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Stanley—Reisner rings with large multiplicities
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1. INTRODUCTION
Throughout this report, let A be a simplicial complex on the vertex set
V =[n]:={1,2,...,n}, that is, A C 2V such that
(a) {i} €A forallie V, (b) FEA,GC F= GeA.
An element of A is called a face of A. For a face F' € A, the dimension of F
is defined by dim F' = #(F') — 1, where #(F') denotes the cardinality of F. A
face of dimension 7 is called an i-face. We also define the dimension of A by

dim A = max{dim F : F € A}. A simplicial complex A is pure if all facets
(maximal faces) has the same dimension.

Let k be a field of any characteristic. Let S = k[Xj, ..., X,] be a polynomial
ring with n variables over k. We regard the ring S as a homogeneous k-algebra
with deg X; = 1. For a simplicial complex A, the Stanley—Reisner ideal Ip
is defined by

In = (Xi1"'Xip 1< < <ip <n, {il,...,ip} ¢A)S

The ring k[A] = S/I4 is called the Stanley—Reisner ring of A. For example,

3 k[Xl,XQ,X3,X4]
A= 4 klA] =
[A] (X1X4, XXy, X1 X5X3)

The Hilbert series of k[A] can be written as in the following form:
F(k[AL,A) = D dimyk[A]; X
: i>0
_ foA fiX? fa-12?
= Jati o TS R (P YT
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where f; = fi(A) denotes the number of i-faces of A and f_; = 1. Hence
dim k[A] = d (the Krull dimension) and the multiplicity e(k[A]) is equal
to fa—1, the number of (d — 1)-faces in A. In particular, e(k[A]) < (7).

Let A = S/I be a homogeneous k-algebra with dim A = d with the unique
homogeneous maximal ideal m = (X3, ..., X,)S/I or a d-dimensional Noether-
ian local ring with the unique maximal ideal m. Then the ith local cohomology
module H} (A) with support V(m) is defined by

Hi(A) := li_n}Ext&(A/mj, A).
J
Then it is well known that H%(A) # 0. We also define the depth of A by
depth A = min{i € Zyo : H;,(A) # 0}.

By the above remark, we always have depth A < dim A. If the equality holds,
then A is said to be a Cohen—Macaulay ring. We say that A satisfies Serre’s
condition (S) if depth Ap > min{2, dim Ap} for all prime ideals P in A. The

Cohen-Macaulay property is very important notion in the theory of commu-’

tative algebra.
The purpose of this report is to give an answer to the following question
with respect to Cohen-Macaulay property of Stanley—Reisner rings:

Question. Let A be a (d — 1)-dimensional simplicial complex on V' = [n].
If e(k[A]) is sufficiently large (that is, e(k[A]) is close to (7)), then is k[A]
Cohen—Macaulay?

Now let us observe the above question in some special cases. First we con-
sider the case where e(k[A]) = (}). Then A is certainly Cohen-Macaulay.
Indeed, we can characterize such a complex; see below. Recall that the i-
skeleton of A is defined by A® = {F € A : dimF < 4}. It is also well
known that A® is Cohen-Macaulay if so is A.

Proposition 1.1 ([5, Proposition 1.2]). Let A be a (d — 1)-dimensional sim-
plicial complex on V. Then the following conditions are equivalent.

(1) e(k[A]) = (3)-

(2) indegIp :=min{i € Z : ([a); # 0} =d + 1.

(3) In = (}(','1"-)(54+1 1< < < id+1 < n) That 1s, A is the
(d — 1)-skeleton of the standard (n — 1)-simplez 2V.

When this is the case, k[A] is Cohen—Macaulay.

Next we consider the case of dim A = 1. Let A be a 1-dimensional simplicial

complex on V = [n], and put e = e(k[A]). Then A can be regarded as a simple
graph having n points and e edges. k[A] is also Cohen—Macaulay if and only
if ro(A; k) = 0, that is, A is connected. Thus, in this case, the above question
says that '

“If a graph has sufficiently many edges, then is it connected ?”.
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Of course, this is true! To be precise, the graph is connected whenever
e > ("“ ) + 1. Similarly, any graph without isolated points is connected
whenever e > (" ) + 2.

The main result in this report is the following theorem, which generalizes
the above observations.

