o* the origins of the coset spaces M, M*,
respectively. Consider the product manifold M := M~ x M*. By the hgrz'zontal (resp.
vertical) distribution on M, we mean the G x G-invariant distribution F* (resp. f:)
obtained by transporting the tangent space T,- (M) (resp. To+(M)) to each point of M.
The leaves F=(o) of the bi-Lagrangian distribution F* on M through o are given by the
orbits U%o. We define the map ¢ of M to M by putting

¢(go) = (go~,g0"), g€G. (1.3)

Theorem 1.5 ([7]). The map ¢ is a G-equivariant open dense embedding of M into M. In
particular, M is the compactification of M. Moreover ¢ sends the Lagrangian distribution
F* or F~ on M to the horizontal or the vertical distribution on M, respectively.

2. PARAHERMITIAN SYMMETRIC SPACES

Definition 2.1 ([11]). A homogeneous parakihler manifold (M = G/H, F*,w) is a para-
hermitian symmetric space, if the pair (G, H) is a symmetric pair.

Let M = G/H be the homogeneous parakihler manifold corresponding to a semisimple
GLA g =3",__, 6x- Then M is parahermitian symmetric, if and only if » = 1. So one can
start with a simple GLA:

g=g_,tg8+8- (2.1)
We fix the associated pair (Z,7), where Z is the characteristic element and 7 is a grade-
reversing Cartan involution of g. Let Gy be the centralizer of Z in the automorphism group
Autg of the Lie algebra g. Then LieGy = go. Go acts on g in grade-preserving way.
Let G be the open subgroup of Aut g generated by Gp and the inner automorphism group
Adg. Consider the involution o := AdexpmiZ of g. The coset space M = G/G, is a
symmetric space corresponding to the symmetric triple (g, 8g, o). M is also realized as the
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orbit (Ad g)Z, which is hyperbolic. Hence, by Theorem 1.4, M = G/G} is a parahermitian
symmetric space. Note that G is the maximum subgroup of Aut g acting on M.

Example 2.2. (i) The space # = SL(2,R)/R* is a symmetric space, where R* denotes
the subgroup of diagonal matrices. H is a hyperbolic SL(2, R)-orbit, realized as
the one-sheeted hyperboloid, given by the equation z2 + y2 — 22 = 1 in R3. The
bi-Lagrangian distribution is given by the two families of generating lines.

(i) Let S™ be an n-sphere, and let M = S™ x S™ \ (diagonal set). M is expressed
as the parahermitian symmetric space SO(1,n + 1)/ SO(n)R*, and M~ is S™. The
corresponding root space A defined below is of C;-type. Note that M can be identified
with the set of oriented geodesics in the (n + 1)-dimensional Lobachevsky space.

Now let us consider the parabolic subgroups U* = Gy expg., corresponding to the sub-
algebras u* = gy+g,,. The flag manifolds M* = G/U%* are symmetric R-spaces. Let r
be the rank of M*. Let K be the maximal compact subgroup of G corresponding to the
grade-reversing Cartan involution 7. Ky := K NGy is a maximal compact subgroup of Gg.

Proposition 2.3 ([1], [15]). There is a 3r-dimensional graded subalgebra a = a_; + ag + 0,
of the GLA g in (2.1), satisfying the conditions:
(i) a is the direct sum of the pairwise commutative r sI(2,R)-triples < E_;, 3, F; >, 1 <
i <r, where E_; = —-7(E;), 5
(ii) aﬁ:l = Z:::l RE:HJ’ a{) = Z::l R/B‘i’
(iii) g+ = Kotz1-
The graded subalgebra a is called the spine of the GLA g. It is known ([1], [15]) that
there exists a root system A = A(g, ao) of g with respect to the R-split abelian subalgebra,

a. B, ,Br are strongly orthogonal roots in A. A is either of C,-type or BC,-type. We
need the following elements of G:

ax = exp(—= E(E E),1<i<r, a=1 (2.2)
1—1
Note that a; is the square of the partial Cayley element ¢; associated to the strongly or-
thogonal roots £y, -, B, It follows from (1.3)vthat the compactification map ¢ sends the
G-action on M to the diagonal G-action on M. In the following, we will give the G-orbit
decomposition of M.

