Circular Codes and Petri Nets

Genjiro Tanaka

Dept. of Computer Science, Shizuoka Institute of Science and Technology,

Fukuroi-shi, 437-8555 Japan

Abstract

The purpose of this paper is to investigate the relationship between limited codes and Petri nets. For a given Petri net with an initial marking μ , we can naturally define an automaton \mathcal{A} which has the initial marking μ as an initial state, the reachability set $Re(\mu)$ as a set of states, and the set of transitions as a set of inputs. We can define prefix codes by considering the set of firing sequences which arrive from the positive initial marking of a Petri net to a certain subset of the reachability set[10,12]. The set M of all positive firing sequences which start from the positive initial marking μ of a Petri net and reach μ itself forms a pure monoid. Our main interest is in the base D of M. The family of pure monoids contains the family of very pure monoids, and the base of a very pure monoid is a circular code. Therefore, we can expect that D may be a circular code. Here, for "small" Petri nets, we discuss under what conditions D is circular.

Key words: Petri net, Code, Prefix code, Circular code, Limited code.

1. Introduction

Let A be an alphabet, A^* the free monoid over A, and 1 the empty word. A word $v \in A^*$ is a left factor of a word $u \in A^*$ if there is a word $w \in A^*$ such that u = vw. The left factor v of u is called proper if $v \neq u$. A right factor and a proper right factor of a word are defined in a symmetric manner.

For a word $w \in A^*$ and a letter $x \in A$ we let $|w|_x$ denote the number of x in w. The length of w is the number of letters in w. A non-empty subset C of A^+ is said to be a *code* if for $x_1, ..., x_p, y_1, ..., y_q \in C, p, q \ge 1$,

$$x_1 \cdots x_p = y_1 \cdots y_q$$
 implies $p=q$ and $x_1=y_1, \ldots, x_p=y_p$.

A subset M of A^* is a *submonoid* of A^* if $M^2 \subseteq M$ and $1 \in M$. Every submonoid M of a free monoid has a unique minimal set of generators

$$C = (M - \{1\}) - (M - \{1\})^2.$$

C is called the base of M.

This is the abstract and the details will be published elsewhere.

A submonoid M is right unitary in A^* if for all $u, v \in A^*$,

$$u, uv \in M \Longrightarrow v \in M$$
.

M is called *left unitary* in A^* if it satisfies the dual condition. A submonoid M is *biunitary* if it is both left and right unitary.

Definition 1.1. Let M be a submonoid of a free monoid A^* , and C its base. If $CA^+ \cap C = \emptyset$, (resp. $A^+C \cap C = \emptyset$), then C is called a *prefix* (resp. suffix) code over A. C is called a *bifix* code if it is a prefix and suffix code.

A submonoid M of A^* is right unitary (resp. biunitary) if and only if its minimal set of generator is a prefix code (bifix code)([1,p.46]).

Definition 1.2. A Petri net is a 5-tuple, $PN = (P, A, F, W, \mu_0)$ where:

 $P = \{p_1, p_2, \dots, p_m\}$ is a finite set of places,

 $A = \{t_1, t_2, \dots, t_n\}$ is a finite set of transitions.

 $F \subseteq (P \times A) \cup (A \times P)$ is a set of arcs,

 $W: F \to \{1, 2, \ldots\}$ is a weight function,

 $\mu_0: P \to \{0, 1, 2, \ldots\}$ is the initial marking,

 $P \cap A = \emptyset$ and $P \cup A \neq \emptyset$.

We use the following notations for a pre-set and a post-set:

$$t = \{p | (p, t) \in F\}, t = \{p | (t, p) \in F\},\$$

In this paper we shall assume that a Petri net has no isolated transitions, i.e., no t such that $t \cup t = \emptyset$. A marking μ_0 can be represented by a vector:

$$\mu_0 = (\mu_0(p_1), \mu_0(p_2), \dots, \mu_0(p_n)), \ p_i \in P, \ n = |P|.$$

For every $t \in A$ the vector Δt is defined by

$$\Delta t = (\Delta t(p_1), \Delta t(p_2), \dots, \Delta t(p_n)), \ n = |P|,$$

where

$$\Delta t(p) = \left\{ \begin{array}{ll} -W(p,t) + W(t,p) & if \ p \in \cdot t \cap t \cdot, \\ -W(p,t) & if \ p \in \cdot t - t \cdot, \\ W(t,p) & if \ p \in t \cdot - \cdot t, \\ 0 & if \ p \notin \cdot t \cup t \cdot. \end{array} \right.$$