Theorem 1.2 (See [3, 6, 7]). Let A be a (d—1)-dimensional simplicial complez
on V. Suppose that one of the following conditions is satisfied:

(1) e(k[A]) > () = (n - d);

(2) e(k[A]) > (3) —2(n—d) + 1 and A is pure;

(3) e(k[A]) > (") — 3(n — d) + 2 and k[A] satisfies Serre’s condition (Ss).
Then k[A] is Cohen—Macaulay.

2. SKETCH OF THE PROOF OF THE MAIN RESULT

In this section, we give a sketch of the proof of Theorem 1.2. We first
recall some definitions and terminology which we need later. Throughout this
“section, let A be a (d — 1)-dimensional simplicial complex on V = [n], unless
otherwise specified. Let k[A] = S/I5 denote the Stanley—Reisner ring of A,
where S = k[X, ..., X,] is a homogeneous polynomial ring over a field &, and
put c=n —d.
For a face F' of A and a subset W C V, let us define several subcomplexes
of A as follows:

Aw = {GeA : GC W},
linkkn F = {GeA : FUGEA, FNG =0},
stara ' = {GeA : FUGe A}

These complexes are called the restriction to W, the link of F, and the star
of F, respectively.

Take a graded minimal free resolution of an arbitrary hbmogeneous ideal I
(0#1C (X1,...,X,)?) over S:
0— @S(_j)ﬁp,j(f) NN P s(—jysh £ 1 0,
jez j€Z
where p = pdg . In general, n —d — 1 < p, and the equality holds if and only

if A:= §/I is Cohen—-Macaulay.

Let p(I) denote the minimal number of generators of I, that is, u(I) =
>~ Bo,;(I). Moreover,

indeg] = min{j €Z : Go;(I) # 0} =min{j € Z : 5, ,;(A) # 0},
I't(I) = max{j ez : ﬂo,j(I) 7é 0} = ma,x{J eEZ: ,Bl,j(A) 75 O},
regl = max{j-ie€Z: B ;(I)+#0}

are called the initial degree of I, the relation type of I and the regularity
- of I, respecti_vely. By definition, it is easy to see that regl > indegl. If
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equality holds (and indeg/ = g), then I (or A) has (¢g-)linear resolution.
For a given integer r > 0, a homogeneous ideal I satisfies (N,,)-condition
if the graded minimal free resolution of I over S can be written as in the
following shape:

o S5 = S(—g =1+ 1P o S(—g)* — T 0,
j€Z
Note that I satisfies (Ng,) for r > pdg [ if and only if it has g-linear res-
olution. A homogeneous ideal I satisfies (N, ) if it satisfies (N,,) for some

q=>2.
Let us recall Hochster’s formula on the Betti numbers:

Biia)= ) dim Hj i o(Aw; k),
WCV, #(W)=j

where ﬁ,-(A; k) (or simply I?,-(A)) denotes the ith reduced simplicial homology
group with valued in k. By this formula we have
reg In = max{r € Z : H,(Aw) # 0 for some Wcvi+2.

In particular, reg [ < d + 1.
Now let us reduce Theorem 1.2 to its Alexander dual version. In the proof
of Theorem 1.2, we may assume that ¢ > 2. Moreover,

we suppose that indeg In = d

for simplicity. Then the Alexander dual complex of A is defined by
A*=_{F62V : V\F ¢ A}

This is a simplicial complex on the same vertex set V as that of A. For a
subset W = {i1,...,4,} of V, if we put Py = (X;,,..., X;,)S, then

Ip = Pnr
F is a facet of A

gives an irredundant primary decomposition of Io. On the other hand, if we
put X¥ = X; --- X, then we have

| Ine = (XVVF : Fis a facet of A).
In particular,

(1) indeg Ia+ = height I.
(2) Bog*(Ia+) = e(k[A]), where g* = indeg I«.

Moreover, the following lemma plays a key role in our argument. The latter
assertion has been proved in [2] by Eagon and Reiner, and was generalized by
the first author and Yanagawa (see [8, Corollary 3.7]).

