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Examples of Peirce decomposition of
Generalized Jordan triple systems of second order
Balanced classical cases !

Noriaki Kamiya (#&#88R)
University of Aizu  (SBKX¥)
Aizu-Wakamatsu, Fukushima, 965-8580, JAPAN

Abstract In this paper, we consider examples of the Peirce decomposition of simple balanced general-
ized Jordan triple systems of second order associated with Lie algebras. By means of choice of a tripotent
element for these triple systems, we can realize the decomposition without using the root systems of Lie
algebras. ‘

Introduction

One of the main object of study in this article is to provide examples of a Peirce decomposition of
simple balanced generalized Jordan triple systems of second order.
It is known that the all simple Lie algebras L have a decomposition of 5- graded Lie algbras as follows;

L=L_2&L_;®Lo® L1 &Ly,

starting with a triple system,which has & triple product’s structure into the subspace component L; of
L. Andifdim L.; =dim L; = 1,it is said to be a balanced triple system for L;, furthermore,a property
of §-grading of Lie algebras is reduced from that property of triple systems equipped with 2nd order (to
see ,[K1]-[K5]). This is one of simple reasons for us to consider about the triple systems.

General speaking for our mathematical field (that is, nonassociative algebras ), it seems that nonasso-
ciative algebras are rich in algebraic structures and mathematical physics. They provide an important
common ground for various branches of mathematics, not only for pure algebra and differential geometry,
but also for representation theory and algebraic geometry. That is, the concept of nonassociative alge-
bras which contain Jordan algebras (superalgebras) and Lie algebras (superalgebras) plays an important
role in many mathematical and physical subjects (for example,[J.1],[K.8],[(K-0.3],[N], {O],[Sch],[Z-S-S-S]
etc.). We have determined that the construction and characterization of these algebras can be expressed
in terms of the notion of triple systems ([K-K],[K.4},[K-5],[0-K.1]), in particular, by using the standard
cmbedding method ([Li},[M],[K.6],{K-0.1],[0-K.2])).

Describing our recent resulis in brief, we find the following:

* For the construction of simple Lie algebras, the generalived Jordau triple system of second order (that is,
the (-1, 1)-Freudenthal-Kantor triple system) is a useful concept([Kan],[K.1},[K.2],[K.3],[K.4},[K.5],[K6]).
* For the construction of simple Lie superalgebres, the (—1, —1)-Freudenthal-Kantor triple system is a
useful concept({K-0.1),(K-0.2],[E-K-0.1],{E-K-0.2],{K-0.4]).

* For the construction of Jordan superalgebrus, the §-Jordan-Lie triple system is a useful concept ([O-
K.1],[K-0.5},[K-0.6)). :

* For the characterization and representation of mathematical physics, the triple system is useful con-
cept, in particular, Yang-Baxter equations, generalized Zorn vector matrix,ete, ({0],[0-K.2],[K-0.3],[K-
0.7)).

!7This is an announcement and the details will be published elsewhere.




Our purpose is to propose a unified structural theory for triple systems. In previous work ([K-K]),
we have studied the Peirce decomposition of the generalized Jordan triple system U of second order by
employing a tripotent element e of U, ( tripotent element means {eee} = ¢). The Peirce decomposition
of U is described as follows:

U=Up® Uy ® U @ Uz BU_40 @ Unr @Up @ Uss,

where L(a) = {eea} = Aa, and R(a) = {aee} = pa if a € Ux,.
In particular, if the tripotent element is the left unit ( left unit element ¢ means eez = z,Vz € U )s
then we have
U=U} GBUu e Uk 8 Uy,

where Q(z) = £z if z € U, and Q(c) =43z ifz € UZ.
On the other hand, for the Peirce decomposition of a Jordan triple system U, it is well known that

U =Upo ® Uyy ® U1y, (only 3 — component’s decomposition).

In the present article, we shall investigate examples of the Peirce decomposition of simple balanced
generalized Jordan triple systems of second order. And only consider classical types cases, for exceptional
cases, we deal with it in other paper ([K.7)).

‘We are concerned with triple systems which have finite dimensionality over a field @ of characteristic
# 2 or 3, unless otherwise specified.

§ 1. Definitions and Preamble

In order to render this paper as self-contained as possible, we first recall the definition of a generalized
Jordan triple system of second order (hereafter, referred to as GJTS of 2nd order), and the constructibn
of Lie algebras associated with GJTS of 2nd order.