A transition $t \in A$ is said to be enabled in μ_0 , if $W(p,t) \leq \mu_0(p)$ for all $p \in t$. A firing of an enabled transition t removes $W(p_1,t)$ tokens from each input place $p_1 \in t$, and adds $W(t,p_2)$ tokens to each output place $p_2 \in t$. Firing of an enabled transition t at μ_0 produces a new

marking μ_1 such that

$$\mu_1(p) = \begin{cases} \mu_0(p) - W(p,t) & \text{if } p \in \cdot t - t \cdot, \\ \mu_0(p) + W(t,p) & \text{if } p \in t \cdot - \cdot t, \\ \mu_0(p) - W(p,t) + W(t,p) & \text{if } p \in t \cdot \cap \cdot t, \\ \mu_0(p) & \text{otherwise.} \end{cases}$$

If we obtain the marking μ' that results from a firing of t at μ , we write $\delta(\mu,t) = \mu'$. A word $w = t_1 t_2 \dots t_r$, $(t_i \in A)$, of transitions is said to be a (firing) sequence from μ_0 if there exist markings $\mu_i, 1 \leq i \leq r$, such that $\delta(\mu_{i-1}, t_i) = \mu_i$ for all $i, (1 \leq i \leq r)$. In this case, μ_r is reachable from μ_0 by w and we write $\delta(\mu_0, w) = \mu_r$. The set of all possible markings reachable from μ_0 is denoted by $Re(\mu_0)$, and the set of all possible sequences from μ_0 is denoted by $Seq(\mu_0)$. The function $\delta: Re(\mu_0) \times T \to Re(\mu_0)$ is called a next-state function of a Petri net PN [7.p.23]. We note that the above condition for r = 0 is understood to be $\mu_0 \in Re(\mu_0)$.

A marking μ is said to be positive if $\mu(p) > 0$ for all $p \in P$. A sequence $t_1 t_2 \dots t_n \in Seq(\mu_0)$, $(t_i \in T)$, is called a positive sequence from μ_0 if $\delta(\mu_0, t_1 t_2 \dots t_i)$ is positive for all i, $(1 \le i \le n)$. The set of all positive sequences from μ_0 is denoted by $PSeq(\mu_0)$.

By $PRe(\mu_0)$ we denote the set of all possible positive markings reachable from μ_0 ; $PRe(\mu_0) = \{\delta(\mu_0, w) | w \in PSeq(\mu_0)\}.$

2. Some codes related to Petri nets

For a Petri net $PN = (P, T, F, W, \mu_0)$ and a subset $X \subseteq Re(\mu_0)$ we can define a deterministic automaton A(PN) as follows: $Re(\mu_0)$, T, $\delta : Re(\mu_0) \times T \to Re(\mu_0)$, μ_0 , and X, are regarded as a state set, an input set, a next-state function, an initial state, and a final set of A(PN), respectively. By using such automata, in [10,12] we defined four kinds of prefix codes and examined fundamental properties of these codes.

Let $PN = (P, A, F, W, \mu)$ be a Petri net. The set

$$Stab(PN) = \{w \mid w \in Seq(\mu) \text{ and } \delta(\mu, w) = \mu\}$$

forms a submonoid of A^* . If $Stab(PN) \neq \{1\}$, then we denote the base of Stab(PN) by S(PN). Since $S(PN)A^+ \cap S(PN) = \emptyset$, S(PN) is a prefix code over A.

A submonoid M of A^* is called pure [7] if for all $x \in A^*$ and $n \ge 1$,

$$x^n \in M \Longrightarrow x \in M$$
.

A subsemigroup H of a semigroup S is extractable in S [9, p.191] if

$$x, y \in S, z \in H, xzy \in H \Longrightarrow xy \in H.$$

Proposition 2.1. If $Stab(PN) \neq \emptyset$, then Stab(PN) is a biunitary extractable pure monoid.

