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Abstract

Graph methods play an important role in studying the structure of inverse semigroups.
We use St\"utzenberger graphs to show that the class of inverse semigroups has the strong HNN
property and the strong amalgamation property. We also obtain an analogue of Britton’s lemma.

1 Introduction

Graphs play a significant role in studying structures of algebraic systems. For groups, the Cayley
graphs shed light on geometrical, structural and algorithmical problems. Similarly, Sch\"utzenberger
graphs are indispensable to study the structures of inverse semigroups. In this paper, we employ
Sch\"utzenberger graphs to investigate algebraic properties of HNNextensions and amalgamated free
products of inverse semigroups.

Britton’s lemma [1] is fundamental in studying algorithmic problems in group theory. It is
basically equivalent to the normal form theorem for HNN extensions of groups. Numerous results
depend on Britton’s lemma as one can see many applications in [3]; the Novikov-Boone theorem,
the Freiheitssatz, Higman’s embedding theorem, the undecidability of Markov properties of groups,
the existence of a finitely presented $\mathrm{n}\mathrm{o}\mathrm{n}\sim \mathrm{H}o\mathrm{p}\mathrm{f}\mathrm{i}\mathrm{a}\mathrm{n}$ group and the embeddability of a countable group
into a group generated by two elements.

HNN extensions of inverse semigroups have been studied and applied to algorithmic and struc-
tural problems of inverse semigroups in [7, 8, 9, 10, 11]. However, no immediate generalization of
Britton’s lemma to the class of inverse semigroups has been known so far. In this paper, we give
an analogue of Britton’s lemma for inverse semigroups.

Let us briefly recall the concept of HNN extensions introduced in [11]. We suppose that $S$

is an inverse semigroup and $A$ and $B$ are isomorphic inverse subsemigroups of $S$ and $\phi$ is an
isomorphism of $A$ onto $B$ . We now suppose $e_{A}\in A\subset e_{A}Se_{A},$ $e_{B}\in B\subset e_{B}Se_{B}$ , where $e_{A}$ and $e_{B}$

are idempotents of $A$ and $B$ , respectively. The inverse semigroup $S\langle\phi,t\rangle$ is defiend ([11]) by the
presentation

$\mathrm{I}\mathrm{n}\mathrm{v}(S,t|t^{-1}at=\phi(a)$ for $\forall a\in A,$ $tbt^{-1}=\phi^{-1}(b)$ for $\forall b\in B$). (1.1)

The element $t$ in $S\langle\phi,t$ ) is called the stable letter. The relatioship between $S\langle\phi,t\rangle$ and the other
variants of HNN extensions is discussed in [11].

This paper is an extended abstract and the detailed version will be published elsewhere.
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A class of inverse semigroups is said to have the weak $HNN$ property for $S\langle\phi,$ $t$) if the following
holds. There exists an inverse semigroup $T$ such that $S-T,$ $t^{-1}at=\phi(a)$ for all $a\in A$ , and
$tbt^{-1}=\phi^{-1}(b)$ for all $b\in B$ for some $t\in T$ .

2 Sch\"utzenberger graphs and automata
We briefly review Sch\"utzenberger graphs and approximate automata introduced by Stephen [5]. Let
$S$ be an inverse semigroup and X the set of generators of $S$ . The Sch\"utzenberger graph $\mathrm{S}\Gamma(S,\mathrm{X},\mathrm{u})$

for the word $u$ is given by the sets of vertices and edges defined by

Edge $(\mathrm{S}\Gamma(S,\mathrm{X},u))$

Vert
$(\mathrm{S}\Gamma(S,\mathrm{X},u))=\{(s_{1},x,s_{2})|s_{1}x=s_{2}, s_{1}Rs_{2}\mathcal{R}u, s_{1},s_{2}\in S, x\in \mathrm{X}\cup \mathrm{X}^{-1}\}=\{s|s\in S,s\mathcal{R}u\},$

,

where $\mathcal{R}$ is the Green’s $\mathrm{R}$-relation. The initial and terminal vertex are given by

$\mathrm{d}(s_{1},x, s_{2})=s_{1}$ , $\mathrm{r}(s_{1},x, \epsilon_{2})=s_{2}$ .