A vector space V over a field $, endowed with a trilinear operation VXV xV = V, (z,y, 2) — {zyz},
is said to be a GJTS of 2nd order if the following two conditions are satisfied:

(J1)  {ab{zyz}} = {{abz}yz} - {z{bay}2} + {zy{abz}},(GITS)
(K1) K(K(a,b)z,y) — L(y,=)K(a,b) — K(a,b)L(z,y) = 0, (2nd order)
where L(a,b)c = {abc} and K(a,b)c = {acb} — {bca}.
Furthermore if the GJTS of 2nd order satisfies
dim@{K(aa b)}apan = la

then it is said to be balanced.

On the other hand, we can generalize the concept of GITS of 2nd order as follows { see [K.1],[K.2],[K.5],[K-
0.1] and the references therein ).

For € = +1 and § = &1, if the triple product satisfies

(ab(2y2)) = ((abz)yz) + e(z(bay)z) + (ay(ab)),
K(K(a,b)e,d) — L(d,c)K(a,b) + eK(a,b)L(c,d) = 0,

where L(z,y)z = (zyz) and K(a,b)c = (ach) — §(bca), then it is said to be a (¢, §)- F‘reudenthal—Kantor
triple system (hereafter abbreviated as (¢, 8)-F-K.t.5).



The triple products are generally denoted by {zyz}, (zyz), [zyz], and < zyz >, as is our convention.

Remark. We note that the concept of GJTS of 2nd order coincides with that of (—1,1)-F-K.t.s.
Thus we can construct the simple Lie algebras or superalgebras by means of the standard embedding

method ([Kan.1},[K.1}-[K.5],[E-K-O], [K-O.1],[K-0.2],[K-0.4]).

Proposition 1.1 ([K.2],[K-0.1]). Let U(e,d) be a (¢,6)-F-K.t.s. If J is an endomorphism of
U(e, ) such that J < zyz >=< Jz.JyJz > and J? = —ed1d, then (U(e, §),[zy2]) is a Lie triple system
(the case of § = 1) or an anti-Lie triple system (the case of § = ~1) with respect to the product

[zy2] :=< aJyz > -8 <ydzz > +6 < zJzy > — < yJazz >.

Corollary Let U(¢,d) be a (¢,8) -F-K.t.s. Then the vector space T(¢,8) = U(e, ) ®U(e, §) becomes
a Lie triple system (the case of § = 1) or an anti-Lie triple system (the case of § = -1) with respect to
the triple product defined by '

(5) (2) (G )= (L(al?ff—(zﬁ()c’b) e(L(d,a If (f’&cfi(b,c))) (;)

Thus we can obtain the standard embedding Lie algebra (the case of § = 1) or Lie superalgebra (the
case of § = —1), L(e, ) = D(T(e, 8), T(¢,8)) & T(c, §), associated with T(z, ), where D(T(¢, ), T(e, 8))
is the set of inner derivations of T'(¢, §). That is, these vector spaces D(T'(¢, §), T(¢, ) and T{¢, ) mean

L(a,b) K(c,d)

D(T(e,6),T(e,8)) := {(K(e f) eL(b,a)

)}.,,.n, and

| z
7(e,8) = {( ¥ ) o1y € U(er 5 apen
Remark. We note that L(e,d) := L_, & L_; @ Lo ® L—; & L_; is the five graded Lie algebra or Lie
supcralgcbra, such that L_, =U(g,9),D(T(e,6),T(e,6)) = L_a © Lo ® L_3 with [L;, L;] C Liy;.

By straightforward calculations for the correspondence of the (1,1) balanced F.K.t.s with the (-1,1)
balanced F.K.t.s, we obtain the following.

Proposition 1.2, Let (U,< zyz >) be a (1,1) F-K.t.s. If there is an endomorphism J of U such
that J < zyz >=< JzJyJz > and J? = —Id, then (U, {xyz}) is a GJTS of 2ud order with respect to
the product defined by {zyz} :=< zJyz >.

In [K-4], we obtained all simple (1,1)-balanced F-K.t.s over the complex number field. Thus, these

results ( by the special case of above Proposition 1.2 ) give us a list of the simple balanced GJTSs of
2nd order.

In the next section, we will discuss the explicit forms of this list and investigate examples of the Peirce
decomposition by providing a tripotent element of the simple balanced GJTSs of 2nd order.

