Stanley-Reisner rings with large multiplicities

佐賀大学·文化教育学部 寺井 直樹 (Naoki TERAI) Department of Mathematics Faculty of Culture and Education Saga University

名古屋大学·大学院多元数理科学研究科 吉田 健一 (Ken-ichi YOSHIDA) Graduate School of Mathematics Nagoya University

1. Introduction

Throughout this report, let Δ be a simplicial complex on the vertex set $V = [n] := \{1, 2, ..., n\}$, that is, $\Delta \subseteq 2^V$ such that

(a)
$$\{i\} \in \Delta$$
 for all $i \in V$, (b) $F \in \Delta, G \subseteq F \Longrightarrow G \in \Delta$.

An element of Δ is called a **face** of Δ . For a face $F \in \Delta$, the **dimension** of F is defined by dim F = #(F) - 1, where #(F) denotes the cardinality of F. A face of dimension i is called an i-face. We also define the **dimension** of Δ by dim $\Delta = \max\{\dim F : F \in \Delta\}$. A simplicial complex Δ is **pure** if all facets (maximal faces) has the same dimension.

Let k be a field of any characteristic. Let $S = k[X_1, \ldots, X_n]$ be a polynomial ring with n variables over k. We regard the ring S as a homogeneous k-algebra with deg $X_i = 1$. For a simplicial complex Δ , the **Stanley-Reisner ideal** I_{Δ} is defined by

$$I_{\Delta} = (X_{i_1} \cdots X_{i_p} : 1 \le i_1 < \cdots < i_p \le n, \{i_1, \dots, i_p\} \notin \Delta)S.$$

The ring $k[\Delta] = S/I_{\Delta}$ is called the **Stanley-Reisner ring** of Δ . For example,

$$\Delta = \frac{2}{1} - 4 \qquad k[\Delta] = \frac{k[X_1, X_2, X_3, X_4]}{(X_1 X_4, X_2 X_4, X_1 X_2 X_3)}$$

The Hilbert series of $k[\Delta]$ can be written as in the following form:

$$F(k[\Delta], \lambda) = \sum_{i \geq 0} \dim_k k[\Delta]_i \lambda^i$$

$$= f_{-1} + \frac{f_0 \lambda}{1 - \lambda} + \frac{f_1 \lambda^2}{(1 - \lambda)^2} + \dots + \frac{f_{d-1} \lambda^d}{(1 - \lambda)^d}$$

$$= \frac{h_0 + h_1 \lambda + \dots + h_d \lambda^d}{(1 - \lambda)^d},$$

where $f_i = f_i(\Delta)$ denotes the number of i-faces of Δ and $f_{-1} = 1$. Hence $\dim k[\Delta] = d$ (the **Krull dimension**) and the **multiplicity** $e(k[\Delta])$ is equal to f_{d-1} , the number of (d-1)-faces in Δ . In particular, $e(k[\Delta]) \leq {n \choose d}$.

Let A = S/I be a homogeneous k-algebra with dim A = d with the unique homogeneous maximal ideal $\mathfrak{m}=(X_1,\ldots,X_n)S/I$ or a d-dimensional Noetherian local ring with the unique maximal ideal m. Then the ith local cohomology module $H_{\mathfrak{m}}^{i}(A)$ with support $V(\mathfrak{m})$ is defined by

$$H^i_{\mathfrak{m}}(A) := \varinjlim_{j} \operatorname{Ext}_A^i(A/\mathfrak{m}^j, A).$$

Then it is well known that $H^d_{\mathfrak{m}}(A) \neq 0$. We also define the **depth** of A by

$$\operatorname{depth} A = \min\{i \in \mathbb{Z}_{>0} : H_{\mathfrak{m}}^{i}(A) \neq 0\}.$$

By the above remark, we always have depth $A \leq \dim A$. If the equality holds, then A is said to be a Cohen-Macaulay ring. We say that A satisfies Serre's **condition** (S_2) if depth $A_P \ge \min\{2, \dim A_P\}$ for all prime ideals P in A. The Cohen-Macaulay property is very important notion in the theory of commutative algebra.

The purpose of this report is to give an answer to the following question with respect to Cohen-Macaulay property of Stanley-Reisner rings:

Question. Let Δ be a (d-1)-dimensional simplicial complex on V = [n]. If $e(k[\Delta])$ is sufficiently large (that is, $e(k[\Delta])$ is close to $\binom{n}{d}$), then is $k[\Delta]$ Cohen-Macaulay?

Now let us observe the above question in some special cases. First we consider the case where $e(k[\Delta]) = \binom{n}{d}$. Then Δ is certainly Cohen-Macaulay. Indeed, we can characterize such a complex; see below. Recall that the i**skeleton** of Δ is defined by $\Delta^{(i)} = \{ F \in \Delta : \dim F \leq i \}$. It is also well known that $\Delta^{(i)}$ is Cohen-Macaulay if so is Δ .

