0000000000
1503 0 2006 0 121-128 121

Galois embedding from universal types into
existential types
— Extended Abstract —

Ken-etsu Fujita (B)
Department of Computer Science,
Gunma University (BB KE)

Abstract

We show that there exist translations between polymorphic A-calculus
and a subsystem of minimal logic with existential types, which form a
Galois insertion (embedding). From a programming point of view, this
result means that abstract data types can interpret polymorphic functions
under CPS-translation.

1 Introduction

We show that polymorphic types can be interpreted by the use of second or-
der existential types. For this, we prove that there exist translations between
polymorphic A-calculus A2 and subsystem of minimal logic with existential
types, which form a Galois connection and moreover a Galois insertion (em-
bedding). From a programming point of view, this result means that abstract
data types can interpret polymorphic functions under the so-called modified
CPS-translation [Plot75, SF93].

Our main interest is a neat connection and proof duality between polymor-
phic types (2nd order universally quantified formulae) and existential types (2nd
order existentially quantified formulae). It is logically quite natural like de Mor-
gan’s duality, and computationally still interesting, since dual of polymorphic
functions with universal type can be regarded as abstract data types with ex-
istential type [MP85]. Instead of classical systems like [Pari92, Seli0l, Wad03],
even intuitionistic systems can enjoy that polvmorphic types can be interpreted
by existential types. That is, computationally polymorphic function with uni-
versal type VX.A can be interpreted by abstract data types with existential type,
such that the parametric polymorphic function AX.M for X can be viewed, un-
der the so-called CPS-translation *, as an abstract data type for X, which is
waiting for an implementation with type 3X.A*. This interpretation also con-
tains proof duality, such that the universal formulae introduction rule is inter-
preted by the use of the existential formulae elimination rule, and the universal

122

elimination by the existential introduction. Moreover, we established not only
a Galois connection but also a Galois insertion (embedding) from polymorphic
A-calculus (Girard-Reynolds) into a calculus with existential types. From the
neat connection between the calculi, the fundamental properties such as nor-
malization and Church-Rosser are related each other via CPS-translation and
left adjoint.

2 Source calculus:)2

We first introduce our source calculus, 2nd order A-calculus denoted by A2. For
simplicity, we adopt its domain-free style.

Definition 1 (Types)
Aun=X|A= A|VX.A
Definition 2 ((Pseudo))2-terms)
A2 M=z | e M|z M| MM|XX.M|MA

Definition 3 (Reduction r;ﬂes) (8) (Az.M)My — Mz := My

(7) Az.Mz — M, if z & FV(M)

(8) (\XM)A— M[X := A]

() AX.MX — M, if X ¢ FV(M)

FV (M) denotes a set of free variables in M.

3 Target calculus:)\°

We next define our target calculus denoted by A%, which is logically a subsystem
of minimal logic consisting of constant 1, negation, conjunction and 2nd order
existential quantification.

Definition 4 (Types)
Av=L1|X|-A|ANA|3X.A
Definition 5 ((Pseudo))®-terms)

A3 M == z|dz.M|MM| (M M)|let (z,2) =M in M
| (A, M) |let (X,2)=M in M

Definition 6 (Reduction rules) (8) (\z.My)M;y — M|z := M;]
(n) \e.Mz— M, ifx ¢ FV(M)

123

(letn) let (xy,x2) = (M, Mo) in M — Mz, = My, x5 1= My)
(letn,) let (wy,w0) = My in Mz := (2, x9)] — M|z 1= My],
if 21,22 € FV(M)
(lety) let (X,z) = (A, M1) in M — M[X := A,z := M|
(lets,) let (X,z) = M, in Mz := (X.2)] — Ma[z := My], if X, & FV(M;)

We write simply (let) for either (let,) or (lets), and (let,) for (let,) or
(letEU)

4 CPS-translation * from A2 into A3

We define a translation so-called modified CPS-translation * from pseudo A2-
terms into pseudo A3-terms, which preserves not only reduction relation but
also typing relation introduced later. In each case, a fresh and free variable «a is
introduced, which is called a continuation variable. :

Definition 7 1. x* =za

2. (Az.M)* =1let (z,a) =a in M~

9 (AL AT e Ma = (z,a)] for My =z
3 (MyMy)" = { Mta == (\a.M3,a)) otherwise
4. (AX.M)* = let (X,a) = a in M

6. (MA) = M*[a = (A*,0)]
6. X*=X; (A1 = Ay)* = -AIAAY (VX.A)* = 3X.A"

Remarked that M™ contains exactly one free occurrence of a continuation vari-
able a, and AM* has neither 8-redex nor n-redex. Let AX.M have type VX.A.
Then, under the translation, parametric polymorphic function (AX.M)* with
respect to X becomes an abstract data type for X, which is waiting for an
implementation with type 3X.A* together with an interface (a signature) with
type A*, ie.,

abstype X with a:A* is a in M”*

in a familiar notation.