§ 2. Main results (Classical types)

On the basis of the results presented in section 1 and [K-4], in order to make this section as com-
prehensive as possible, we first summarize the classical types of simple balanced GJTSs of 2nd order as
follows:



0
Ap-type: Let M4(n) be a set of the matrix {(y ;) |z,y € Mat(1,n; C)}. For Ma(n), we can define
a triple product by
{zyz} =z 0(PJyoz)+zo(PJyoz)— PJyo(zoz),

roy= jo = R
T2 . 0 Y2 0 0 B(y1,:l:z)

B(z,y) = zyT (yT is the transpose matrix of y), and furthermore

Pila) (G o) =5 0) (5 D)

That is, if we set @ = B(21,91)z1 + B(21,41)z1 — B(21,22)y2, and b = B(y2, 22)z2 + B(ya,22)22 — .
B(z1, 23)y1, then by straightforward calculations,

{2ye} = (2 ;)

Cr-type: We identify the vector space {z|z € Mat(1,2n;C)} with

where

0
M,(n) = {( ; ) lz € Mat(1,2n; C)}.
4
For M,(n), we can define a triple product by
1
{zyz} = §{< Jylz > 2+ < Jylz > 2+ < z|z > Jy},

where J is an endomorphism of M,(n) such that J? = —Id and < z|y > is an anti-symmetric bilinear
form satisfying the relation < Jaly >=< Jyl|z >= — < z|Jy >.

Remark. For the Cp-type of simple balanced GJTS of 2nd order, there exist an endomorphism and
a bilinear form such that

J: (-Tl;"' ,xn,m,.+1,---,z2,.) = (—Zn41,"" 'a_$201$1)"')zﬂ)
and < "’"]y >=Z1Ynt+1+ 0+ TpYon — Tp41¥s — 0 — T2pYn,
for z = (21, Tn, Tn+1,"**,T2n) and y = (yly"'rymyn+1y"'ayzn)-

By, D, -types: We identify the space {z|z € Mat(2,p: C)} with

0 =
Moo ={( 7 )l € Mat2, O}
For Mp,p(p), we can define a triple product by

{zyz} =zo(PJyoz)+z0(PJyoa)—~ PJyo(zo2),

= (26 D-( )

0 -1
1 0),811(1.]"—"0‘0.

where

B(z,y) = zyT (2by 2 matrix), op = (



That is,
0 —zyTe —zyTz + z:cTy>
—2yTz — zyTz + 22Ty 0 )

{zyz} = (

Remark. The standard embedding Lie algebras, which are obtained from the types of the triple
systems An—1,Ba(p = 2n — 3),C,,and D,(p = 2n — 4) correspond to the types of the classical simple
Lie algebras, respectively ([K.4],[K.5]).

From now on, we will give examples of Peirce decomposition of balanced classical type’s triple systems.
In the Aa-type balanced GJTS of 2nd order;

el

€ 0

we obtain {eee} = e and {eez} = z,Vz € U.
On the other hand, we have

if we set e = , where e; is a (1,0---,0) : 1 X n matrix, then by straightforward calculations,

R(x)={“e}=mandx=(0 :1:1)

zz 0
Bler,e1)zy + B(zy,e1)e; — Bley, 22)ey = a4
B(ey,e1)z2 + B(ex,22)er — B(zy,e1)e; = 24
<=> B(el,zg) = B(z;,el)
<=>if 27 = (61, +-,6,) and 23 = (by,---,b,), then a; = b;.

<=>{

Similarly, we have

R(z) = {zee} =3z and z = (: z(;) <=>

if 21 = (a1, +*,04n) and z3 = (612,-- *,bn), then a; = =by,a; =b; = 0 (2 <)
Furthermore, we have

Q(m) = {eze} =r<=>a = _b2,' sl = —bm

Qz)=—z<=>a1=b =0, ¢; =5;(2< 1),

Q(z) =8z <=>ay = —bs,a; = b; = 0(2 < 1),

Qz)=-3z<=>z=0.

Hence, we obtain a Peirce decomposition with respect to the above tripotent ¢ as follows.

(a0 )= (om0

-( 0 (g )
g, ot —ngi) :
0 (019?17""#)
‘*((o,ﬂaﬁ,---,h#n) 0 )
0 (g%u,o...’g)
+((~ﬂ-;—"*,0---,0) 0 )

elUfioU eUs=U.
In the B, and Dy, types of balanced GJTS U of 2nd order;

0---0
ifweseti =+/~—1,andeisa (t

0i 0) »'*+2 X p matrix, then by straightforward calculations, we
z -0

obtain
{eee} = e and {eex} =2,Vz € U.