Proposition 1.1 ([5, Proposition 1.2]). Let Δ be a (d-1)-dimensional simplicial complex on V. Then the following conditions are equivalent:

- $(1) \ e(k[\Delta]) = \binom{n}{d}.$
- (2) indeg $I_{\Delta} := \min\{i \in \mathbb{Z} : (I_{\Delta})_i \neq 0\} = d+1$. (3) $I_{\Delta} = (X_{i_1} \cdots X_{i_{d+1}} : 1 \leq i_1 < \cdots < i_{d+1} \leq n)$. That is, Δ is the (d-1)-skeleton of the standard (n-1)-simplex 2^{V} .

When this is the case, $k[\Delta]$ is Cohen-Macaulay.

Next we consider the case of dim $\Delta = 1$. Let Δ be a 1-dimensional simplicial complex on V = [n], and put $e = e(k[\Delta])$. Then Δ can be regarded as a simple graph having n points and e edges. $k[\Delta]$ is also Cohen-Macaulay if and only if $H_0(\Delta; k) = 0$, that is, Δ is connected. Thus, in this case, the above question says that

"If a graph has sufficiently many edges, then is it connected?".

Of course, this is true! To be precise, the graph is connected whenever $e \geq {n-1 \choose 2} + 1$. Similarly, any graph without isolated points is connected whenever $e \geq {n-2 \choose 2} + 2$.

The main result in this report is the following theorem, which generalizes the above observations.

Theorem 1.2 (See [3, 6, 7]). Let Δ be a (d-1)-dimensional simplicial complex on V. Suppose that one of the following conditions is satisfied:

- $\begin{array}{l} (1) \ e(k[\Delta]) \geq \binom{n}{d} (n-d); \\ (2) \ e(k[\Delta]) \geq \binom{n}{d} 2(n-d) + 1 \ and \ \Delta \ is \ pure; \\ (3) \ e(k[\Delta]) \geq \binom{n}{d} 3(n-d) + 2 \ and \ k[\Delta] \ satisfies \ Serre's \ condition \ (S_2). \end{array}$ Then $k[\Delta]$ is Cohen-Macaulay.

2. Sketch of the proof of the main result

In this section, we give a sketch of the proof of Theorem 1.2. We first recall some definitions and terminology which we need later. Throughout this section, let Δ be a (d-1)-dimensional simplicial complex on V=[n], unless otherwise specified. Let $k[\Delta] = S/I_{\Delta}$ denote the Stanley-Reisner ring of Δ , where $S = k[X_1, \ldots, X_n]$ is a homogeneous polynomial ring over a field k, and put c = n - d.

For a face F of Δ and a subset $W \subseteq V$, let us define several subcomplexes of Δ as follows:

$$\begin{array}{rcl} \Delta_W &=& \{G\in\Delta\,:\, G\subseteq W\},\\ \operatorname{link}_\Delta F &=& \{G\in\Delta\,:\, F\cup G\in\Delta,\, F\cap G=\emptyset\},\\ \operatorname{star}_\Delta F &=& \{G\in\Delta\,:\, F\cup G\in\Delta\}. \end{array}$$

These complexes are called the **restriction** to W, the link of F, and the star of F, respectively.

Take a graded minimal free resolution of an arbitrary homogeneous ideal I $(0 \neq I \subseteq (X_1, \dots, X_n)^2)$ over S:

$$0 \to \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{p,j}(I)} \xrightarrow{\varphi_p} \cdots \xrightarrow{\varphi_1} \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{0,j}(I)} \xrightarrow{\varphi_0} I \to 0,$$

where $p = \operatorname{pd}_{S} I$. In general, $n - d - 1 \leq p$, and the equality holds if and only if A := S/I is Cohen-Macaulay.

Let $\mu(I)$ denote the minimal number of generators of I, that is, $\mu(I)$ $\sum \beta_{0,j}(I)$. Moreover,

indeg
$$I = \min\{j \in \mathbb{Z} : \beta_{0,j}(I) \neq 0\} = \min\{j \in \mathbb{Z} : \beta_{1,j}(A) \neq 0\},\$$

$$\operatorname{rt}(I) = \max\{j \in \mathbb{Z} : \beta_{0,j}(I) \neq 0\} = \max\{j \in \mathbb{Z} : \beta_{1,j}(A) \neq 0\},\$$

$$\operatorname{reg} I = \max\{j - i \in \mathbb{Z} : \beta_{i,j}(I) \neq 0\}$$

are called the initial degree of I, the relation type of I and the regularity of I, respectively. By definition, it is easy to see that reg $I \geq \text{indeg } I$. If equality holds (and indeg I=q), then I (or A) has (q-)linear resolution. For a given integer $r \geq 0$, a homogeneous ideal I satisfies $(N_{q,r})$ -condition if the graded minimal free resolution of I over S can be written as in the following shape:

$$\cdots \to \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{r,j}} \to S(-q-r+1)^{\beta_{r-1}} \to \cdots \to S(-q)^{\beta_0} \longrightarrow I \to 0.$$

Note that I satisfies $(N_{q,r})$ for $r > \operatorname{pd}_S I$ if and only if it has q-linear resolution. A homogeneous ideal I satisfies $(N_{*,r})$ if it satisfies $(N_{q,r})$ for some $q \geq 2$.

