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Some Structures of Maximal Prefix Codes Generated by Petri Nets *
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Abstract

A Petri net is a mathematical model which is applied to descriptions of parallel processing
systems. We define a prefix code, called a Petri net code, based on a Petri net under a
certain terminal condition, In this paper we consider the two families of Petri net codes.
One of them is defined by the maximality of prefix codes, called the family of maximal Petri
net codes. The other is the family of codes generated by restricted Petri nets. called the
family of input-ordinal Petri net code. It is easily seen that the later is a subfamily of the
former. But it is still open whether the later includes the former. ‘So we show that the
inclusion is true in case that the component of a Petri net is simple.

1 Introduction

In the section 1.1, we introduce the notation of languages and codes in this paper. In the next section,

we define a Petri net code and explain their properties.

1.1 languages and Codes

Let X be a nonempty finite set called an alphabet, X* be the free monoid generated by X under the
concatenation. An element of X* is called a word. The identity of X* is called the empty word, denoted
by 1. We denote X* \ {1} by X*, the concatenation of two words z and y by zy, and the length of a

word w € X* by |wj(especially |1| = 0).

If for two words w, u € X* there exists some word v € X* (resp. v € X*) with w = uv, then u is called
a prefix (resp. a proper prefix) of w, we represent u <p w(resp. u <p w). A language over X is a subset
of X*. The concatenation of two languages L, and L; is defined by Ly L; = {wywajw; € Ly, ws € Lp}. A
nonempty language L is a code if for any two integers n, m > 1 and uy, ug, -+, Up, 1, V2, -+, U € L,

ULU2***Up =V1V2 "+ Uny
implies
n=m and uy;=v;fori=1,..., n.

A code L is a prefix code if u, uv € L implies v = 1. A code C C Xt is maximal (resp. maxial prefix)

in X if C is not included by any code (resp. prefix code) over X.

Remark A maximal and prefix code is clearly a maximal prefix code because it is not included by
any code by the maximality. But a maximal prefix code is a prefix code, but is not necessarily a maximal

code.

1.2 Petri net codes

DEFINITION 1.1 (Petrinet) A Petrinet PN is a quadruple (P, X, W, uo) satisfying the following

conditions.
(1) P and X are finite sets with PNX =0 and PU X # 0.

(2) W is a weighting function from (P x X)U (X x P) to the set Nof all the nonnegative integers.

(8) o is a function from P to N, called an initial markingyg

* This is an abstract and the paper will appear elsewhere.
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A marking is positive if it is a function from P to N\{0}. And PN is input-ordinal if W(p, a) < 1 for
any (p, a) € PxX. Inthe above Petri net PN, we may call (p, a) € PxX an arc when W(p, a) > 0 holds,
and then W(p, a) is called the weight of the arc (p, a). The similar definition holds about (a,p) € X x P.

When W (p, a) < p(p) holds for any place p € P, the transition a € X is enable under the Petri net
PN. Then the new marking p’ is defined as follows:

¥ (p) = p(p) - W(p, a) + W(a, p) for Vpe P.
The transition function dpn of PN is defined by dpn (1, a) = ¢’ dpn (i, a) is undefined if a € X is not
enable under PN, This function is extended from P x X — Nto P x X* — Nas follows: épn(u, 1) = u
and é6pn (i, ua) = §pn(dpn(p, u),a). We may denote 6py by & if no confusion is possible.

DEFINITION 1.2 Let PN = (P, X, W, po) be a Petri net, o be a positive marking. Then we define
the language C(P, X, W, uo) as follows: ,

C(P, X, W, w) = {w € X*|w = uv,v € X*,5(u, w) is not positive, §(u, u) is positive}

If C = C(P, X, W, po) # 0 then C is a prefix code. Because both u, uv € C and v # 1 yield a
contradiction since §(u, u) is positive. We call such a code a Petri net code. The family of all the Petri
net codes is denoted by CPN. Moreover a Petri net code is said to be a maximal Petri net code if it is
maximal prefix. The family of all the maximal Petri net codes is denoted by mCPN. A Petri net code
is said to be a input-ordinal Petri net code if it is generated by some input-ordinal Petri net. The family
of all the input-ordinal Petri net codes is denoted by NmCPN.

Since an input-ordinal Petri net code is clearly a maximal Petri net code, we get the inclusion relation
NmCPNCmCPN. In this paper, we consider the following problem.

[Problem] mCPNCNmCPN?

Since it is too difficult to solve this problem in general Petri nets, in the next section we prove that
the problem is solved affirmatively in a restricted Petri net.

2 Fundamental Properties

Here we state some fundamental properties used in the next section.

DEFINITION 2.1  Let PN = (P, X, W, uo) be a Petri net and ug be a positive marking. Forw € X*
and a € X, we define the set K,,(a) of places as follows.