Lemma 2.1 ([2, 8]). Let A* be the Alezander dual complez of A. For an in-
teger r > 2, k[A] satisfies (S;) if and only if In. satisfies (N..). In particular,
k[A)] is Cohen—Macaulay if and only if In« has linear resolution.
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Remark 2.2. When r = 1, A is pure if and only if /5. satisfies (N, ), that is,
indeg Iax = rt(Ia-).

Let A* be the Alexander dual complex of A. Then
dim k[A*] = n — height k[A*] = n — indegk[A] =n - d = c.

Furthermore, k[A] satisfies (S,) (resp. A is pure) if and only if k[A*] satisfies
(Nez2) (resp. (N,1)) by Lemma 2.1 and Remark 2.2. When this is the case,
since Ja- is generated by elements of degree c, we have

(A = oclae) = llar) = (1) = fors(°).
Hence | :
a) > (T)=m = eHAD = () S
From these observations we have:

Theorem 2.3 (Alexander dual version of Theorem 1.2). Suppose that
one of the following conditions holds:

(1) e(k[A]) < d;

(2) e(k[A]) <2d — 1 and rt(Ia) = indeg Ia = d;

(3) e(k[A]) < 3d — 2 and I satisfies. (ng)
Then Ia has d-linear resolution.

In fact, we could prove the following more general assertion:

Theorem 2.4. Suppose that one of the following conditions holds:

(1) e(k[A)) < d;
(2) e(k[A]) < 2d =1 and Bog41(Ia) = ,
( ) ( [A]) < 3d 2 and ﬁ]_ d+2(IA) =

Then reg I < d, that is, Hd_l(A) =
We divide the proof into three cases.
Lemma 2.5. If e(k[A]) < d, then Hy_1(A) = 0.

__ Proof (see [6]). Assume that there exists a complex A such that e(k[A]) < d,
Hy 1(A) # 0 and dim A = d — 1. Take one A whose multiplicity is minimal
among the multiplicities of those complexes. Choose any (d — 1)-facet F of A.
Then F contains just d subfacets of A; say Gi,...,Gq. Then G; is not a free

face. That is, G; is contained in at least two facets of A. Indeed, if G = G;

is a free face of A, then the simplicial complex A’ := A\ {F, G} is homotopy
equivalent to A and thus Hy ,(A') 2 H; ,(A) # 0. This contradicts the
minimality of e(k[A]) since e(k[A]) < e(k[A]).

Thus for each i € V there exists a (d — 1)-facet F; of A such that G; C

F; # F. In particular, Fy,..., Fy, F are (d + 1) distinct facets of A. This is a
contradiction. ()
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Remark 2.6. We have an “algebraic proof” of Lemma 2.5. Namely, we can show
that if A is an F-pure homogeneous k-algebra with e(A4) < d then a(A) < 0.
We can also give a direct proof of Theorem 1.2(1) without Alexander dual
complexes.

Theorem 2.4(2) follows from the following lemma. Note that rt(Ia) < d if
and only if Gy g+1(/a) = 0.

Lemma 2.7. If e(k[A]) < 2d — 1 and rt(I5) < d, then Hy_;(A) = 0.

Proof (see [6]). Put e = e(k[A]). Let A’ be the subcomplex that is spanned
by all facets of dimension d — 1. Replacing A with A/, we may assume that A
is pure.

We use induction on d = dim k[A] > 2. First suppose d = 2. The assump-
tion shows that A does not contain the boundary complex of a triangle. Hence
H;(A) = 0 since e(k[A]) < 3.

Next suppose that d > 3, and that the assertion holds for any complex the
dimension of which is less than d — 1. Assume that A is a (d — 1)-dimensional
pure complex with rt(Ia) < d, e(k[A]) < 2d — 1 and H_;(A) # 0. Take one
A whose multiplicity is minimal among the multiplicities of those complexes.
Then A does not contain any free face by a similar argument as in the proof
of the above lemma. ’

First consider the case of rt(Ip) =d. Take a generator X;--- Xy of Ia.

Then since each G; = {1,... Freee, d} € A is contained in at least two facets,
e(k[A]) > 2d. This is a contradiction.

Next we consider the case of rt(Ia) < d. Let V = [n] be the vertex set of A.