Let us recall Hochster's formula on the Betti numbers:

$$\beta_{i,j}(I_{\Delta}) = \sum_{W \subseteq V, \#(W) = j} \dim_k \widetilde{H}_{j-i-2}(\Delta_W; k),$$

where $\widetilde{H}_i(\Delta; k)$ (or simply $\widetilde{H}_i(\Delta)$) denotes the *i*th reduced simplicial homology group with valued in k. By this formula we have

$$\operatorname{reg} I_{\Delta} = \max\{r \in \mathbb{Z} : \widetilde{H}_r(\Delta_W) \neq 0 \text{ for some } W \subseteq V\} + 2.$$

In particular, reg $I_{\Delta} \leq d + 1$.

Now let us reduce Theorem 1.2 to its Alexander dual version. In the proof of Theorem 1.2, we may assume that $c \ge 2$. Moreover,

we suppose that indeg
$$I_{\Delta} = d$$

for simplicity. Then the Alexander dual complex of Δ is defined by

$$\Delta^* = \{ F \in 2^V \, : \, V \setminus F \not \in \Delta \}.$$

This is a simplicial complex on the same vertex set V as that of Δ . For a subset $W = \{i_1, \ldots, i_p\}$ of V, if we put $P_W = (X_{i_1}, \ldots, X_{i_p})S$, then

$$I_{\Delta} = \bigcap_{F \text{ is a facet of } \Delta} P_{V \setminus F}$$

gives an irredundant primary decomposition of I_{Δ} . On the other hand, if we put $X^W = X_{i_1} \cdots X_{i_n}$, then we have

$$I_{\Delta^*} = (X^{V \setminus F} : F \text{ is a facet of } \Delta).$$

In particular,

- (1) indeg I_{Δ^*} = height I_{Δ} .
- (2) $\beta_{0,q^*}(I_{\Delta^*}) = e(k[\Delta])$, where $q^* = \text{indeg } I_{\Delta^*}$.

Moreover, the following lemma plays a key role in our argument. The latter assertion has been proved in [2] by Eagon and Reiner, and was generalized by the first author and Yanagawa (see [8, Corollary 3.7]).

Lemma 2.1 ([2, 8]). Let Δ^* be the Alexander dual complex of Δ . For an integer $r \geq 2$, $k[\Delta]$ satisfies (S_r) if and only if I_{Δ^*} satisfies $(N_{*,r})$. In particular, $k[\Delta]$ is Cohen-Macaulay if and only if I_{Δ^*} has linear resolution.

Remark 2.2. When r = 1, Δ is pure if and only if I_{Δ^*} satisfies $(N_{*,1})$, that is, indeg $I_{\Delta^*} = \operatorname{rt}(I_{\Delta^*})$.

Let Δ^* be the Alexander dual complex of Δ . Then

$$\dim k[\Delta^*] = n - \operatorname{height} k[\Delta^*] = n - \operatorname{indeg} k[\Delta] = n - d = c.$$

Furthermore, $k[\Delta]$ satisfies (S_2) (resp. Δ is pure) if and only if $k[\Delta^*]$ satisfies $(N_{c,2})$ (resp. $(N_{c,1})$) by Lemma 2.1 and Remark 2.2. When this is the case, since I_{Δ^*} is generated by elements of degree c, we have

$$e(k[\Delta]) = \beta_{0,c}(I_{\Delta^*}) = \mu(I_{\Delta^*}) = \binom{n}{c} - f_{c-1}(\Delta^*).$$

Hence

$$e(k[\Delta]) \ge \binom{n}{c} - m \iff e(k[\Delta^*]) = f_{c-1}(\Delta^*) \le m.$$

From these observations we have:

Theorem 2.3 (Alexander dual version of Theorem 1.2). Suppose that one of the following conditions holds:

- (1) $e(k[\Delta]) \leq d$;
- (2) $e(k[\Delta]) \leq 2d 1$ and $\operatorname{rt}(I_{\Delta}) = \operatorname{indeg} I_{\Delta} = d$;
- (3) $e(k[\Delta]) \leq 3d-2$ and I_{Δ} satisfies $(N_{d,2})$.