Kyla)={p€ P|6(uo, w) =p, W(a,p)=0,W(p,a) >0ands= w’z;(;pzz) ts an integer,

Vge P\ {p} (W(a,q) =0andW(p,a) > 0impliess < wIZ((quz))}
An element of K (a) is called a critical place (after reading the word w) Especially K1 (a) is denoted by

K(a), where 1 is the empty word. K,, is a mapping from X to 2P, called the critical place mapping of
the Petri net (P, X, W, o). 1

A critical place p of a transition a means that p is a place where the number of tokens first becomes
zero when a fires one after another(see Figure 1).

THEOREM 2.1 (Fundamental Theorem) Let K be a critical place mapping of a Petri net
(P, X, W, uo), C(P,X,W, o) be a marimal Petri net code. Let p € P and B = {a € X|W(p,a) > 0}.
Then, For any a,b € B,

(1) p € K(a) impliesW (p,a) > W(p,b),
(2) pe€ K(a) N K(b)impliesW (p,a) = W(p,b).
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Figure 1: Example of critical places, K(a) = {q}.

W(p,a W(p, b2)

W(p,b1)
T a bl b2

Figure 2: p € K(a) = W(p,a) > W(p, b1), W(p, bp).

THEOREM 2.2 (Deletion of useless places) Let PN = (P, X, W, ug) be a Petri net and o be a
positive marking. Let C = C(P, X, W, i) be a mazimal Petri net code. Let p € P be a place such that
6(po, w)(p) # 0 for any w € C. And the Petri net PN’ = (P, X', W', u}) is defined as follows, which is
obtained by removing the place p and the arcs from p and the arcs to p.

P=P\{p},X'=X
W'is a restriction of Won(P' x X) U (X x P'),
Ko 18 a restriction of ug on P/,

Then,
C(Ps Xa VV’I"'O) = C(P’vx’swlaﬂz))'l

Generally set Py = {g € P | 3w € C,8(uo,w)(q) = 0}. Applying the above theorem repeatedly, the
theorem holds even if we replace P’ in the theorem by Py. The maximality in the theorem is needed as
the following example shows.

EXAMPLE 2.1 Let P={p,q}, X = {a,b}, W(p,a) = W(p,b) = 1,W(q,b) = 2, po(p) = pio(g) = 1.
The other arcs weigh 0. Then C = C(P, X, W, po) = {a} is not mazimal. For any w € C, 6(po, w)(q) #
0, where § is the transition function of (P, X, W, ug). However, Since P' = P\ {q} = {p}, X' ={a,b},
W'(p,a) = W'(p,b) = 1, uy(p) = 1, the other arcs weigh 0, C' = C(P', X', W', u}) = {a,b}. This means
that C = C’ does not necessarily hold.

THEOREM 2.8 (Reduction rule of two-way arcs) Let PN = (P,X,W, o) be a Petri net and
Ko be a positive marking. Let C = C(P, X, W, ug) be a marimal Petri net code. Let p € P, a € X with
W(p,a) > 0 and W(a,p) > 0. Then the Petri net PN' = (P, X, W', uo) is defined as follows, which is
obtained by replacing the weights of the two arcs (p,a) and (a,p).

W(p,a) >W(a,p) = W'(p,a)=W(p,a)—W(a,p), W(a,p) =0
W(p,a) = W(a,p) = W'(p,a) = W(a,p) =0

W(p) a') < W(aap) = W’(a:p) = W(agp) - W(ps a)v W,(p’ a) =0,
g#porb#a = W'(b,q) = W(b,q), W'(q,b) = W(g,b)
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Then
C(PvX!VVvﬂ'O) = C(P’X9 W’al"'O)'

W(p,a) | |W(a,p) = W (p,a)

a a.

Figure 3: Replacing the weights of arcs (if W(p,a) > W(a,p)).

EXAMPLE 2.2 Let X be an alphabet and k be a positive integer. Suppose that subsets X; and X3 of
X satisfy X = X1 UX, and X3 N X2 =0. Then, the following language C is an input-ordinal Petri net
code. :
‘ C=( U X' Xy) U X
0<i<k

(proof) If the input-ordinal Petri net (P, X, W, uo) is defined as follows (see Figure 4), then C =
C(P, X, W, o) holds.