Lemma 2.1 ([5]) For a word $u$ in $(X \cup X^{-1})^{+}$ , the language accepted by the $Sch\ddot{u}tzenbe\eta e\mathrm{r}$

automaton $\mathrm{S}\Gamma(X, R, u)$ consis $ts$ of the words above $u$ in $S$ , that is, $L(\mathrm{S}\Gamma(X, R,u))=\{w|u\leq$

$w$ in $S$}.

Suppose that we are given an inverese semigroup presenation $\mathrm{I}\mathrm{n}\mathrm{v}(X|R)$ . We consider inverse
word automata whose input alphabets are $X\cup X^{-1}$ . An $X$-labeled inverse word automaton $A$ is
called an approximate of $\mathrm{S}\Gamma(S,\mathrm{X},u)$ if $u\in L(A)$ and $L(A)\subset L(\mathrm{S}\Gamma(S,\mathrm{X}, u))$ . In [5], a sequence
of approximate automata for $\mathrm{S}\Gamma(S, \mathrm{X}, u)$ is costructed starting from the linear automaton $B_{0}(u)$

$\mathrm{i}\mathrm{U}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ below:

(2.1)

where we are assuming $u$ is the word $s_{1}s_{2}\cdots s_{k}$ . Clearly the linear automaton is an approximate
automaton of $\mathrm{S}\Gamma(S, \mathrm{X}, u)$ . There are two operations for the automata production process: $e\varphi an-$

sions and reductions.

ExPansions. Given an automaton $A$ , we construct an automaton $B$ as follows. Suppose that there
is a path form the state $q_{1}$ to $q_{2}$ labeled by the word $r_{2}$ , there is no path from $q_{1}$ to $q_{2}$ labeled by
$r_{1}$ and $r_{1}=r_{2}$ is a defining relation belonging to $R$ . Now $B$ is obtained from $A$ by adding a new
path from $q_{1}$ to $q_{2}$ labeled by $r_{1}$ . The automaton $B$ is called an $e\varphi ansion$ of $A$ .
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$\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{o}\mathrm{i}\mathrm{o}\mathrm{n}=$

Figure 1: Expansion

Reductions. Given an automaton $A$, we construct an automaton $B$ as follows. Suppose that in
$A$ there are two edges $qarrow q_{1}$ and $qarrow q_{2}$ labeled by the same letter $x$ . The new automaton is
obtained from $A$ by identifying these edges. Note that the states $q_{1}$ and $q_{2}$ are identified in B. The
automaton $B$ is called a reduction of $A$ .

Figure 2: Reduction

We restate Theorem 5.7 and 5.9 in [5] as follows.

Lemma 2.2 (1) Suppose that $u,$ $w$ are words on an inverse semigroup $S$ with $u\leq w$ . Let $A$ be an
appmximate automaton foru. Then there exists a sequence of appmrimate automata $A_{0},A_{1},$ $\ldots,A_{n}$

such that $A_{0}=A,$ $w$ is accepted by $A_{n}$ and each $A_{:}$ is obtained ffom $A:-1$ by applying either an
expansion or a reduction.
(2) If $\mathcal{B}$ is obtained from an appronimate automaton $A$ by applying either an expansion or a reduc-
tion then $B$ is also an appronimate automaton.

3 Structure of approximate automata for HNN extensions
We now describe the structure of an approximate automaton for the Sch\"utzenberger graph $\mathrm{S}\Gamma(S\langle\phi,t\rangle,u)$ ,
where $u\in S$ . The detailed structure will be discussed in the full version of the paper and we omit
the detail of the structure of approximate automata.