Then I_{Δ} has d-linear resolution.

In fact, we could prove the following more general assertion:

Theorem 2.4. Suppose that one of the following conditions holds:

- (1) $e(k[\Delta]) \leq d$;
- (2) $e(k[\Delta]) \leq 2d-1$ and $\beta_{0,d+1}(I_{\Delta})=0$;
- (3) $e(k[\Delta]) \leq 3d 2$ and $\beta_{1,d+2}(I_{\Delta}) = 0$.

Then reg $I_{\Delta} \leq d$, that is, $\widetilde{H}_{d-1}(\Delta) = 0$.

We divide the proof into three cases.

Lemma 2.5. If $e(k[\Delta]) \leq d$, then $\widetilde{H}_{d-1}(\Delta) = 0$.

Proof (see [6]). Assume that there exists a complex Δ such that $e(k[\Delta]) \leq d$, $\widetilde{H}_{d-1}(\Delta) \neq 0$ and dim $\Delta = d-1$. Take one Δ whose multiplicity is minimal among the multiplicities of those complexes. Choose any (d-1)-facet F of Δ . Then F contains just d subfacets of Δ ; say G_1, \ldots, G_d . Then G_i is not a free face. That is, G_i is contained in at least two facets of Δ . Indeed, if $G = G_i$ is a free face of Δ , then the simplicial complex $\Delta' := \Delta \setminus \{F, G\}$ is homotopy equivalent to Δ and thus $\widetilde{H}_{d-1}(\Delta') \cong \widetilde{H}_{d-1}(\Delta) \neq 0$. This contradicts the minimality of $e(k[\Delta])$ since $e(k[\Delta']) < e(k[\Delta])$.

Thus for each $i \in V$ there exists a (d-1)-facet F_i of Δ such that $G_i \subseteq F_i \neq F$. In particular, F_1, \ldots, F_d, F are (d+1) distinct facets of Δ . This is a contradiction.

Remark 2.6. We have an "algebraic proof" of Lemma 2.5. Namely, we can show that if A is an **F-pure** homogeneous k-algebra with $e(A) \leq d$ then a(A) < 0. We can also give a direct proof of Theorem 1.2(1) without Alexander dual complexes.

Theorem 2.4(2) follows from the following lemma. Note that $\operatorname{rt}(I_{\Delta}) \leq d$ if and only if $\beta_{0,d+1}(I_{\Delta}) = 0$.

Lemma 2.7. If
$$e(k[\Delta]) \leq 2d-1$$
 and $\operatorname{rt}(I_{\Delta}) \leq d$, then $\widetilde{H}_{d-1}(\Delta) = 0$.

Proof (see [6]). Put $e = e(k[\Delta])$. Let Δ' be the subcomplex that is spanned by all facets of dimension d-1. Replacing Δ with Δ' , we may assume that Δ is pure.

We use induction on $d = \dim k[\Delta] \ge 2$. First suppose d = 2. The assumption shows that Δ does not contain the boundary complex of a triangle. Hence $\widetilde{H}_1(\Delta) = 0$ since $e(k[\Delta]) \le 3$.

Next suppose that $d \geq 3$, and that the assertion holds for any complex the dimension of which is less than d-1. Assume that Δ is a (d-1)-dimensional pure complex with $\operatorname{rt}(I_{\Delta}) \leq d$, $e(k[\Delta]) \leq 2d-1$ and $\widetilde{H}_{d-1}(\Delta) \neq 0$. Take one Δ whose multiplicity is minimal among the multiplicities of those complexes. Then Δ does not contain any free face by a similar argument as in the proof of the above lemma.

First consider the case of $\operatorname{rt}(I_{\Delta}) = d$. Take a generator $X_1 \cdots X_d$ of I_{Δ} . Then since each $G_j = \{1, \dots, \widehat{j}, \dots, d\} \in \Delta$ is contained in at least two facets, $e(k[\Delta]) \geq 2d$. This is a contradiction.

Next we consider the case of $\underline{\operatorname{rt}(I_{\Delta})} < d$. Let V = [n] be the vertex set of Δ . Take the Mayer-Vietoris sequence with respect to $\Delta = \Delta_{V \setminus \{n\}} \cup \operatorname{star}_{\Delta}\{n\}$ as follows:

$$0 = \widetilde{H}_{d-1}(\Delta_{V \setminus \{n\}}) \oplus \widetilde{H}_{d-1}(\operatorname{star}_{\Delta}\{n\}) \longrightarrow \widetilde{H}_{d-1}(\Delta) \longrightarrow \widetilde{H}_{d-2}(\operatorname{link}_{\Delta}\{n\}),$$

where the vanishing in the left-hand side follows from the minimality of $e(k[\Delta])$ since $e(k[\Delta_{V\setminus\{n\}}]) < e(k[\Delta])$. Hence $\widetilde{H}_{d-1}(\Delta) \hookrightarrow \widetilde{H}_{d-2}(\operatorname{link}_{\Delta}\{n\}) \neq 0$.