Theorem 2.4 ([9], [5]). Let M denote the orbit G(0™,a,_xot), 0 < k < r. Then we have
(i) The G-orbit decomposition of M is given by _
M=MTIUM,_ 1. 1M, (2.3)
() N
dimM =dim M, > dim M,_, > --- > dim M,. (2.4

(iii) If we denote the union I1¥_ M; by My, and denote the closure of My by My, then
Mk M<k, 0<k<r.

(iv) M<x (0 < k < r—1) is a real analytic set in M, and its singular locus Slng(M<k)
coincides with M<g_; for 1 <k <r -1

(v) We have M, = (M) and My = G/U~ Na,Uta:!, which is a flag manifold.



(vi) Suppose that A is of C.-type. Then we have a,U%a;! = U™, in which case My =
G/U".

The decomposition (2.3) of M having the property (iii) is called a stratification of M.

Remark 2.5. Let us mention some consequences obtained from Theorem 2.4(vi). From
the condition a,Uta;! = U™, it follows that if we choose the point a,ot € M™ as the
new origin, then we have M* = G/a,U*a;' = G/U~ = M~ and a,0" = 0~, and hence
M is expressed as M~ x M~. Since the point (0~,a,07) € M~ x M* = M is expressed
as (0=,07) € M~ x M~ = M, we have that My = G(0™,a,0") = G(0™,07), which is the
diagonal set of M~ x M~.

The following proposition follows from Theorem 2.4(iv).

Proposition 2.6 ([9]). Let f be a smooth diffeomorphism of M. If f(M,) = M,, then
f(My)=M; for 0<i<r-1.

For a GLA g in (2.1), the union L of singular Go-orbits in g, is R*-invariant and is called
a generalized light cone. For the case where A is of C,-type, g, is a simple Jordan algebra,
and L is defined as the set of zeroes of the generic norm of the Jordan algebra. For example,
let g = 50(2,n). Then we have g, = s0(1,n — 1) + R, the Lie algebra of the conformal group
of the quadratic form with signature (1,n — 1), and g; = My »—1(R). In this case, L is the
usual Lorentz light cone z2 — 22 —--- — 22 = 0.

By using the generalized light cone L C g,, one can introduce a generalized conformal
structure K (cf. [2]) on the symmetric R-space M~ = G/U~. We identify g, with the
tangent space T,- (M ™) at the origin o~. The cone L sits in T,- (M ~). Let p be an arbitrary
point of M~, and write it as p = go™, g € G. Then L, := g,,-L is a (well-defined)
light cone in T,(M~). K is defined to be the field {L,}pem- of generalized light cones on
M-. We denote the group of smooth diffeomorphisms of M~by Diff(M~). We say that
f € Diff(M~) leaves K invariant (and denote it by f.X = K), if f satisfies the condition
f«Lp = Ly(y) for each p € M~. Clearly K is G-invariant. We define the automorphlsm group
of the generalized conformal structure K by

Aut(M~,K) = {f e Dif(M ") : X =K.}

Theorem 2.7 ([2]). Let M~ = G/U~ be the symmetric R-space associated to a simple GLA
g in (2.1). Then we have

Diff(M~), if A is of C;-type,

G, otherwise. (2.5)

Aut(M—,K) = {

Note that the symmetric R-space M~ of C,-type is a sphere, as was mentioned in Example
2.2(ii).
The final goal of this section is

Theorem 2.8 ([9]). Let (M = G/Gy, F*) be a 2n-dimensional parahermitian symmetric
space (realized as the hyperbolic orbit) associated to a simple GLA g in (2.1). Then the
automorphism group Aut(M, F%) of the bi-Lagrangian structure F* is given by

Diff(S™), if A is of C1-type,

G, otherwise. (2.6)

Aut(M, F*) = {
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Proof. (Sketch) We identify M lvit~h the open dense G-orbit M, in M. We Slgnote by
Aut(M,F* : M) (resp. Aut(M, F* : My)) the group of diffeomorphisms of M leaving
the product structure F'* invariant, and leaving M (resp. M;) stable. Consider the double
fibration

M~ E M M 2.7)
where 7% are the natural projections between the coset spaces. The fibers of 7% are the
leaves of F*.