Lemma 1 1. We have Mi[w 1= Aa.M3] =73, (Mi[z = My])". |
In particular, M{[x = Aa.M3] -3} (Mi[z := My])* provided that M, is
not a variable. ‘

2. If My —5 M, then My —7 . M;.

3. If My —, M, then My -7 M3

nlet,

For inverse translation, the following mutual induction defines Univ and C,

respectively for denotations and for continuations.

C,eC C,eC Peg Univ
2C, € Univ (Ma.P)C,, € Univ
C,eC P e Univ C,€C PeUniv
let (z,a) = C, in P € Univ let (X,a) = C, in P € Univ
C.€eC
eeC (x,Cq) €C
C,eC Peg Univ C,ecC
(Ma.P,C,) €C (A~,CcyecC

We write (R]_,RQ, e ,Rn> for (.R],, (Rg, ces ,Rn)> with n >], and (R1> for R1
with n = 1. C, € C is in the form of (Ry,..., Rn,a) where R; (1 <i<n)is z,
Aa.P, or A* with n > 0.

According to the general property of Galois connection, for P € Univ, an
upper adjoint. (left adjoint) § can be defined as follows, where a preorder C is
defined by —*, the reflexive and transitive closure of one step reduction —.

Pt sup{M € A2 | M* C P} where PT Q iff Q —* P.
In fact, this definition works well, which can be verified by case analysis on
P € Univ, in the following recursive way:
o Case P=uaC =a(Ry,...,Rp.0) withn >0
From the definition of *, P! is in the form of zM;j ... M, for some M;,
where
— If R; = a;, then M; = .L,
- If R; = Aa.F;, then find similarly AM; such that M C F;.
— If R; = A}, then M; = A;.
e Case P = (Aa.P')C
We have no M such that M* = (Aa.P')C. Then we should fine M such
that M* C P'[a := C] C (Aa.P")C, where a is a linear variable.
o Case P = let (z,a) = C in P’ with C = (Ry,...,Rp.a) (n > 0)
Pt ig in the form of (Az.M)N; ... N, for some M and N;, where we should
find M such that M* C P’, and: :
- If R; = x; then N; = z;.
—~ If R; = Aa.P; then find N; such that N} E F,.
— If Ry = A} then N; = A;.

124

Here we have a valid induction measure, since continuation variable is linear
and we always choose strictly smaller subterms to find an upper adjoint. This
definition § is summarized inductively as follows, where we write C[] for C € C
with a hole []:

Definition 8 0. zf = 2; (\a.P) = PF; (A*) = A
1. (zC) = C¥[z?]

((Aa.P)C) = C¥(Ma.P)Y) |

(Let (z.a) = C in P)* = C¥[\z. P}

(let (X,a) = C in P)! = C}[AX.P}|

d=[]

(z,C)t = C[[Jo]

(Aa.P, C)* = CH[[|(Aa.P)¥]

(A%, C) = CH[[[(A")¥]

Sl S S R

Note that C! = [JR! ... R! with left associativity, if C, € C is in the form of
(Ry,...,Rpn,a). We also remark that if we have Pla := C], then there uniquely
exists a free occurrence of a in P € Univ.

Lemma 2 1. (Pla:= C))* = C*[P¥]

2. Let P, Py € Univ and C € C.
(P[z := Aa.Py))! = Pz := P
(Clz = Ma.Pp))* = dj[:z = P}
Proposition 1 Let P;, P, € Univ.
1. If P, =3 Py, then P} = Pi.
2. If P, —, Py, then P} = P5.
3. If Py =14y Py, then P} — 4 PE.
4. If Py e, P2, then‘Pla —y Pzﬂ
Proposition 2 Let M € A2 and P € Univ.
1. M*=M and P —n pi

2. If M is in A2-normal, then M* is in A¥-normal.

If P is in A3-normal, then P* is in A2-normal.