Set $\Delta' = \operatorname{link}_{\Delta}\{n\}$. Then Δ' is a complex on $V \setminus \{n\}$ such that $\dim k[\Delta'] = d-1$ and $\operatorname{rt}(k[\Delta']) \leq \operatorname{rt}(k[\Delta]) \leq d-1$. One can also easily see $e(k[\Delta_{V \setminus \{n\}}]) \geq 2$, which implies that $e(k[\Delta']) \leq 2d-3$. Hence $\widetilde{H}_{d-2}(\Delta') = 0$ by induction hypothesis. This is a contradiction.

When Δ is pure, we have the following refinement of Lemma 2.5.

Corollary 2.8. Suppose that Δ is pure and $c, d \geq 2$. If $e(k[\Delta]) \leq d+1$, then $\widetilde{H}_{d-1}(\Delta) = 0$.

Proof. First we prove that $\operatorname{rt}(I_{\Delta}) \leq d$. Suppose not. Since $\operatorname{rt}(I_{\Delta}) = d+1$, we may assume that $X_1 \cdots X_{d+1}$ is a generator of I_{Δ} . Then $F_i = \{1, \ldots, \widehat{i}, \ldots, d+1\}$ is a (d-1)-facet of Δ for all $i=1,\ldots,d+1$. Since $n=d+c \geq d+2$, there exists a facet of Δ which contains $\{d+2\}$. Hence $e(k[\Delta]) \geq d+2$, which is a contradiction. Therefore $\operatorname{rt}(I_{\Delta}) \leq d$. Since $e(k[\Delta]) \leq d+1 \leq 2d-1$, we have $\widetilde{H}_{d-1}(\Delta) = 0$ by Lemma 2.7.

Our proof in [7] of the following assertion is rather complicated. So we omit the proof and give only its sketch here.

Lemma 2.9. If
$$e(k[\Delta]) \leq 3d - 2$$
 and $\beta_{1,d+2}(I_{\Delta}) = 0$, then $\widetilde{H}_{d-1}(\Delta) = 0$.

Proof. We use an induction on $d=\dim\Delta+1$. When d=2, the assertion easily follows from Hochster's formula on Betti numbers. Suppose $d\geq 3$, and that the assertion of the lemma holds for any complex the dimension of which is less than d-1. Assume that there exists a (d-1)-dimensional complex Δ such that $e(k[\Delta])\leq 3d-2$, $\beta_{1,d+2}(I_{\Delta})=0$ and $\widetilde{H}_{d-1}(\Delta)\neq 0$. Take one Δ whose multiplicity is minimal among the multiplicities of those complexes. Put $e=e(k[\Delta])\geq 2$. If necessary, we may assume that Δ is pure. Then the minimality of the multiplicity implies that Δ does not contain any free face. The assumption $\beta_{1,d+2}(I_{\Delta})=0$ also implies that $\operatorname{rt}(k[\Delta])\leq d$. We first show the following claim:

Claim 1. Suppose that the following conditions are satisfied:

- (1) Δ is pure;
- (2) $\operatorname{rt}(I_{\Delta}) = d;$
- (3) Δ does not have any free face;
- (4) $\beta_{2,d+2}(k[\Delta]) = 0.$

Then $e(k[\Delta]) \geq 3d - 1$.

To see the claim, we may assume that $X_1 \cdots X_d$ is a generator of I_{Δ} without loss of generality. Put $F := \{1, 2, ..., d\} \in 2^V \setminus \Delta$ and $G_i = \{1, ..., \hat{i}, ..., d\}$ for each i = 1, 2, ..., d. Since Δ has no free face, there exist 2d facets of Δ whose form are $G_i \cup \{j\}$ for some $j \in V \setminus F$. In particular, if we set

$$U := \{ j \in V \setminus F : \exists G \subseteq F \text{ such that } \#(G) = d - 1, \ G \cup \{j\} \in \Delta \},\$$