On the other hand, we have

R(z)={zee} ==z
0

<=>(_ur

—eeTz — zeTe + ezTe 0 =z
—ee

z —zeTe + exTe 0

-1 0
<=>zeTe = exTe <=>zel = ex”, by eeT = ( 0 1) .

Similarly, we have

R(z) = {“733} =3z <=> 1-'8T8 = —exle <=> zel = —ezxT.

Furthermore, we obtain

0 —2ezxTe~2 _
~2exTe + 0 =2

Q(z) = {eve} = & <=> {eze} = (

<=>z = —ezTe <=> zeT = —ezT.

Q(z) = {eze} = —x <=>zeT =0
Q(z) =3z <=>czTe = -2z <=> 2zcT = czT.
Q(z) = -3z <=>z =exTe <=> zeT = —ezT.

Hence, we obtain a Peirce decomposition with respect to the tripotent defined by using the above e,

z+ezxTe z—exTe

r=——t eUz0UL=U.

In the C,, type balanced GJTS U of 2nd order;
if we set e as a (1,0---0,0---0)--+1 x 2n matrix, then we obtain

{eee} = e and < Jele >= Id.
By straightforward calculations, we have

{eez} = (< Je|z > e+ < e|z > Je + z),
{zee} = L(z+ < Je|z > e+ < z|e > Je),
{eze} =< Jzle > e.

On the other hand, by the relation < Jzly >= — < z{Jy >, we have
{eze} =< Jzle > e=— < z|Je > e =< Je|z > e.

Hence, we obtain
{eez} =z <=> 2 = (21,0-+:0) for = = (23,3,"* T2q),

1
{eex} = —2-2 <=>z= (0,22,--',1",0,$n+2,"',.’Ezn) forz = (:tl,---,xz,.),
{eez} =0<=>2=(0---0,2041,0--0) for = = (24, -, 235),

{cez} = g-z <=>z =0, {eez} = -%m <=>z=0,{zec} =3z <=>2=0,

1
{xee} = ’2'3 <=>z= (0)12’ Ty, 0, Tn42y " ,321:)7



{zee} =z <=>z = (2,,0,-++,0,2441,0---,0).

Therefore, we obtain a Peirce decomposition with respeet to the tripotent clement ¢ as follows:
U=Uss &U & Vo,

where

U§§ ={(0,22,+,2n,0,Zpya," -+, Z2n) }epan,

U;u = {(.’L‘J ,0 Tty 0)}.,,,,", and Uo] = {(0 s 0, -’En+],0 see 0)}.},,"'
These imply the relation:

L(z)(2L(z) — Id)(L(z) = Id) = 0, for L(z) = {eex}.
From these results, we note that there are several Peirce decompositions by virtue of choice of tripotent

elements.

Remark. For the balanced GJTSs of 2nd order of exceptional types G, Fy, Es, Er and Ej associated
with exceptional simple Lie algebras, we will consider their Peirce decompositions in another paper

(K. 7).

Remark. For the balanced GJTSs of 2nd order, one study has been considered from & geometrical
approach(see [Ber]), that is, he conducted the correspondence of quaternionic structures on symmetric
spases with balanced Freudenthal-Kantor triple systems. Thus it seems that our decompositions is useful
in the detail’s characterization.

Remark. It sccms that this ficld in nonassociative algcbras is very important subject in mathematical
phisics and differential geometry as well as a characterization and constraction of Lie algebras, Lie
superalgebru.s and Yang-Baxter equations. Also, it seems that these triple systems will become useful
tools and concept to characterize about infinite dimensional Lie algebras and superalgebras.

Appendix

We will give examples of other types as follows.
Example A([K.7]) For a balanced exceptional G; type, we have a decomposition;

10
U=U}oU; @Uﬁv,where e= (0 1)

Example B For a quadratic triple system (i.e., zzy = yzz = (z,2)y, (z,y) = (¥, £)) ,we have
U=U*eqU"

where,U* = {z|Q(z) = +z}.
Example C For a GJTS of 2nd order defined by

U= Mat,,(C),e = E,, zyz=z'jz+ z*jz — z'zf,

we have,
U=UfieU;eUteUs;.
Example D For a balanced (-1,-1) -Freudenthal-Kantor triple system, we have,

U=Uy &Us,-1.
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