Recall that $S(\phi,t\rangle$ has $S\cup\{t,t^{-1}\}$ as its set of generators. Suppose that $S$ is generated by $X$

relative to the relations $R$ . Let $\mathrm{Y}=X\cup\{t\}$ . Then $S(\phi,t\rangle$ is generated by $\mathrm{Y}\cup \mathrm{Y}^{-1}$ . Let $\mathcal{X}$ be a
$\mathrm{Y}\cup \mathrm{Y}^{-1}$-labeled automaton, that is, X is a $\mathrm{Y}\cup \mathrm{Y}^{-1}$ -labeled graph with the start and final state.
We suppose that $\mathcal{X}$ satisfies the following properties.

1. Let $\mathcal{X}’$ be the graph obtained from $\mathcal{X}$ by deleting all the edges labeled by $t$ or $t^{-1}$ . Then

$X’= \bigcup_{i=0}^{n}\mathcal{X}_{1}$ (3.1)

where $\mathcal{X}_{1}$ is a connected componets. We note that each $\mathcal{X}_{1}$ is a maximal $(t,t^{-1})$-bee connected
subgraph of X. We call $\mathcal{X}_{1}$ a lobe of $\mathcal{X}$ .

2. One of the lobes (say $\mathcal{X}_{0}$ ) has the start and final state of X. We call $\mathcal{X}_{0}$ the root lobe of $\mathcal{X}$ .
3. Every lobe $\mathcal{X}_{i}(i=1,2, \cdots,n)$ has its immediate ancestor.
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In addition, approximat$e$ automata have several structural properties that are crucial in our
study. We use those to study the structure of the inverse semigroups. The details will be given in
the full version of the paper.

4 Analogue of Britton’s lemma for inverse semigroups
Our object is to show that Britton’s lemma in group theory can be generalized to HNN extensions
of inverse semigroups to some extent.

First we recall Britton’s lemma [1] for groups. Let $w$ be a word on $X\cup X^{-1}\cup\{t,t^{-1}\}$ , where a
group $G^{*}$ is presented by

$\mathrm{G}\mathrm{r}(G,t|t^{-1}at=\phi(a),$ $a\in A)$ .
A pinch is a word of the form $t^{-1}$ at $(a\in A)$ or $tbt^{-1}(b\in B)$ . Then Britton’s lemma claims that if
$w$ represents the identity in $G^{*}$ then there exists a pinch in $w$ . A equivalent statement is that if a
word $w$ represents an element in $G$ in $G^{*}$ then there exists a pinch in $w$ ; if $w=z$ in $G^{*}$ , where $z$

represents an element in $G$ then $wz^{-1}=1$ in $G^{*}$ and so there is a pinch in the word $wz^{-1}$ and so
it must be in $w$ .

We now consider an analogue of Britton’s lemma in the class of inverse semigroups. We recall
some terminology from the theory of inverse semigroup. For a subset $H$ of an inverse semigroup $S$ ,
the set $H\omega[4]$ is the set $\{s\in S|h\leq s, h\in H\}$ . A word of the form $t^{-1}st$ , where $s\in A\omega$ or $tst^{-1}$ ,
where $s\in B\omega$ is called a quasi-pinch. Suppose that $w$ is a word on $X\cup X^{-1}\cup\{t,t^{-1}\}$ . Using the
structure of an approximate automaton in Section 3, we can prove the following.

Theorem 4.1 If a word $w$ represents an element $s$ in $S\langle\phi,t\rangle$ where $s\in S$ , then there exists a
quasi-pinch in $w$ .

5 Amalgamation and HNN property

It is shown in [7] that the class of inverse semigroups has the weak HNN property using the
weak amalgamation property. In this section we give another proof independent of the weak
amalgamation prope’rty. Using the structure of approximate automaton in Section 3, we can prove
the following.

Theorem 5.1 The dass of inverse semigroups has the weak $HNN$ property for $S\langle\phi,t\rangle$ .