P= {p,q}, X=XUX,,

po(p) =1, p0(q) = k,

W(p,a) =1,W(a,p) =0 if ae X,
W(g,b)=1,W(b,q)=0 if be X,

X, = {aly" "aﬂ}’ X2v= {bl"”’b"‘}

Figure 4: the Petri net generating C of Example 2.2.
Especially, in the above example setting X; = 0 and X; = X, C = X* = {w € X*||lw| = k}. X* is
called a (full) uniform code over X. Therefore a uniform code becomes an input-ordinal Petri net code.
3 Maximal Petri net codes and input-ordinal Petri net code

Here we solve the problem whether mCPNCNmMCPN holds or not under some conditions. At first we
consider the case the number |P| of places equals 1 and the case the number |X| of transitions equals 1.
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3.1 Incaseof |[Pl=1or |X|=1

THEOREM 3.1 Let PN = (P, X,W, o) be a Petri net and po be a positive marking. Assume that
I X|=1or|P|=1. IfC=C(P,X,W, ) is a marimal Petri net code, then C is an input-ordinal Petri
net code. g

Assume that |P| = 1, that is P = {p} in this theorem. Setting X; = {a € X|W(p,a) > 0, W(a,p) = 0}
and X3 = X — Xj, Then

O(P,X, W) = (X" o (| aaXa™)) X,
a€X2
where n; = W(a;,p)/n, © is the shuffle product over two languages L, K C X* defined by Lo K =
UzeL,yckZOY, TOY = {T1y1Z2l2 TnYn|ZT = Z1Z2+ Tn, ¥y = Y1¥2 " " Yn, Zi, Yi € X*.forl <i<n}
for z,y € X* and L° is the shuffle closure of a language L, defined by L° = U;»oL°%, L°° = {1},
LoGH) = [odo [,

In case that a Petri net has only a place or only a transition, we have proven NmCPN=mCPN. In
the next section, we consider the case that a Petri net has two places.

3.2 In case of |P| =2

In a Petri net PN = (P, X,W, o), for a transition a € X, Set I(a) = {p € P|W(p,a) > 0} and
O(a) = {p € P|W(a,p) > 0}. If I(a) # 0 and O(a) = @, a is called a consuming transition. If I(a) # @
and O(a) # 0 a is called a transporting transition. If I(a) = @ and O(a) # 0, a is called a supplying
transition. If I(a) = O(a) = @, a is called an isolated transition.

3/'

(a) consuming (b) transporting

> Bl
et ~

-
L

(c) supplying (d) isolated

Figure 5: Classification of transitions

All through this section, we assume that a Petri net PN = (P, X, W, o) with a positive marking g
generating the code satisfies the following conditions.
(1) C(P, X, W, uo) is a maximal Petri net code.
(2) |P| = 2, that is the number of places equals 2. Set P = {p, q}.
(3) X # 0 and each element of X is a consuming transition or a transporting transition.
(4) By theorem 2.3, for any p € P and any a € X, Both the weight of (a,p) and the weight of (p,a) are
not positive.
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THEOREM 3.2 Let PN = (P, X, W, i) be a Petri net, pg be positive. Assume that C = C(P, X, W, uo)
is a mazimal Petri net code, |P| = 2, and each element of X is not a supplying transition, C is an input-
ordinal Petri net code. g

(proof) Since the marking is unchanged by a isolated transition’s firing, we may assume that X has
no isolated transition without the loss of generality.
Moreover, Set the sets X, and X, of transitions, respectively

X, ={a€ X|p€ K(a)},
Xq={a € X|q € K(a)}

(note that Xp N X, = K~1({p,q}) = 0 is not necessarily hold), where K is a critical place mapping.
By the condition (3), since a € X is a consuming or transporting transition, the number of tokens in
p or g becomes zero when a is fired in succession . Namely at least one of a € X, ora € X, holds.
If a € X, there exists some positive divisor n, of uo(p) such that W(p, @) = n,. The analogy holds if
a € X,. Hence, there exist two positive integers k and [ such that

po(p) = knp, po(q) = Ing,
W(p,a) =ny, W(a,p) =0 ifa € X,, (1)
W(g,a) =ng, W(a,q) =0 ifa € X,.

If k = I = 1, the statement of this theorem holds because the code C is a uniform code X!. Moreover, if
no transition a exists such that p € K(a), that is X = X, the code is a uniform code C = X} eNmCPN.
C is also a uniform code if X = Xp. So we may assume that k = [ = 1 doesn’t hold, X, # @ and X, # 0.

If a € X, and b € X, the weights of arcs (p,a) and (g,b) is uniquely determined as shown the
expression (1). While there are some cases: the weights of arcs (p,b) and (b, p) are not multiples of n,,
the weights of arcs (g, a) and (a, g) are not multiples of n,. How to weigh these arcs is divided into the
next five cases by the symmetry. :

(A)Jae X,,Fbe X, [z=W(p,b)>0,y=W(qga)>0, and(n, fzorng fy)]
(B)3ae Xp, e X, [z=W(bp)>0,y=W(qga)>0, and(n, fzorn, fy)]
(C)3ae X, e X, [W(bp)=0,y=W(qga)>0, andn, |
(D)3a€ Xy, FbeX, [z=W(b,p)>0,y=W(a,q) >0, and(n, frorng fy)]
(B)3a€ Xy, Ibe X, [z=W(bp)>0,W(ga)=0,andn, J]

By Lemma 3.1 stated later in case of (A4), by Lemma 3.2 in case of (B), by Lemma 3.3 in case of (C),
by Lemma 3.5 in case of (E), we can show that C is an input-ordinal Petri net code respectively. On
the other hand the case (D) is impossible because C is not a maximal Petri net code by the lemma 3.4.