Definition 2.1. Let $PN = (P, A, F, W, \mu)$ be a Petri net with a positive marking μ . Define the subset D(PN) as a set of all positive sequence w of S(PN).

Since D(PN) is a subset of S(PN), D(PN) is a bifix code over A.

Proposition 2.2. If $D(PN) \neq \emptyset$, then $D(PN)^*$ is a biunitary extractable pure monoid.

Example 2.1. Let $PN = (\{p,q\}, \{a,b\}, F, W, \mu_0)$ be a Petri net defined by W(a,p) = W(p,b) = W(q,a) = W(b,q) = 1, $\mu_0(p) = \mu_0(q) = 2$. Then $D(PN) = \{ab,ba\}$, therefore $\{ab,ba\}^*$ is pure [1, p.324, Ex.1.3].

Proposition 2.3. If $z, xzy \in D(PN), x, y \in A^+$, then $xz^*y \in D(PN)$.

A code D is infix if $w, xwy \in D$ implies x = y = 1 [8, p.129].

Proposition 2.4. If D(PN) is a non-empty finite set, then D(PN) is a infix code.

3. Limited code

A submonoid M of A^* is very pure if for all $u, v \in A^*$,

$$u, v \in A^*, uv, vu \in M \Rightarrow u, v \in M.$$

The base of a very pure monoid is called a circular code.

Let $p, q \ge 0$ be two integers. If for any sequence $u_0, u_1, ..., u_{p+q}$ of words in A^* , the assumptions $u_{i-1}u_i \in M$ $(1 \le i \le p+q)$ imply $u_p \in M$, then a submonoid M is said to satisfy condition C(p,q). If a submonoid M of A^* satisfies condition C(p,q), then M is very pure [1, p.329, Proposition 2.1], and its base is called a (p,q)-limited code.

If a subset D of A^* is a bifix (1,1)-limited code, then for any $u_0, u_1, u_2 \in A^*$ such that $u_0u_1, u_1u_2 \in D$ we have $u_1 \in D$. Thus $u_0u_1, u_1, u_1u_2 \in D$. This implies that $u_0, u_1, u_2 \in D$, since D is bifix. Therefore D is (2,0)-,(1,1)- and (0,2)-limited.

Let $PN_0 = (\{p\}, \{a,b\}, F, W, \mu_0)$ be a Petri net such that $W(a,p) = \alpha, W(p,b) = \beta, \mu_0 = (\lambda_p), \lambda_p > 0$.

Consider the set Ω of positive markings in PN_0 ;

$$\Omega = \{ \mu \mid \mu = \mu_0 + \Delta(w), w \in PSeq(\mu_0) \}.$$

 α and β , and let $N = \{0, 1, 2, \cdots\}$ be a set of non-negative integers. Then we have

- (0) $D(PN_0)$ is dense.
- (1) If $\lambda_p < g$, then $\Omega = \{\lambda_p + ng \mid n \in N\}$.
- (2) If $\lambda_p = sg, s \ge 0, s \in N$, then $\Omega = \{ng \mid n \ge 1, n \in N\}$.
- (3) If $\lambda_p = sg + t_p, s \ge 0, s \in N, 0 < t_p < g$, then $\Omega = \{t_p + ng \mid n \ge 0, n \in N\}$.

Proposition 3.1. If $\lambda_p > gcd(\alpha, \beta)$, then $D(PN_0)$ is not circular.

Proposition 3.2. $D(PN_0)$ is circular if and only if $\lambda_p \leq \gcd(\alpha, \beta)$.

Let $PN_1 = (\{p,q\}, \{a,b\}, F, W, \mu_0)$ be a Petri net such that $W(a,p) = \alpha, W(p,b) = \alpha', W(q,a) = \beta, W(b,q) = \beta', \mu_0(p) = \lambda_p, \mu_0(q) = \lambda_q$.