Now let f € Aut(M,F*). Then f is fiber-preserving, and hence it induces the diffeo-
morphisms f* € Diff(M*) such that 7% - f = f*.x% Tt follows that the correspondence
frfi=fx fT gives an isomorphism

Aut(M, F*) ~ Aut(M, F* : M). (2.8)
By using Proposition 2.6, we have the inclusion:
Aut(M, F=* : M) < Aut(M, F* : My). (2.9)

Consider first the case where A is of BC,-type. The product foliation F* induces the
non-trivial foliation Fif on Mp. We have the isomorphism

Aut(M, F* : My) ~ Aut(My, F¥). (2.10)

The latter group was described by Tanaka [17] in connection with the 5-grading of g. But
our group G is related to the 3-grading of g. One can show that both groups are identical.
It follows that

Aut(M,, Ff) = G. (2.11)
By using the G-invariance of F* and (2.8)—(2.11), we conclude that Aut(M, F*) = G.
Next consider the case where A is of C,-type. We use the method of changing of the origin
given in Remark 2.5. We decompose f as f = f; x f, corresponding to the expression M =
M~ xM~. By Proposition 2.6, f leaves M; invariant, which is the diagonal set of M~ x M~.
So we have f, = fs, and hence f = f; x fi;. By using the relation f (M<r_1) = Mgy, we
can prove that f; € Aut(M~,K). The correspondence f f1 yields the inclusion

Aut(M, F= : My) < Aut(M~, K). (2.12)

By Theorem 2.7, we have the conclusion. Note that the inclusion in (2.9) is the equality,
provided that r = 1. v

O
Theorem 2.8 was also obtained by Tanaka [17] under the assumption that g is classical
simple. Our setting is Lie-theoretic and more general.

3. SYMMETRIC SPACE OF CAYLEY TYPE

We will begin with causal structures.

Definition 3.1. A subset C in R" is a causal cone (with vertex at 0), if C is a closed convex
cone, whose interior is not empty, satisfying the condition C N (-C) = (0).



Let C be a causal cone in R”. The group
AutC = {g € GL(R") : gC = C} (3.1)
is called the automorphism group of C. The following definition is due to Hilgert-Olafsson

[3]-

Definition 3.2. Let C be a causal cone in R", and let M be an n-dimensional smooth
manifold. Let C = {Cp}pem be a family of causal cones Cp, where C, is in the tangent
space T,(M) at p € M. We say that C is a causal structure with model cone C on M, if the
following conditions are satisfied: there exists an open covering {U;}ie; of M and, for each
i € I, there exists a local trivialization ¢; on U; of the tangent bundle T'(M), that is, cp, is
a diffeomorphism of U; x R" onto T'(M)|y, such that ¢;(p,C) = C, for p € U;.

Thus a causal structure C on M is a conical subbundle of T(M ). Let (M,C) be a causal
manifold, and let C = {Cp}peM A diffeomorphism f of M is a causal automorphism, if
f leaves C invariant, that is, f.C, = C{(p) holds for each p € M. The group of causal
automorphisms is denoted by Aut(M,C).

One can interpret a causal structure as a G-structure in a usual sense.

Proposition 3.3. Let C be a causal cone in R™, and let M be an n-dimensional smooth

manifold. Then M has a causal structure C with a model cone C, if and only if there ezists
an Aut C-structure on M.

The following lemma is easy, but useful.

Lemma 3.4 ([6]). Let G be a Lie group and H be a closed subgroup of G. Let o denote the
“origin of the coset space M = G/H. Let C be a causal cone in the tangent space T,(M).
Suppose that the group Aut C contains the linear isotropy representation of H as a subgroup.
Then there exists a G-invariant causal structure with C as a model cone.

Let D be an irreducible bounded symmetric domain of tube type, and let G(D) be the
full holomorphic automorphism group of D. The Lie algebra g := Lie G(D) is simple of
Hermitian type. g can be expressed as a GLA in (2.1). By a theorem of E. Cartan, Autg is
isomorphic to the isometry group J(D) with respect to the Bergman metric of D. We identify
the both groups. It can be shown that the group G constructed in §2 coincides with the full
group Autg. G(D) is a normal subgroup of G with index 2. Now let Go(D) = Go N G(D)
and U*(D) = U* N G(D).

The parahermitian symmetric space M = G/G, associated to the GLA g of Hermitian
type in (2.1) is called a symmetric space of Cayley type. Note that dim M = dimg D. For
a Cayley type symmetric space, the root system A is always of C,-type. M and M* are
expressed as

M = G(D)/Gy(D), M* =G(D)/U*(D). (3.2)

M+ or M~ is the Shilov boundary of D, depending on the choice of the complex structure
(KW12)).

