Endomorphisms of a Module over a Local Ring¹

城西大学理学部数学科 石橋 宏行 (Hiroyuki Ishibashi)²

Department of Mathematics,

Josai University,
Sakado, Saitama 350-02, Japan

The matrix A of an endomorphism σ of a module M over a ring R is completely determined by the choice of a basis X for M, where A is called the matrix of σ relative to X.

Therefore, it will be natural to seek X giving a simple A, which is our primitive motivation.

Now, let R be a field. Then we have a good example of such A expressed in a nice form for a suitable X. Indeed, we know the following fact (see Lang[7,p557,Theorem 2.1] or Herstein[4,p307,Theorem 6.7.1]):

Theorem. Let R be a field. Then there are m elements $\{x_1, x_2, \dots, x_m\}$ in M and m polynomials $\{g_1(t), g_2(t), \dots, g_m(t)\}$ in the polynomial ring R[t] over R in one indeterminate t such that A is a direct sum of m companion matrices of $\{g_1(t), g_2(t), \dots, g_m(t)\}$.

What can we say about this result, if R is a local ring? Is it possible to get a concise form of A as above? To analize this problem is the purpose of this note.

So, let R be a local ring with the identity 1 and the unique maximal ideal \mathfrak{m} , M a free module of rank n over R, and $\operatorname{End}_R M$ the endomorphism ring of M.

Then we have two chanonical maps

$$\pi_R: R \to \overline{R} = R/\mathfrak{m}$$
 defined by $a \mapsto \bar{a} = a + \mathfrak{m}$

and

$$\pi_M: M \to \overline{M} = M/\mathfrak{m}M$$
 defined by $x \mapsto \overline{x} = x + \mathfrak{m}M$.

¹This is an abstract and the details will be published elsewhere.

²e-maile: hishi@math.josai.ac.jp

Since \overline{R} is a field, \overline{M} is a vector space over \overline{R} by the scalar multiplication $\overline{a}\overline{x} = \overline{a}\overline{x}$ for $a \in R$ and $x \in M$. Clearly the ring homomorphism π_R is an R-module homomorphism if we define $a\overline{b} = \overline{ab}$ for $a, b \in R$. Also π_M is an R-module homomorphism.

Further, for $x \in M$ and $\sigma \in \operatorname{End}_R M$, if we define $\bar{\sigma}\bar{x} = \overline{\sigma}\bar{x}$, we obtain an endomorphism $\bar{\sigma}$ of \overline{M} , that is, $\bar{\sigma} \in \operatorname{End}_{\overline{R}} \overline{M}$. Thus we have the third chanonical map

$$\pi_E: \operatorname{End}_R M \to \operatorname{End}_{\overline{R}} \overline{M} \qquad \text{by} \qquad \sigma \mapsto \bar{\sigma},$$

which is a ring homomorphism.

An element $\rho \in \operatorname{End}_R M$ is called a permutation if it is a permutation on some basis for M. Also $\delta \in \operatorname{End}_R M$ is diagonal if the matrix of δ is diagonal relative to some basis for M.

Also we denote the ring of $r \times s$ matrices over R by $M_{r,s}(R)$, and by $M_r(R)$ if r = s. Then, our results are as follows:

Theorem A. For any $\sigma \in \operatorname{End}_R M$ there is a new basis X and a permutation ρ on X such that the matrix of $\rho^{-1}\sigma$ relative to X is expressed as

$$\begin{pmatrix} I_{n-m} & O_{n-m,m} \\ B_{m,n-m} & D_m \end{pmatrix},$$

where

- (i) m is the number of the invariant factors of $\bar{\sigma}$,
- (ii) $I_{n-m} \in M_{n-m}(R)$ is the identity matrix,
- (iii) $O_{n-m,m} \in M_{n-m,m}(R)$ is the zero matrix,
- (iv) $D_m \in (d_{ij}) \in M_m(R)$ is a matrix with $d_{ij} \equiv 0 \mod \mathfrak{m}$ if $i \neq j$, i.e., diagonal modulo \mathfrak{m} ,

and

(v) $B_{m,n-m} = (b_{ij}) \in M_{m,n-m}(R)$ is a matrix such that for any $i = 1, 2, \dots, m$ we have

$$b_{ij} \equiv 0 \mod \mathfrak{m}$$

for
$$j \le \prod_{\lambda=1}^{i-1} (n_{\lambda} - 1)$$
 or $\prod_{\mu=1}^{i} (n_{\mu} - 1) < j$.

References

- [1] J. Dieudonné, Sur les générateurs des groupes classiques, Summa Bras. Math. 3, (1955) 149-178
- [2] E.W. Ellers, H.Ishibashi, Factorizations of Transformations over a Valuation Ring, Linear Algebra Appl., 85(1987) 17-27.
- [3] A.J. Hahn, O.T. O'Meara, The Classical Groups and K-Theory, Grund. Math. Wissenschaften, vol. 291, Springer-Verlag, Berlin/New York/Tokyo, 1989.
- [4] I.N.Herstein, Topics in Algebra (2nd ed.), John Wiley and Sons, New York/Singapore, 1975.
- [5] H. Ishibashi, Involutions and Semiinvolutions, Czechoslovak Math. J. (in press)
- [6] ——, Length Problems for Automorphisms of Modules over Local Rings, Linear Algebla Appl., (to appear).
- [7] S. Lang, Algebra (3rd ed.), Addison Wesley, Tokyo, 1999.
- [8] B.R. McDonald, Geometric Algebra over Local Rings, Dekker, New York, 1976.