Take the Mayer—Vietoris sequence with respect to A = Ay\(n} Ustara{n} as
follows:

0= Hy1(Av\(n}) ® Ha 1 (stara{n}) — Hy_1(A) — Hy_»(linka{n}),
where the vanishing in the left-hand side follows from the minimality of e(k[A])
since e(k[Av\(n}]) < e(k[A]). Hence Hy_1(A) < Hy_(linka{n}) # 0.

Set A’ = linka{n}. Then A’ is a complex on V' \ {n} such that dim k[A'] =
d—1 and rt(k[A"]) < rt(k[A]) < d—1. One can also easily see e(k[Ay\(n}]) > 2,

which implies that e(k[A’)) < 2d — 3. Hence H;_o(A') = 0 by induction
hypothesis. This is a contradiction. O

When A is pure, we have the following refinement of Lemma 2.5.

Corollary 2.8. Suppose that A is pure and c, d > 2. Ife(k[A]) < d+1, then
Hy 1(A) =0.

Proof. First we prove that rt(Ia) < d. Suppose not. Since rt(In) = d+1, we

may assume that X - - - Xq41 is a generator of Io. Then F; = {1,...,4,...,d+

1}isa (d—1)-facet of Aforalli=1,...,d+1. Since n = d+c > d+2, there
exists a facet of A which contains {d + 2}. Hence e(k[A]) > d + 2, which is a
contradiction. Therefore rt(/a) < d. Since e(k[A]) < d+1 < 2d — 1, we have
Hy 1(A) = 0 by Lemma 2.7. O
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Our proof in [7] of the following assertion is rather complicated. So we omit
the proof and give only its sketch here.

Lemma 2.9. If e(k[A]) < 3d — 2 and By g42(Ia) = 0, then Hy_1(A) = 0.

Proof. We use an induction on d = dim A + 1. When d = 2, the assertion
easily follows from Hochster’s formula on Betti numbers. Suppose d > 3, and
that the assertion of the lemma holds for any complex the dimension of which
is less than d — 1. Assume that there exists a (d — 1)-dimensional complex
A such that e(k[A]) < 3d — 2, B1442(Ia) = 0 and Hy_1(A) # 0. Take one
A whose multiplicity is minimal among the multiplicities of those complexes.
Put e = e(k[A]) > 2. If necessary, we may assume that A is pure. Then the
minimality of the multiplicity implies that A does not contain any free face.
The assumption (3 442(Ja) = 0 also implies that rt(k[A]) < d. We first show
the following claim:

Claim 1. Suppose that the following conditions are satisfied:
(1) A is pure;
(2) rt(Ia) = d;
(3) A does not have any free face;
(4) Baa+2(k[A]) = 0.
Then e(k[A]) > 3d — 1.

To see the claim, we may assume that X - -- X, is a generator of o without
loss of generality. Put F := {1,2,...,d} € 2V \ A and G; = {1,...,'{,...,d}
for each ¢ = 1,2,...,d. Since A has no free face, there exist 2d facets of A
whose form are G; U {j} for some j € V' \ F. In particular, if we set

U:={j€V\F : 3G C F such that #(G) = d — 1, GU {j} € A},

then #(U) > 2. Note that there exist no subsets {1,752} of U (j; # j2) for
which the following conditions hold: both G; U {51} and G; U {jz} are facets
of A for all ¢ = 1,2,...,d. In fact, we suppose that the assertion does not
hold. Namely, there exists a subset {j;,ja} of U for which both G; U {5}
and G; U {jp} are facets of A for all i = 1,2,...,d. Set W = F U {jy, ja}.
Then Hy 1(Aw) = 0 since #(W) = d + 2 and By 442(la) = 0. Let A; be
a subcomplex of Aw spanned by H U {j1}, H U {j.} where H € 2F \ {F},
that is, Ay = (2F\ {F})  (2U132}\ {4y, jo}). Let Ay be a subcomplex of Ay
spanned by all facets of Ay that contains {ji, jo}. Then Aw = A; U Ay and
dim(A; N A,) < d — 2. Applying Mayer-Vietoris sequence to Aw, we get