Let us introduce the causal structures on M*. Let By = Y. | E4; € gi;. Then the
orbits V* = Go(D)Ex are so-called selfdual open convex cones, and the closures C* := V*
are causal cones in g,;. We have that Aut C* coincide with Go(D), which is the linear
isotropy groups of U¥(D) at o € MT. Hence, by Lemma 3.4, there exist the G(D)-
invariant causal structures C* on M¥ with the model cones C*. We need another causal
structure —C~ on M* with the model cone —C~. Thus we have three causal manifolds:
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(M—,C*),(M*,C™),(M*,—C~). The following theorem can be proved by using Proposition
3.3 and TA[16].

Theorem 3.5 (KA[6]). The action of the holomorphic automorphism group G(D) ertends
to the Shilov boundary (M~,C*), and G(D) acts on it effectively as causal automorphisms.
Furthermore we have : :

Diff*(SY), if dim¢D =1, a3
G(D),  ifdimeD>2, -3)

where Diff*(S') denotes the group of orientation-preserving diffeomorphisms of the unit
circle S'. The same equality holds for Aut(M*,C~) and Aut(M+,—C).

Aut(M~,C*) = {

The following is a list of the model cones and the corresponding G(D)-invariant (resp.
G(D) x G(D)-invariant) causal structures and low-dimensional cone fields on M (resp.
M=MxM *). g, ®g_, is identified with the tangent spaces T,(M) and To-o+)(M) =
T,-(M~) & T+ (M*).

model cone causal str. or cone field on M causal str. or cone field on M
C=C*oC- C C
C'=Cte(-C) c c'
C* o (0) Ci ct
OseC- Cyr c-
0)& (-C7) —Cy -C-

The causal structure C (resp. C') on M is noncompactly causal (resp.compactly causal) in
the sense of HO [3], that is, there are no nontrivial closed C-causal curves on M , while there

are nontrivial closed C’-causal curves on M. Cy, (resp. C*) are conical subbundles of F*
(resp. F%). Corresponding to the Whitney sums T(M) = F* @ F~ and T(M) = F+ @ F-,
we have the Whitney sums of the conical subbundles:

C=ChoCy C'=Che(-Cy),

~ o~ ~ ~ o~ -~ 3.4
C=Ctel, C=Co(C) (3.4

Definition 3.6. Let (X, C), ()E' ,5) be causal manifolds, X being compact. Suppose that a
Lie group G acts on X and X as causal automorphisms. We say that (X,C) is a causal
compactification of (X,C), if

(i) C and C have the same model cone, o

(ii) there exists a G-equivariant open dense causal embedding of (X,C) into (X,C).

‘Lemma 3.7. Let (M,C) be a causal symmetric space of Cayley type given above, and let
¢ : M — M be the compactification map as in (1.8), which is G(D)-equivariant. Then
(M,C) is a causal compactification of (M,C).

Let w* be the natural projections of M onto M *, respectively. Then one has

= =wt. o (3.5)



Lemma 3.8. Ei, —5’, 5, C' are p-related to C,ﬁ, -CI-‘:{’ C, q, reipegtively. In particular,
if we identify M with (M), then the restrictions of C*, —C~, C, C' to M are equal to
Ci;y —Cipy C, C', respectively. Also we have

7FCE = wFC* =C* (3.6)
Lemma 3.9. We have the following expressions:
(M, C) = (M~,C*) x (M*,C7),
(M, €)= (M~,C*) x (M*,~C"),

We define the diffeomorphisms ¥ and @ of M by
Hgr0™, g20%) = (a7 ' gear07, a7 qrar0%), 91,92 € G(D), (3.7)
0(910—1920+) = (a:15(92)aro_a a:la(gl)a’ro+)7 91,92 € G(D)’ (38)
where & is an involutive automorphism of G(D) defined by ¢(a) = oao, a € G(D).

Lemma 3.10. 9 lies in the causal automorphism group Aut(]\7 , 5’) ¥ is involutive and

interchanges C*+ with —C—. Under the identification of M with (M), ¥ leaves M stable.
Let 9y = Oy Then O)p € Aut(M,C'). 9|y interchanges Cfy with —Cyy.

Similarly for the involutive diffeomorphism 6 we have

Lemma 3.11 ([10]). 6 € Aut(M,C) holds. 0 interchanges C* with C~. The restriction
61 = B|ps lies in Aut(M,C), and interchanges Cj; with Cy;.

