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Circular Codes and Petri Nets
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Dept. of Computer Science, Shizuoka Institute of Science and Technology,
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Abstract

The purpose of this paper is to investigate the relationship between limited codes and Petri
nets. For a given Petri net with an initial marking u, we can naturally define an automaton A
which has the initial marking 4 as an initial state, the reachability set Re(u) as a set of states,
and the set of transitions as a set of inputs. We can define prefix codes by considering the set of
firing sequences which arrive from the positive initial marking of a Petri net to a certain subset
of the reachability set[10,12]. The set M of all positive firing sequences which start from the
positive initial marking u of a Petri net and reach u itself forms a pure monoid. Qur main interest
is in the base D of M. The family of pure monoids contains the family of very pure monoids,
and the base of a very pure monoid is a circular code. Therefore, we can expect that D may be
a circular code. Here, for “small” Petri nets, we discuss under what conditions D is circular.
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1. Introduction

Let A be an alphabet, A* the free monoid over A, and 1 the empty word. A word v € A* is a
left factor of a word u € A" if there is a word w € A* such that u = vw. The left factor v of
u is called proper if v # u. A right factor and a proper right factor of a word are defined in a
symmetric manner. _

For a word w € A* and a letter z € A we let |w|, denote the number of z in w. The length
of w is the number of letters in w. A non-empty subset C of At is said to be a code if for
T1y ey Tpy Y1y Yg €0y 00 2 1,

Ty Tp=Y1-c-Yq. 1mplles p=q and T, =y, ..., Tp=Yp-

A subset M of A* is a submonoid of A* if M2 C M and 1 € M. Every submonoid M of a free
monoid has a unique minimal set of generators

C=(M-{1}) - (M- {1})2.
C is called the base of M.

This is the abstract and the details will be published elsewhere.
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A submonoid M is right unitary in A* if for all u,v € A*,
u, uv € M = v e M.

M is called left unitary in A* if it satisfies the dual condition. A submonoid M is biunitary if it
is both left and right unitary.

Deflnition 1.1. Let M be a submonoid of a free monoid A*, and C its base. If CAtNC =0,
(resp. AYC'NC =0), then C is called a prefiz (resp. suf fiz) code over A. C is called a bifiz
code if it is a prefix and suffix code.

A submonoid M of A* is right unitary (resp. biunitary) if and only if its minimal set of generator
is a prefix code (bifix code)([1,p.46]).

Definition 1.2. A Petri net is a 5-tuple, PN = (P, A4, F, W, up) where:
P = {p1,p2,...,Pm} is a finite set of places,
A= {t1,1a,...,t,} is a finite set of transitions,
F C (Px A)U(A x P) is a set of arcs,
W:F —{1,2,...} is a weight function,
po: P— {0,1,2,...} is the initial marking,
PNnA=0and PUA#.

We use the following notations for a pre-set and a post-set:
t={pl(p, t) € F}, t- = {p|(t, p) € F},

In this paper we shall assume that a Petri net has no isolated transitions, i.e., no ¢ such that
tUt- =§. A marking po can be represented by a vector: '

Ho = (M(pl)vM(p?)’ vee ’ﬂO(pﬂ))’ PEP n= |P|
For every t € A the vector At is defined by

At = (At(p1),At(p2), o ’At(pﬂ))! n= ‘PI’

where
-W(p,t)+W(t,p) if pe-tnt.,
At(p) - _W(pst) 1'.f peE 21 _t')
W(t,p) ifpet-—-t,
-0 ifpg tut-.

A transition ¢ € A is said to be enabled in yo, if W(p,t) < po(p) for all p € t. A firing of an
enabled transition ¢ removes W (p;,t) tokens from each input place p; € -t, and adds W (t,pg)
tokens to each output place p; € t-. Firing of an enabled transition ¢ at uo produces a new



marking u; such that

Ho(p) — W(p,t) ifpet—t,
(o) = #O(P)+W(t,P) ifpet.-—-t,

mo(p) - W(p,t) +W(t,p). ifpet-n-t,

ko(p) otherwise.

If we obtain the marking ' that results from a firing of t at u, we write 6(u,t) = p’. A word
w = tyty...t,, (t; € A), of transitions is said to be a (firing) sequence from ug if there exist
markings p;,1 < i < r, such that 6(ui—1,%) = p; for all 4, (1 < i < 7). In this case, u, is
reachable from po by w and we write 6(yo, w) = p,. The set of all possible markings reachable
from pg is denoted by Re(uo), and the set of all possible sequences from g is denoted by Seq(uo).
The function & : Re(po) x T — Re(uo) is called a next-state function of a Petri net PN [7.p.23).
‘We note that the above condition for r = 0 is understood to be uo € Re(uq).