If any condition from (A) to (E) does not hold, the weight of each output arc from the place p(resp.
q) is np(resp. ng), the weight of every input arc to p(resp. ¢) is a multiple of ny(resp. n,). Therefore,
C(P, X, W, uo) is the same as the code which the following Petri net (P’, X’, W/, uf)) generates.

P =P={pg}, X'=X
W'(p,a) = W(p,a)/ny, =1, W(a,p) = W(a,p)/n, for Vae X
W'(q,a) = W(qg,a)/ny =1, W(a,q) = W(a,q)/n, for Va€e X
po(p) = po(p)/np =k, uo(a) = polg)/ng =1
Hence, C(P, X, W, uo) ENmCPN. 3
We state the lemmata 3.1~3.5 in referred in the proof of the theorem 3.2. We omit thier proofs.

LEMMA 8.1 If the following condition (A) is satisfied in the Petri net PN = (P, X, W, ug), then the
code which PN generates is a uniform code X*, that is an input-ordinal Petri net code.

(A)3ae Xy, 3be Xy, [z=W(pb)>0,y=W(ga)>0, and(n, fxorn, )]y

The case (4;) of K(a) = {p},K(b) = {g} and the case (A3) of K(a) = {pr}aK(b) = {p,q} are
impossible. In case (42) of K(a) = {p,q}, K(b) = {g}, C = Xk,
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Y b a
(A1) A contradiction (A7) C=X* (As) A contradiction

Figure 6: When the condition (A) holds.

LEMMA 8.2 If the following condition (B) is satisfied in the Petri net PN = (P, X, W, ug), then the
code which this Petri net generates is an input-ordinal Petri net code.

(B)Ja€ Xp,Ibe X, [z=W(bp) >0,y=W(ga) >0, and(n, fxorng fy)la

In case (By) of K(a) = {p}, K(b) = {q}, C is an input-ordinal Petri net code, and in case (B;) of
K(a) = {p,q}, K(b) = {q}, C = X*.

(B1) C :input-ordinal

Figure 7: When the condition (B) holds.

LEMMA 3.3 If the following condition ( C) is satisfied in the Petri net PN = (P,X,W, uo), then the
code which this Petri net generates is an input-ordinal Petri net code.

(C)3ae X, IbeX, [W(bp)=0y=W(ga)>0, andn, fyla

In case (Cy) of K(a) = {p}, K(b) = {g}, C is an input-ordinal Petri net code in the form of EXAMPLE
2.2. The case (C,) is impossible.

LEMMA 3.4 If the following condition (D) is satisfied in the Petri net PN = (P, X, W, o), then the
code which this Petri net generates must not be a mazimal Petri net code.

Jda€ Xp,IbeX, [z=W(bp)>0,y=W(a,q) >0, and(n, fz orng fy)la



a b a
(C1) C:the form of EXAMPLE2.2 (C2) A contradiction

Figure 8: When the condition (C) holds.

(D) A contradiction

Figure 9: When the condition (D) holds.
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LEMMA 3.5 If the following condition (E) is satisfied in the Petri net PN = (P, X, W, uo), then the
code which this Petri net generates is an input-ordinal Petri net code in the form of EXAMPLE 2.2.

(E)Ja € Xp, Fbe Xy [z=W(bp)>0,W(q,a) =0, andn, fz]g

a b_N
(E) C:the form of EXAMPLE2.2

Figure 10: When the condition (E) holds.

References

[1] G. Tanaka. Prefix codes determined by Petri nets, Algebla Colloquim 5, pp.255-264, (1998)
[2] M.Ito and Y.Kunimochi. Some Petri nets languages and codes, Lecture Note in Computer Science
2295, pp.69-80, (2002)

[3] H. J. Shyr, Free Monoids and Languages, Lecture Notes (Hon Min Book Company, Taichung
1991).

[4] J. L. Peterson, Petri Net Theory and the Modeling of Systems, (Prentice-Hall , 1981).

[5] G. Rozenberg and A. Salomaa, Handbook of Formal Languages Vol.1 WORD LANGUAGE,
GRAMMAR, (Springer, 1997). :

[6] J. Berstel and D. Perrin, Theory of Codes, Pure and Applied Mathematics (Academic Press,
1985).