We say that tfe class of inverse semigroups has the strong $HNN$ property if it satisfies the
following. Let $T$ be an inverse subsemigroup of $S\langle\phi,t\rangle$ generated by $S\cup\{t^{-1}t,tt^{-1}\}$ . Then we have

$t^{-1}Tt\cap T=B\cup\{1_{B}\},$ $tTt^{-1}\cap T=A\cup\{1_{A}\}$

and
$t^{-1}St\cap S=B,$ $tSt^{-1}\cap A=A$

in $S\langle\phi,t\rangle$ .
It is shown in [11] that the class of inverse semigroups has the strong HNN property using the

strong amalgamation property. We can give another proof independent of the strong amalgamation
property using the structure of approximate automaton in Section 3.
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Theorem 5.2 The class of inverse semigroups has the strong $HNN$ property for $S\langle\phi, t\rangle$ .

By Theorem 5.2, we can give another proof of the strong amalgamation property as follows.

Theorem 5.3 ([2]) The class of inverse semigroups has the strong amalgamation property.

Proof. By the previous theorem, the class of the inverse semigroups satisfies the strong HNN
property. Take any amalgam $(S, T;U)$ of inverse semigroups. Then $U\cong Usarrow S$ and $U\cong U_{T}rightarrow T$.
Let $P=(S\cup\{1\})\mathrm{x}(T\cup\{1\})$ . Then $P$ is an inverse semigroup with the identity $(1, 1)$ . Clearly
$U\cong U_{S}\mathrm{x}1\cong 1\mathrm{x}U_{T}$. Let $\phi$ be the isomorphism of $U_{S}\mathrm{x}1$ onto 1 $\mathrm{x}U_{T}$ . By the strong HNNproperty,
$Parrow P(\phi,t)$ and $P\cap t^{-1}Pt=1\mathrm{x}U_{T}$ in $P(\phi,t)$ . If we identify $S$ and $t^{-1}(S, 1)t$ , and $T$ and $(1, T)$ ,
then we have $S\cap T=1\mathrm{x}U\tau^{\underline{\simeq}}U$ .

$\mathrm{Q}$ $\tau$ $p/At1$

$vy\iota 11\mathrm{c}$ oulU116 $11\perp\tau 1\urcorner \mathrm{P}^{1\vee}\mathrm{P}^{\mathrm{w}v}J$

Figure 3: Strong amalgams

See Figure 5. Thus the class of inverse semigroups has the strong amalgamation property.

We recall that the strong amalgamation property requires that if $s=h$ in $S*_{A=B}H$ , where
$s\in S$ and $h\in H$ then we must have $s\in A$ and $h\in B$ . This poses the following question; if a word
$w=x_{1}y_{1}x_{2}y_{2}\cdots x_{n}y_{n}$ represents an element in $S$ or $H$ , then does one of the letters in $w$ belong
to $A$ or $B$? This is clearly true for the class of groups, that is, we can prove the following theorem
using the normal form theorem.

Theorem 5.4 Let $G$ and $H$ be groups. If a word $w=x_{1}y_{1}x_{2}y_{2}\cdots x_{n}y_{n}(x_{1}\in G, y_{1}\in H)$ represents

$ia.n$
element in $G$ or $H$ in the amalgamated free product $G*_{A=B}H$, then $x_{1}\in A$ or $yj\in B$ for

$some\square$

Unfortunately this cannot be generalized to the class of inverse semigroups. However, we can
prove the following using Theorem 4.1.
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Theorem 5.5 Let $S$ and $T$ be inverse semigroups. If a word $w=x_{1}y_{1}x_{2}y_{2}\cdot’\cdot x_{n}y_{n}(x_{i}\in S$,
$y_{1}\in T)$ represents an element in $S$ or $T$ in the amdgamated free product $S*_{A=B}T$ , then $x_{i}\in A\omega$

or $y_{i}\in B\omega$ for some $i$ .
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