A marking u is said to be positive if u(p) > 0 for all p € P. A sequence t)t;...t, € Seq(uo),
(t: € T), is called a positive sequence from pg if d(uo, t1t2...t;) is positive for all ¢, (1 < i < n).
The set of all positive sequences from g is denoted by PSeq(uo).

By PRe(uo) we denote the set of all possible positive markings reachable from po;
PRe(o) = {6(po, w)lw € PSeq(uo)}.

2. Some codes related to Petri nets

For a Petri net PN = (P, T, F,W, 1) and a subset X C Re(uo) we can define a deterministic
automaton A(PN) as follows: Re(uo), T, & : Re(uo) x T — Re(uo), o, and X, are regarded
as a state set, an input set, a next-state function, an initial state, and a final set of A(PN),
respectively. By using such automata, in [10,12] we defined four kinds of prefix codes and
examined fundamental properties of these codes.

Let PN = (P, A, F, W, 1) be a Petri net. The set

Stab(PN) = {w|w € Seq(p) and §(p,w) = u}
forms a submonoid of A*. If Stab(PN) # {1}, then we denote the base of Stab(PN) by S(PN).
Since S(PN)A* NS(PN) =0, S(PN) is a prefix code over A.
A submonoid M of A* is called pure [7] if for all z € A* and n > 1,
"eEM=>zeM.
A subsemigroup H of a semigroup S is extractable in S [9, p.191] if
r,y€S,z€ Hyxzye H=>zy € H.

Proposition 2.1. If Stab(PN) # 0, then Stab(PN) is a biunitary extractable pure monoid.
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Definition 2.1. Let PN = (P, A, F,W, 1) be a Petri net with a positive marking p. Define
the subset D(PN) as a set of all positive sequence w of S(PN).

Since D(PN) is a subset of S(PN), D(PN) is a bifix code over A.

Proposition 2.2. If D(PN) # 0, then D(PN)* is a biunitary extractable pure monoid.

Example 2.1. Let PN = ({p,q},{a,b}, F,W, o) be a Petri net defined by W{a,p) =
W(p,b) = W(g,a) = W(b,q) = 1, po(p) = po(g) = 2. Then D(PN) = {ab,ba}, therefore
{ab, ba}* is pure [1, p.324, Ex.1.3].

Proposition 2.3. If 2,zzy € D(PN),z,y € A*, then xz*y € D(PN).

A code D is infiz if w,zwy € D imples z =y =1 [8, p.129].

Proposition 2.4. If D(PN) is a non-empty finite set, then D(PN) is a infix code.

3. Limited code

A submonoid M of A* is very pure if for all u,v € A*,
u,v € A", uv,vu € M = y,v € M.

The base of a very pure monoid is called a circular code.

Let p, ¢ > 0 be two integers. If for any sequence up, uy, ..., up+q of words in A*, the assumptions
ui-1u; € M (1 < i < p+q) imply u, € M, then a submonoid M is said to satisfy condition
C(p,q). If a submonoid M of A* satisfies condition C(p,q), then M is very pure [1, p.329,
Proposition 2.1], and its base is called a (p, g)-limited code.

If a subset D of A* is a bifix (1,1)-limited code, then for any ug,u1,uz € A* such that
UoU1, ujtiz € D we have u; € D. Thus ugu, u3, u3uz € D. This imples that ug, u;,uz € D, since
D is bifix. Therefore D is (2,0)-,(1,1)- and (0,2)-limited.

Let PNy = ({p},{a,b}, F,W, o) be a Petri net such that W(a,p) = a,W(p,b) = B, =
(Ap)yAp > 0.
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Consider the set Q of positive markings in P Ny;

Q={u|p=po+ A(w),w € PSeq(po}-

a and B, and let N = {0,1,2,---} be a set of non-negative integérs. Then we have
(0) D(PNy) is dense.

(1) If A\, < g, then @ = {)\, +ng|{n € N}.

(2)If \p =89,8>0,8€ N, then Q= {ng|n > 1,n € N}.

(B) A =89+1,,820,s€N,0<t, <g, then Q= {t, +ng|n>0,n€ N}.

Proposition 3.1. If A, > ged(e, 8), then D(PNg) is not circular.
Proposition 8.2. D(PNy) is circular if and only if A, < ged(a, 8).