then $\#(U) \geq 2$. Note that there exist no subsets $\{j_1, j_2\}$ of U $(j_1 \neq j_2)$ for which the following conditions hold: both $G_i \cup \{j_1\}$ and $G_i \cup \{j_2\}$ are facets of Δ for all $i=1,2,\ldots,d$. In fact, we suppose that the assertion does not hold. Namely, there exists a subset $\{j_1, j_2\}$ of U for which both $G_i \cup \{j_1\}$ and $G_i \cup \{j_2\}$ are facets of Δ for all $i=1,2,\ldots,d$. Set $W=F \cup \{j_1,j_2\}$. Then $\widetilde{H}_{d-1}(\Delta_W)=0$ since #(W)=d+2 and $\beta_{1,d+2}(I_{\Delta})=0$. Let Δ_1 be a subcomplex of Δ_W spanned by $H \cup \{j_1\}$, $H \cup \{j_2\}$ where $H \in 2^F \setminus \{F\}$, that is, $\Delta_1=(2^F \setminus \{F\})*(2^{\{j_1,j_2\}} \setminus \{j_1,j_2\})$. Let Δ_2 be a subcomplex of Δ_W spanned by all facets of Δ_W that contains $\{j_1,j_2\}$. Then $\Delta_W=\Delta_1\cup\Delta_2$ and $\dim(\Delta_1\cap\Delta_2)\leq d-2$. Applying Mayer-Vietoris sequence to Δ_W , we get

$$0 = \widetilde{H}_{d-1}(\Delta_1 \cap \Delta_2) \to \widetilde{H}_{d-1}(\Delta_1) \oplus \widetilde{H}_{d-1}(\Delta_2) \to \widetilde{H}_{d-1}(\Delta_W) \to \cdots$$

On the other hand, $\widetilde{H}_{d-1}(\Delta_1) \cong \widetilde{H}_{d-2}(2^F \setminus \{F\}) \cong \widetilde{H}_{d-2}(\mathbf{S}^{d-2}) \cong k \neq 0$. This implies that $\widetilde{H}_{d-1}(\Delta_W) \neq 0$. This is a contradiction.

By the above discussion we can choose $j \in U$ $(d+1 \le j \le n)$ and $\ell(1 \le \ell \le d-1)$ such that

$$\begin{array}{ll} F_p &:=& \{1,2,\ldots,\widehat{p},\ldots,\ell,\ldots,d,j\} \in \Delta \quad \text{for all } p=1,2,\ldots,\ell, \\ G_q &:=& \{1,2,\ldots,\ell,\ldots,\widehat{q},\ldots,d,j\} \notin \Delta \quad \text{for all } q=\ell+1,\ldots,d. \end{array}$$

Now let us consider the following subfacets of Δ :

$$H_{p,q}:=\{1,\ldots,\widehat{p},\ldots,\ell,\ell+1,\ldots,\widehat{q},\ldots,d,j\}\quad (1\leq p\leq \ell,\,\ell+1\leq q\leq d).$$

Since Δ has no free face, $H_{p,q}$ is contained in at least two facets of Δ , but one of those facets cannot be written as in the form $G \cup \{j\}$ where $G \subseteq F$. Counting the number of facets of Δ , we get

$$e(k[\Delta]) \ge 2d + \ell(d - \ell) \ge 2d + (d - 1) = 3d - 1,$$

as required.

Next, we must show the following claim:

Claim 2. Suppose that $d \geq 3$, $c \geq 3$. Suppose that the following conditions are satisfied:

- (1) Δ is pure.
- (2) $rt(I_{\Delta}) \leq d 1$;
- (3) Δ does not have any free face;
- (4) There exists $y \in V$ such that $\beta_{2,d+1}(k[\operatorname{link}_{\Delta}\{y\}]) \neq 0$;
- (5) $H_{d-2}(\operatorname{link}_{\Delta}\{x\}) \neq 0$ holds for all $x \in V$.

Then $e(k[\Delta]) \geq 3d - 1$.

We omit a proof of the above claim here because it is technical and long.

Now let us return to the proof of the lemma. By Claim 1, we may assume that $rt(I_{\Delta}) < d$. Furthermore, we may assume that $d \geq 3$, $c \geq 3$ and $e \geq 2d$. Let us check the conditions in Claim 2.

Claim 3. $\widetilde{H}_{d-2}(\operatorname{link}_{\Delta}\{x\}) \neq 0$ holds for all $x \in V$.

Fix $x \in V$. We have $\widetilde{H}_{d-1}(\Delta_{V\setminus\{x\}}) = 0$ by the minimality of $e(k[\Delta])$ and the purity of Δ . Then the assertion follows from the Mayer-Vietoris sequence to $\Delta = \text{star}_{\Delta}\{x\} \cup \Delta_{V\setminus\{x\}}$.

Claim 4. There exists a vertex $y \in V$ such that $e(k[\Delta_{V \setminus \{y\}}]) \geq 3$.

Now suppose that $e(k[\Delta_{V\setminus\{x\}}]) \leq 2$ for all $x \in V$. Then at least (e-2) facets of Δ contains x. Counting the number of vertices which is contained in some facets, we obtain that $ed = e(k[\Delta]) \times d \geq n(e(k[\Delta]) - 2) = (c+d)(e-2)$. Hence $2(c+d) \geq ce \geq 2cd$, that is, $(c-1)(d-1) \leq 1$. This contradicts the assumption that $c \geq 3$ and $d \geq 3$.