0=H; (AN As) — Hy 1 (A) ® Hy_1(A3) > Hy_1(Aw) — -+

On the other hand, Hy_1(A;) 2 Hy 5(2F \ {F}) & Hyo(S*2) = k # 0. This
implies that Hy_;(Aw) # 0. This is a contradiction.
By the above discussion we can choose j € U (d+1<j<n)and {(1<{<
d — 1) such that
F, = {1,2,...,p,...,4,...,d,j} €A forallp=1,2,...,¢,
Gy = {1,2,...,¢...,q,...,d,5} ¢ A forallg=£+1,...,d.
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Now let us consider the following subfacets of A:
Hp,q :={11'"vﬁa"',‘e"e+1)"'1&’""d7j} (1Sp_<_£»£+1$q5d)

Since A has no free face, Hp 4 is contained in at least two facets of A, but
one of those facets cannot be written as in the form G U {j} where G C F.
Counting the number of facets of A, we get

e(k[A]) > 2d+£(d—£) > 2d+ (d—1) =3d — 1,
as required.
Next, we must show the following claim:

Claim 2. Suppose that d > 3, ¢ > 3. Suppose that the following conditions
are satisfied:

(1) A is pure.

(2) rt(la) <d—1;

(3) A does not have any free face;

(4) There exists y € V such that (2441 (k{linka{y}]) # 0;

(5) Hy_o(linka{z}) # 0 holds for all z € V..
Then e(k[A]) > 3d — 1.

We omit a proof of the above claim here because it is technical and long.

Now let us return to the proof of the lemma. By Claim 1, we may assume
that rt(/a) < d. Furthermore, we may assume that d > 3, ¢ > 3 and e > 2d.
Let us check the conditions in Claim 2.

Claim 3. H,_;(links{z}) # 0 holds for all z € V.

Fix z € V. We have Hy_1(Av\{z}) = 0 by the minimality of e(k[A]) and
the purity of A. Then the assertion follows from the Mayer—Vietoris sequence
to A = sta,rA{,:c} U AV\{,,}.

Claim 4. There exists a vertex y € V such that e(k[Ay\(]) > 3.

Now suppose that e(k[Ay\(z}]) < 2 for all z € V. Then at least (e — 2)
facets of A contains z. Counting the number of vertices which is contained in
some facets, we obtain that ed = e(k[A]) x d > n(e(k[A]) - 2) = (c+d)(e—2).
Hence 2(c + d) > ce > 2cd, that is, (c — 1)(d — 1) < 1. This contradicts the
assumption that c> 3 and d > 3.

Take a vertex y € V' as in Claim 4 and put I" = linka{y}. Since
e(k[L]) = e(k[stara{y}]) = e(k[A]) — e(k[Av\iy]) < 3(d - 1) - 2,

if Bga+1(k[I]) = 0, then Hy_o(T') = 0 by the induction hypothesis. But this
contradicts Claim 3. Hence 35 441(Kk{I']) # 0. Therefore e(k[A]) > 3d — 1 by
Claim 2 and the lemma is proved. O

3. EXAMPLES

We construct some examples of simplicial complexes which satisfy Theorem
1.2 or 2.3.



Example 3.1. Put F;; = {1,2,...,?,...,d,j} foreachi=1,...,d;j=d+
1,...,n. For a given integer e with 1 < e < cd, we choose e faces (say,
Fy,...,F) from {F; : 1<i<d,d+1<j<n}, which is a set of the facets
of the simplicial join of 214 \ {[d]} and ¢ points.

Let A be the simplicial complex spanned by Fi,..., F, and all elements of
( (}_’f]l). Then k[A] is a d-dimensional Stanley—Reisner ring with indeg In =
rt(Ia) = d and e(k[A]) =e. ‘

In particular, when e < 2d — 1, k[A] has d-linear resolution by Theorem
2.3. Thus their Alexander dual complexes provide examples satisfying the
hypothesis of Theorem 1.2. '

The following example shows that the assumption “e(k[A]) < 2d — 1”7 is
optimal in Theorem 2.3(2).

Example 3.2. There exists a complex A on V = [n] for which k[A] does
not have d-linear resolution with dimk[A] = indegIn = rt(Ia) = d and
e(k[A]) = 2d.

In fact, let Ay be a complex on Vy = [d + 2] such that k[A,] is a complete
intersection defined by (X - - - X4, X441 X4+2). Let A be a complex on V such
that _

In = (X1 Xa)S+ (Xiy - Xiy y X1 Xap2 1 1 S0 <+ <idg2 < d)S
+( X Xy 1< < <ja<n, jg>d+3)8S.