Let PN, = ({p, q}, {a, b}, F, W, o) be a Petri net such that W(a,p) = o, W(p,b) = o', W(q,a) =
B, W(b’ Q) = ,B') #O(p) = ’\pv I‘O(Q) = ’\Q‘

Supose that D(PN;) # 0 and w € D(PN;). Let n = |w|, and m = |w|, then A(w)
nA(a) + mA(b) = 0 (zero vector). Consequently the linear equation

a —-o n\ _ 0

-8 A m 0
has a non-trivial solution in N. Thus af’ = o'B3. Threrefore, if D(PN;) # 0, then PN;
({p, g}, {a, b}, F, W, o) has the following forms:

W(a,p) = o, W(p, b) = ka7W(q, a) =gB,W(b, Q) =kB, k>0.
Here we assume that k& is an integer. That is, we define a Petri net PNy = ({p, ¢}, {a, b}, F, W, o)

as follows
a —ka
A(a)=(_ﬂ), A(b)=( kﬁ),

where k is a positive integer.

We define an integer M, as follows
Y
L1, if :\l-f is an integer,
Mp =

Ap A .
—- - ot :
[a], if — is not an integer.



where [ ] is the symbol of Gauss. Similarly we difine an integer M, as follows, M, = -’)—} -1if ‘—\5“
is an integer, and M, = [%} if -’}-} is not an integer.

Proposition 3.3. We have
(1) If My + My > k, Mp > k and M, > 1, then D(PN,) is not circular.
(2) If Mp+ My > k, k> M, > 1,My > 1, M, + M, > k, then D(PN}) is not circular.
(3) If My + M, = k, M, > 1, M, > 1, then D(PN;) is a singleton.
(4) If My, + My > k, M,, = 0, M, > k, then D(PN,) is (1,1)-limited.
(5) If My + M, > k, M, > k, M, = 0, then D(PN;) is (1,1)-limited.

Corollary 3.1. Let n and k be arbitrary integers such that n > k > 1. Define the automaton
A(n,k) = ({112’ e )'n'}’ {a7b}7.f7 1’ {1})

by f(i,e) =i4+1,1<i<n-1, f(j,b) =j—k,k+1<j<n. Then the base of language
L(An k) recognized by Ay k) is a (1,1)-limited code.

Proposition 3.4. Let PN = ({p1,---,0a},{a1,--*,an}, F, W, o), n > 2, be a Petri net such
that W(pi,a:) = a;, W(ai,pis1) = Bi,1 < i < n—1, and W(pn,an) = an, W(@n,p1) = Bn.
Ho = (A1,---,/\"),[.l.o(pi) = A;,1 £ i < n. Furthermore let g; = gcd(ﬂj_l,a,-),Z <j<n K
Ar/ay > 1and \; < g; for all i = 2,---,n, then D(PN) is (1,1)-limited.

Let PN = ({p1,p2}, {a,b, c}, F, W, o) be a Petri net such that
W(aa pl) = a1, W(Pl,b) = a2, W(b)pﬁ) = ﬁly W(PI;C) = a31W(p27 c) = ﬁ?)
Ho(P1) = A1, po(p2) = Az

Lemma 3.1. Let PN; be a Petri net mentioned above, and let a = ged(a;,az,03),8 =
gcd(B1, B2). Suppose that D(PNz) # @ and M\ < a, A2 < G. If d € D(PNz) and v is its proper
suffix, then we have one of the following:

(1) A(w)(p1) < ~a, A(v)(p2) < -B.
(2) A@v)(p1) =0, A(v)(p2) < -B.
(3) A()(p1) < —a, A(v)(p2) <0.

Proposition 3.5. If D(PN;) # 0 and \; < a, Az < 8, then D(PN,) is (1,1)-limited.

Let PN3 = ({p, q}, {a, b, c}, W, o) be a Petri net such that W(a,p) = o, W(gq,a) = 8, W(p,b) =
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a+B,W(bq) =a+B,Wic,p) =8,W(gc) = a, po(®) = Ap, o(q) = A,

Lemma 3.2. Let PN3 be a Petri net mentioned above. Suppose that 8 < A\, < a+ 8 and
B < Aq £ a, then for any u € PSeq(PN3) we have one of the following.

(1) A = ( - ) k20, () A@= ( R ) k20,121,

k(e - B) - 18

(8) At = ( k(a - B) +la

),kzO,IZL

Proposition 3.6. Suppose that D(PN3) # 0. If < A\, < a+f and B < Ay < @, then
D(PN3) is (1,1)-limited. :
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