Take a vertex $y \in V$ as in Claim 4 and put $\Gamma = \text{link}_{\Delta}\{y\}$. Since

$$e(k[\Gamma]) = e(k[\operatorname{star}_{\Delta}\{y\}]) = e(k[\Delta]) - e(k[\Delta_{V \setminus \{y\}}]) \leq 3(d-1) - 2,$$

if $\beta_{2,d+1}(k[\Gamma]) = 0$, then $\widetilde{H}_{d-2}(\Gamma) = 0$ by the induction hypothesis. But this contradicts Claim 3. Hence $\beta_{2,d+1}(k[\Gamma]) \neq 0$. Therefore $e(k[\Delta]) \geq 3d-1$ by Claim 2 and the lemma is proved.

3. Examples

We construct some examples of simplicial complexes which satisfy Theorem 1.2 or 2.3.

Example 3.1. Put $F_{i,j} = \{1, 2, ..., \hat{i}, ..., d, j\}$ for each i = 1, ..., d; j = d + 1, ..., n. For a given integer e with $1 \le e \le cd$, we choose e faces (say, $F_1, ..., F_e$) from $\{F_{i,j} : 1 \le i \le d, d+1 \le j \le n\}$, which is a set of the facets of the simplicial join of $2^{[d]} \setminus \{[d]\}$ and c points.

Let Δ be the simplicial complex spanned by F_1, \ldots, F_e and all elements of $\binom{[n]}{d-1}$. Then $k[\Delta]$ is a d-dimensional Stanley–Reisner ring with indeg $I_{\Delta} = \operatorname{rt}(I_{\Delta}) = d$ and $e(k[\Delta]) = e$.

In particular, when $e \leq 2d-1$, $k[\Delta]$ has d-linear resolution by Theorem 2.3. Thus their Alexander dual complexes provide examples satisfying the hypothesis of Theorem 1.2.

The following example shows that the assumption " $e(k[\Delta]) \leq 2d - 1$ " is optimal in Theorem 2.3(2).

Example 3.2. There exists a complex Δ on V = [n] for which $k[\Delta]$ does not have d-linear resolution with dim $k[\Delta] = \operatorname{indeg} I_{\Delta} = \operatorname{rt}(I_{\Delta}) = d$ and $e(k[\Delta]) = 2d$.

In fact, let Δ_0 be a complex on $V_0 = [d+2]$ such that $k[\Delta_0]$ is a complete intersection defined by $(X_1 \cdots X_d, X_{d+1} X_{d+2})$. Let Δ be a complex on V such that

$$I_{\Delta} = (X_1 \cdots X_d)S + (X_{i_1} \cdots X_{i_{d-2}} X_{d+1} X_{d+2} : 1 \le i_1 < \cdots < i_{d-2} \le d)S + (X_{j_1} \cdots X_{j_d} : 1 \le j_1 < \cdots < j_d \le n, \ j_d \ge d+3)S.$$

Then $\widetilde{H}_{d-1}(\Delta) \cong \widetilde{H}_{d-1}(\Delta_0) \neq 0$ since $a(k[\Delta_0]) = 0$. Hence $k[\Delta]$ does not have d-linear resolution.

Remark 3.3. The case n = d + 2 in the above example is also obtained by considering the case c = 2, e = 2d in Example 3.1.

The simplicial complex Δ_0 can be also characterized as a pure complex with Δ such that $e(k[\Delta]) = 2d$, $\mathrm{rt}(I_{\Delta}) = d$ and $\widetilde{H}_{d-1}(\Delta) \neq 0$.

In fact, if Δ is such a complex, then Δ has no free faces. Let $X_1\cdots X_d$ be a generator of I_{Δ} and put $G_i=\{1,\ldots,\widehat{i},\ldots,d\}$ for each $i=1,\ldots,d$. Since G_i is not a free face, there exist two distinct points $p_i, p_i'\in V$ such that $F_i:=G_i\cup\{p_i\}, F_i':=G_i\cup\{p_i'\}$ are facets of Δ . Then $\{F_i,F_i':i=1,\ldots,d\}$ becomes the set of all facets of Δ . Since $F_1\setminus\{i\}$ is also not a free face, it is contained in some facet in Δ except F_1 . But such a facet must be either F_i or F_i' . Consequently, we may assume that $p_i=p_1$ and $p_i'=p_1'$ for all $i=1,\ldots,d$. Then one can easily see that $\Delta=(2^{[d]}\setminus\{[d]\})*(2^{\{p,q\}}\setminus\{\{p,q\}\})$ by the purity of Δ and $e(k[\Delta])=2d$. In other words, $k[\Delta]$ is a complete intersection of type (d,2): $k[\Delta]\cong k[X_1,\ldots,X_d,Y_1,Y_2]/(X_1\cdots X_d,Y_1Y_2)$.