Then Hy_;(A) = Hy 1(Ao) # 0 since a(k[Ao]) = 0. Hence k[A] does not have
d-linear resolution.

Remark 3.3. The case n = d + 2 in the above example is also obtained by
considering the case ¢ = 2, e = 2d in Example 3.1.

The simplicial complex Ag can be also characterized as a pure complex with
A such that e(k[A]) = 2d, rt(Ja) = d and Hy_,(A) # 0.

In fact, if A is such a complex, then A has no free faces. Let X;--- Xy
be a generator of In and put G; = '{1,...,/{,...,d} for each 7 = 1,...,d.
Since G; is not a free face, there exist two distinct points p;, p; € V such that
Fi:= G;U{pi}, F] := G; U {p|} are facets of A. Then {F;, F| : i=1,...,d}
becomes the set of all facets of A. Since F; \ {i} is also not a free face, it is
contained in some facet in A except F;. But such a facet must be either F; or
F{. Consequently, we may assume that p; = p; and p} = p| foralli=1,...,d.
Then one can easily see that A = (214\ {[d]}) » (2{»9}\ {{p, ¢}}) by the purity
of A and e(k[A]) = 2d. In other words, k[A] is a complete intersection of type
(d,2): kK[A] = k[X,..., X4, Y1, Y2)/ (X1 X4, V1Y5).

Using the boundary complex of a stacked d-polytope, let us construct an
example which shows the condition “e(k[A]) < 3d — 2” is optimal in Theorem
2.4.
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Example 3.4. Let d, n be integers with d > 2 and c=n —d > 3. Let Aq be
a simplicial complex on Vb = [d + 3] spanned by the following d-subsets of V:

{1,2,.. Ld,d+1},  i=2,3,...,d
{1,.. dd+2} i=1,2,...,d
{2,.. ,z, Ld+1,d+3}, i=2,3,...,d+1.

Let A; be a complex defined by A; = AgU{{d+4},...,{n}} (Its geometric
realization |A;] is a disjoint union of |Ao| and (n — d — 3) isolated points. ).
Then A, is a (d—1)-dimensional simplicial complex on V = [n] and e(k[A,]) =
e(k[Ao]) = 3d - 1.

Note that Ao can be regarded as the boundary complex of a stacked d-
polytope with d + 3 vertices. Thus the graded minimal free resolution of k[Ao]
can be written as in the following shape ([4]):

0 — S(—d-3)— S(-3)22 @ §(—d — 1)P2en
— §(=2)P12 @ §(—d)Pr¢ — § = k[Ag] — 0.

In particular, B3, 442(k[A1]) = B2,a+2(k[Ac]) = 0, but reg k[A;] = reg k[Ag] =
Let A be the simplicial complex spanned by all facets of A; and all (d — 1)-
subsets of V. Then k[A] satisfies (Ng2) and e(k[A]) = 3d — 1, but does not
have linear resolution. See also Theorem 2.4.
Using the Alexander dual complex of A, one can find a (d — 1)-dimensional
simplicial complex " which satisfies (Sz) and e(k[I']) = (}) — 3(n —d) + 1, but
it is not Cohen~Macaulay for given integers d > 3 and n —d > 3.

The next example shows that it is not enough to assume “pure and connected
in codimension 1” instead of (S;) in Theorem 1.2.

Example 3.5. Let A = (214\ {[4]}) USpan{{1,2, 5}, {3 4,5}} be a simplicial
complex on V = [5]. Then dimk[A] = 3, e(k[A]) = (3) —3(5—3) +2 = 6.
Moreover, k[A] is pure and connected in codimension 1, but not (S3).

Proof. Since linka{5} is spanned by {1,2} and {3,4}, it is disconnected.
Hence k[A] does not satisfy (S»).

If we put /i = {1,2,5}, I, = {1,2,4}, F3 = {1,2,3}, F, = {2,3,4},

= {1,3,4} and Fy = {3,4,5}, then {F, ..., Fg} is the set of all facets of A
such that dim F; N F;_; = dim A — 1 = 1. Hence A is pure and connected in
codimension 1. ‘ O
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