125

Theorem 1 (Galois insertion) (A2, Univ, *,§) forms a Galois connection. in
particular Galois insertion such that M** = M. That is, let M, My, My € A2
and P, Py, Py € Univ. Then we have the following properties:

1. If My =%, My then My —3,.,. M3,

2. If P, —7 Py then Pf -39 Pj‘

Univ
3. M** =%, M and P —};,., P¥.
In other words:
P -0 M* if and only if P} —35, M
Corollary 1 1. Strong normalization of Univ implies that of \2.

2.)2 is weakly normalizing iff Univ is weakly normalizing.

3. There erists a one-to-one correspondence between \2-normal forms and
Univ-normal forms.

4. A2 is Church-Rosser iff Univ is Church-Rosser.
We remark that A2 itself is NOT Church-Rosser.

5. Let | P {Q € Univ| P =33 Q} for P € Univ. Then an inverse image
of | P is principal, in the sense that the inverse image of | P is equal to
L(PY), that is, generated by P*.

6. Let |32 [A2] & {P | M* =35 P for some M € A2}.

Let 1, [A2] i {P € Univ| P —p, M* for some M € A2}.
Then we have |3 [A2] C1g,[A2] = Univ.

5 Proof dualif:y

Finally, we give sets of type assignment rules for A2 and)3, respectively, as
follows.

A2:
z:Ael

TkFx: A

F,IL'Z.Al M Ag
'FAALM Al = A,

TFM:A1= A4y TTHM;: A
TF MM, - A,

(=1)

(= E)

IHM:A R L-M:VX.A .
— (V1) (VE)

FFAX.M:VX 'k MA; : AX = A,

126

127

where (VI)* denotes the eigenvariable condition X ¢ FV(T').

pER
x:AeTl
F'Fz: A
e:AFM: L (1) F'FM,:mA THMy: A (~E)
FAT:AM:-A ' MAM,: L _ -

T+ M A FF']WQ:AQ(]) THFM:A1ANA; T,x:Az,20: A M A
'k (M, Ms) : Ay N As 'k let (z1,22) =M; in M : A

- (AE)

T M:A[X = A]
TF (A, M)ax.a : 3X.A

F'M:3X.A T.x:AF M :
Tk let (X,z) =M in M; : 4

(3I) (BF)*

where (3E)* denotes the eigenvariable condition X ¢ FV(T', 44).
Proposition 3 'k M : A if and only if -T™*,a:A* ks M*: L

Theorem 2 (Proof duality) Let IT be a nm‘mal deduction of I' bag M : A,
and in 11, let © be a path:

A1(B1)/12(E3) . A b)/:‘,,+1(1b+1) 4,1 1(In_1)An.
Then, in the deduction of -I'*.a: A* Fys M* : L, there exists a path ©* as
follows:

Ar(In-1) A5y (Im) Ai (B AL .. (E2) A3 (B)" Af
under the following cov respondence:

(= I)* = (AE); (= E)* = (Al); (VI)* = (FE); (VE)* = (3I).

References

[Fujio3] K. Fujita: A sound and complete CSP-translation for Ap-Calculus,
Lecture Notes in Computer Science 2701, pp. 120-134, 2003.

[Fuji0s] K. Fujita: Galois embedding from polymorphic types into existential
types, Lecture Notes in Computer Science 3461, pp. 194208, 2005.

[MP85] J. C. Mitchell and G. D. Plotkin: Abstract types have existential type,
Proc. the 12th Annual ACM Symposium on Principles of Programming Lan-
guages, pp. 37-51, 1985.

Pari92] M. Parigot: Ap-Calculus: An Algorithmic Interpretation of Classical
: &
Natural Deduction, Lecture Notes in Computer Science 624, pp. 190-201,
1992.

[Plot75] G. Plotkin: Call-by-Name, Call-by-Value and the A-Calculus, Theoret-
tcal Computer Science, Vol. 1, pp. 125-159, 1975.

[Pra65] D. Prawitzz NATURAL DEDUCTION, A Proof Theoretical Study,
ALMQVIST&WIKSELL, Stockholm, 1965.

[Seli01] P. Selinger: Control Categories and Dua.lity: on the Categorical Se-
mantics of the Lambda-Mu Calculus, Math. Struct. in Compu. Science, Vol.
11, pp. 207-260, 2001.

[SF93] A. Sabry and M. Felleisen: Reasoning about Programs in Continuation-
Passing Style, LISP AND SYMBOLIC COMPUTATION: An International
Journal, Vol. 6, pp. 289-360, 1993.

[Wad03] Ph. Wadler: Call-by-value is dual to call-by-name, International Con-
ference on Functional Programming, August 25-29, Uppsala, 2003.

128