Using the boundary complex of a stacked d-polytope, let us construct an example which shows the condition " $e(k[\Delta]) \leq 3d - 2$ " is optimal in Theorem 2.4.

Example 3.4. Let d, n be integers with $d \ge 2$ and $c = n - d \ge 3$. Let Δ_0 be a simplicial complex on $V_0 = [d+3]$ spanned by the following d-subsets of V:

Let Δ_1 be a complex defined by $\Delta_1 = \Delta_0 \cup \{\{d+4\}, \ldots, \{n\}\}\$ (Its geometric realization $|\Delta_1|$ is a disjoint union of $|\Delta_0|$ and (n-d-3) isolated points.). Then Δ_1 is a (d-1)-dimensional simplicial complex on V = [n] and $e(k[\Delta_1]) = e(k[\Delta_0]) = 3d-1$.

Note that Δ_0 can be regarded as the boundary complex of a stacked d-polytope with d+3 vertices. Thus the graded minimal free resolution of $k[\Delta_0]$ can be written as in the following shape ([4]):

$$0 \to S(-d-3) \to S(-3)^{\beta_{2,3}} \oplus S(-d-1)^{\beta_{2,d+1}} \\ \to S(-2)^{\beta_{1,2}} \oplus S(-d)^{\beta_{1,d}} \to S \to k[\Delta_0] \to 0.$$

In particular, $\beta_{2,d+2}(k[\Delta_1]) = \beta_{2,d+2}(k[\Delta_0]) = 0$, but reg $k[\Delta_1] = \operatorname{reg} k[\Delta_0] = d$. Let Δ be the simplicial complex spanned by all facets of Δ_1 and all (d-1)-subsets of V. Then $k[\Delta]$ satisfies $(N_{d,2})$ and $e(k[\Delta]) = 3d - 1$, but does not have linear resolution. See also Theorem 2.4.

Using the Alexander dual complex of Δ , one can find a (d-1)-dimensional simplicial complex Γ which satisfies (S_2) and $e(k[\Gamma]) = \binom{n}{d} - 3(n-d) + 1$, but it is not Cohen-Macaulay for given integers $d \geq 3$ and $n-d \geq 3$.

The next example shows that it is not enough to assume "pure and connected in codimension 1" instead of (S_2) in Theorem 1.2.

Example 3.5. Let $\Delta = (2^{[4]} \setminus \{[4]\}) \cup \operatorname{Span}\{\{1,2,5\},\{3,4,5\}\}$ be a simplicial complex on V = [5]. Then $\dim k[\Delta] = 3$, $e(k[\Delta]) = {5 \choose 3} - 3(5-3) + 2 = 6$. Moreover, $k[\Delta]$ is pure and connected in codimension 1, but not (S_2) .

Proof. Since $link_{\Delta}\{5\}$ is spanned by $\{1,2\}$ and $\{3,4\}$, it is disconnected. Hence $k[\Delta]$ does not satisfy (S_2) .

If we put $F_1 = \{1, 2, 5\}$, $F_2 = \{1, 2, 4\}$, $F_3 = \{1, 2, 3\}$, $F_4 = \{2, 3, 4\}$, $F_5 = \{1, 3, 4\}$ and $F_6 = \{3, 4, 5\}$, then $\{F_1, \ldots, F_6\}$ is the set of all facets of Δ such that dim $F_i \cap F_{i-1} = \dim \Delta - 1 = 1$. Hence Δ is pure and connected in codimension 1.

REFERENCES

- [1] A. Br ϕ ndsted, "An Introduction to Convex Polytopes," Graduate Texts in Math. Vol **90**, Springer-Verlag, Berlin/New York/Tokyo, 1983.
- J. A. Eagon and V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality,
 J. Pure and Applied Algebra 130 (1998), 265-275.
- [3] N. Terai, Alexander duality in Stanley-Reisner rings, preprint, 2005.
- [4] N. Terai and T. Hibi, Computation of Betti numbers of monomial ideals associated with stacked polytopes, manuscripta. math. 92 (1997), 447-453.

- [5] N. Terai and K. Yoshida, Buchsbaum Stanley-Reisner rings with minimal multiplicity, Proc. Amer. Math. Soc. 134 (2006), 55-65.
- [6] N. Terai and K. Yoshida, Stanley-Reisner rings with large multiplicities are Cohen-Macaulay, (to appear in J. Algebra).
- [7] N. Terai and K. Yoshida, A note on Cohen-Macaulayness of Stanley-Reisner rings with Serre's condition (S_2) , preprint, 2006.
- [8] K. Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree Nⁿ-graded modules, J. Algebra 225 (2000), 630-645.