Supose that $D(PN_1) \neq \emptyset$ and $w \in D(PN_1)$. Let $n = |w|_a$ and $m = |w|_b$, then $\Delta(w) = n\Delta(a) + m\Delta(b) = 0$ (zero vector). Consequently the linear equation

$$\begin{pmatrix} \alpha & -\alpha' \\ -\beta & \beta' \end{pmatrix} \begin{pmatrix} n \\ m \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

has a non-trivial solution in N. Thus $\alpha\beta'=\alpha'\beta$. Threrefore, if $D(PN_1)\neq\emptyset$, then $PN_1=(\{p,q\},\{a,b\},F,W,\mu_0)$ has the following forms:

$$W(a,p) = \alpha, W(p,b) = k\alpha, W(q,a) = \beta, W(b,q) = k\beta, k > 0.$$

Here we assume that k is an integer. That is, we define a Petri net $PN_1 = (\{p,q\}, \{a,b\}, F, W, \mu_0)$ as follows

$$\Delta(a) = \begin{pmatrix} \alpha \\ -\beta \end{pmatrix}, \quad \Delta(b) = \begin{pmatrix} -k\alpha \\ k\beta \end{pmatrix},$$

where k is a positive integer.

We define an integer M_p as follows

where [] is the symbol of Gauss. Similarly we diffine an integer M_q as follows, $M_q = \frac{\lambda_q}{\beta} - 1$ if $\frac{\lambda_q}{\beta}$ is an integer, and $M_q = \left[\frac{\lambda_p}{\beta}\right]$ if $\frac{\lambda_q}{\beta}$ is not an integer.

Proposition 3.3. We have

- (1) If $M_p + M_q > k$, $M_p \ge k$ and $M_q \ge 1$, then $D(PN_1)$ is not circular.
- (2) If $M_p + M_q > k, k > M_p \ge 1, M_q > 1, M_p + M_q > k$, then $D(PN_1)$ is not circular.
- (3) If $M_p + M_q = k$, $M_p \ge 1$, $M_q \ge 1$, then $D(PN_1)$ is a singleton.
- (4) If $M_p + M_q \ge k$, $M_p = 0$, $M_q \ge k$, then $D(PN_1)$ is (1,1)-limited.
- (5) If $M_p + M_q \ge k$, $M_p \ge k$, $M_q = 0$, then $D(PN_1)$ is (1,1)-limited.

Corollary 3.1. Let n and k be arbitrary integers such that n > k > 1. Define the automaton

$$\mathcal{A}_{(n,k)} = (\{1,2,\cdots,n\},\{a,b\},f,1,\{1\})$$

by $f(i,a) = i+1, 1 \le i \le n-1, \quad f(j,b) = j-k, k+1 \le j \le n$. Then the base of language $L(\mathcal{A}_{(n,k)})$ recognized by $\mathcal{A}_{(n,k)}$ is a (1,1)-limited code.

Proposition 3.4. Let $PN=(\{p_1,\cdots,p_n\},\{a_1,\cdots,a_n\},F,W,\mu_0),n\geq 2,$ be a Petri net such that $W(p_i,a_i)=\alpha_i,W(a_i,p_{i+1})=\beta_i,1\leq i\leq n-1,$ and $W(p_n,a_n)=\alpha_n,W(a_n,p_1)=\beta_n.$ $\mu_0=(\lambda_1,\cdots,\lambda_n),\mu_0(p_i)=\lambda_i,1\leq i\leq n.$ Furthermore let $g_j=\gcd(\beta_{j-1},\alpha_j),2\leq j\leq n.$ If $\lambda_1/\alpha_1>1$ and $\lambda_i\leq g_i$ for all $i=2,\cdots,n$, then D(PN) is (1,1)-limited.