By using Lemmas 3.8—3.11, we have
Lemma 3.12.
Aut(M,C") = (Aut(M~,C*) x Aut(M*,—C7))x <9 >,

Aut(M,C) = (Aut(M~,C*) x Aut(M*,C7))x < 8 >,

where < ¥ > and < 6 > are the cyclic groups of order 2 generated by ¥ and 6, respectively.
Note that Aut(M*, —C~) = Aut(M*, C7).

We denote by Aut(M , C*) (resp. Aut(M , ﬂ:E*)) the group of diffeomorphisms of M
leaving the two cone fields C* and C- (resp. C*+ and —C-) invariant. Clearly we have
Aut(]T/i (7*) Aut(M +C*). Let f € Aut(M, C*) Then there exist f* € Diff(M*) such
that w* . f = f*.w?. It follows from (3.6) that f* € Aut(M*,C¥). By using the expression
f = f~ x f*, we have the following lemma.

Lemma 3.13. L
Aut(M,C*) = Aut(M~,C*) x Aut(M*,C7),

Aut(M, £C%) = Aut(M~,C*) x Aut(M*,-C").

The final goal of this section is the following theorem. A part of the results has been
published in KA[10].

(39)
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Theorem 3.14. Let D be the bounded symmetric domain associated with a simple GLA g
of Hermitian type in (2.1), and let G(D) be the full holomorphic automorphism group of D.
Let M = G(D)/Go(D) be a symmetric space of Cayley type associated with the GLA g Let
C (resp. C') be the noncompactly (resp. compactly) causal structure of M. Let C = Ci ®Cxy
and C' = Cfy @ (—Cy;) be the splittings of C and C' into the low-dimensional cone ﬁelds
respectively (cf. (8.4)). Then we have

Aut(M,C) = Aut(M,C)x < 6y >, (3.10)
Aut(M,C") = Aut(M, £C5)x < 9y >, (3.11)
Aut(M,C¥) = Aut(M, £C%)
_ G(D) if dime D > 2 (3.12)
~ +Y — ’ ’
~ Aut(M~,C7) = { Diff(S'), if dime D = 1.

Proof. (Sketch) (3.11) and (3.10) are the restriction of the two equalities in Lemma 3.12 to
M, in view of (3.9). Let A be a subset of M. We denote by Aut(M C' : A) the subgroup
of Aut(M ¢ ) consisting of elements g satisfying the condition g(A) = A. To prove (3.12),

we will use the causal compactification (M ¢ ) and take a similar way as in the proof of
Theorem 2.8. First note that

Aut(M, £C35) = Aut(M,C') N Aut(M, F*) (3.13)
Analogous to (2.8) and (2.9), it can be proved that
Aut(M, £C%) ~ Aut(M,£C* : M) — Aut(M,+C* : My). (3.14)

We apply the method of changing of the origin of M from (0~,0%) to (0™, a,0%), given in
Remark 2.5. Then the right-hand side of the second equality in Lemma 3.9 is converted into
(M~,C*)x(M~,Ct), and simultaneously M, changes to the diagonal set of M~ x M~, which
is isomorphic to the causal submanifold (M, C+). In fact, the model cone of —C~ is —C~ at
ot. Hence the cone at a,o" belonging to —C~ is seen to be a,.(—C~) = —(Ada,)C~ =C,
which is the model cone of C* at o*. Thus (M*,—C") is converted into (M~,C*), and
hence it follows from (3.9) that

Aut(M,+C*) = Aut(M~,C*) x Aut(M~,C*).
Since M) is the diagonal set of M~ x M—, we have
Aut(M, £C* : My) = diag(Aut(M~,C*) x Aut(M~,C")) ~ Aut(M~,CY) (3.15)

The cone fields +Cj; are G(D)-invariant, and for dim¢ D = 1 the inclusion in (3.14) is an
equality. Consequently, (3.12) follows from (3.14), (3.15) and Theorem 3.5. a

Remark 3.15. The above procedure of the proof indicates that the G(D)-action on M can

be reconstructed geometrically from that on D. M, is the Shilov boundary of M in M
(only in the sense that it is the minimal boundary orbit). The G(D)-action on D extends
to the compact dual of D holomorphically. The extended one can be restricted to the
Shilov boundary M~ as C*-causal automorphism group. The C*-causal action of G(D)

on M~ (= the diagonal set My in M = M~ x M~ ) extends to the C’-causal action on M

which can be restricted to the C'-causal action on M. G(D) acts on M as Aut(M,CL) =
Aut(M,C) N Aut(M,C").
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