Let $PN_2 = (\{p_1, p_2\}, \{a, b, c\}, F, W, \mu_0)$ be a Petri net such that $W(a, p_1) = \alpha_1, W(p_1, b) = \alpha_2, W(b, p_2) = \beta_1, W(p_1, c) = \alpha_3, W(p_2, c) = \beta_2, \mu_0(p_1) = \lambda_1, \mu_0(p_2) = \lambda_2.$

Lemma 3.1. Let PN_2 be a Petri net mentioned above, and let $\alpha = gcd(\alpha_1, \alpha_2, \alpha_3), \beta = gcd(\beta_1, \beta_2)$. Suppose that $D(PN_2) \neq \emptyset$ and $\lambda_1 \leq \alpha, \lambda_2 \leq \beta$. If $d \in D(PN_2)$ and v is its proper suffix, then we have one of the following:

- $(1) \Delta(v)(p_1) \leq -\alpha, \ \Delta(v)(p_2) \leq -\beta.$
- (2) $\Delta(v)(p_1) = 0$, $\Delta(v)(p_2) \le -\beta$.
- $(3) \Delta(v)(p_1) \leq -\alpha, \ \Delta(v)(p_2) \leq 0.$

Proposition 3.5. If $D(PN_2) \neq \emptyset$ and $\lambda_1 \leq \alpha, \lambda_2 \leq \beta$, then $D(PN_2)$ is (1,1)-limited.

Let $PN_3 = (\{p,q\},\{a,b,c\},W,\mu_0)$ be a Petri net such that $W(a,p) = \alpha, W(q,a) = \beta, W(p,b) = \alpha$

$$\alpha + \beta$$
, $W(b,q) = \alpha + \beta$, $W(c,p) = \beta$, $W(q,c) = \alpha$, $\mu_0(p) = \lambda_p$, $\mu_0(q) = \lambda_q$.

Lemma 3.2. Let PN_3 be a Petri net mentioned above. Suppose that $\beta < \lambda_p \leq \alpha + \beta$ and $\beta < \lambda_q \leq \alpha$, then for any $u \in PSeq(PN_3)$ we have one of the following.

$$(1) \ \Delta(u) = \left(\begin{array}{c} k(\alpha - \beta) \\ k(\alpha - \beta) \end{array}\right), \ k \geq 0, \quad (2) \ \Delta(u) = \left(\begin{array}{c} k(\alpha - \beta) + l\alpha \\ k(\alpha - \beta) - l\beta \end{array}\right), \ k \geq 0, \ l \geq 1,$$

(3)
$$\Delta(u) = \begin{pmatrix} k(\alpha - \beta) - l\beta \\ k(\alpha - \beta) + l\alpha \end{pmatrix}, k \ge 0, l \ge 1.$$

Proposition 3.6. Suppose that $D(PN_3) \neq \emptyset$. If $\beta < \lambda_p \leq \alpha + \beta$ and $\beta < \lambda_q \leq \alpha$, then $D(PN_3)$ is (1,1)-limited.

References

- [1] Berstel, J., and Perrin. D. Theory of Codes. Academic Press, 1985
- [2] J.Hopcroft., and J. Ullman. Introduction to Automata Theory, Languages and Computation. Reading, Mass., Addison-Wesley, 1979.
- [3] Ito,M., and Kunimochi,Y. "Some Petri Net Languages and Codes," Lecture Note in Computer Science 2295,(2002) pp.69-80.
- [4] Lallement, G. Semigroup and Combinatorial Applications. Wiley. 1979.
- [5] Murata, T. "Petri Nets:Properties, Analysis and Applications." Proceeding of the IEEE, Vol.77, No.4.(1989) pp.541-580.
- [6] Peterson J. L. Petri Net Theory and the Modeling of Systems, Prentice Hall, New Jersey,
- [7] Restivo, A. "On a Question of McNaughton and Papert," Information and Control 25,(1974) pp.93-101.
- [8] Shyr, H. J. Free monoids and languages, Hon Min Book Company, Taichung, Taiwan, 1991.
- [9] Tamura, T. Theory of Semigroups, Kyoritu-Shuppan, Tokyo, 1972. (In Japanese)
- [10] Tanaka, G. "Prefix codes and Petri nets," The Bulletin of the Shizuoka Institute of Science and Technology, Vol.4. (1995) pp.99-120. (In Japanese)
- [11] Tanaka, G. "Prefix codes associated with input ordinal Petri nets," The Bulletin of the Shizuoka Institute of Science and Technology, Vol.5. (1996) pp.83-97. (In Japanese)
- [12] Tanaka, G. "Prefix codes determined by Petri nets," Algebra Colloquium 5:3, (1998) pp.255-264.