A note on d-primitive words, cyclic-square-free words, and disjunctive languages

Tetsuo MORIYA

Department of Electrical Engineering, Faculty of Engineering

Kokushikan University

Setagaya 4-28-1, Setagaya-ku, Tokyo 154-8515, Japan

Electric Mail: moriya@kokushikan.ac.jp

Summary

In this paper, we give some results on d-primitive words, square-free words and disjunctive languages. We show that for a word $u \in \Sigma^+$, every element of $\lambda(cp(u))$ is d-primitive iff it is square-free, and also we give a condition of disjunctiveness for a language, which strengthens the result in [5].

Keywords: d-primitive word, square-free word, principal congruence, disjunctive language

1 Introduction

A lot of studies have been done for primitive words and square-free words, which concern the decomposition and combination of word. (See for example [6], [7].) On the other hand, various research have been done about properties of a disjunctive language. [5], [4].

In this paper, we give some resuts on d-primitive words, square-free words and disjunctive languages. In section 2, we show that for a word $u \in \Sigma^+$, every element of $\lambda(cp(u))$ is d-primitive iff it is square-free. In section 3, we study some properties of disjunctive languages. First we show that p^mq^n is a primitive word for every $n, m \geq 1$ and primitive words p, q, under the condition that |p| = |q| and $(m, n) \neq (1, 1)$. Next we give the rearranged proof for Proposition 4.17 [5] by using the above result. Moreover we investigate a condition of disjunctiveness for a language and give the result which strengthens this proposition.

2 Preliminaries

Let Σ be an alphabet consisting of at least two letters. Σ^* denotes the free moniod generated by Σ , that is, the set of all finite words over Σ , including the empty word 1, and $\Sigma^+ = \Sigma^* - 1$. For w in Σ^* |w| denotes the length of w. A language over Σ is a set $L \subseteq \Sigma^*$.

For a word $u \in \Sigma^+$, if u = vw for some $v, w \in \Sigma^*$, then v(w) is called a prefix(suffix) of u, denoted by $v \leq_p u$ $(w \leq_u)$.

For a language $L\subseteq \Sigma^*$, we define $L^{(i)}=\{w^i|w\in L\}$ for $i\geq 1$. A nonempty word u is called a primitive word if $u=f^n,\ f\in \Sigma^+,\ n\geq 1$ always implies that n=1. Let Q be the set of all primitive words over Q. For $u=p^i,\ p\in Q,\ i\geq 1$, let $\lambda(u)=p$, and call p the primitive root of u. For a language $L\subseteq \Sigma^+$, let $\lambda(L)=\{\lambda(u)|u\in L\}$. A nonempty word u is a non-overlapping word if u=vx=yv for $x,y\in \Sigma^+$ always implies that v=1. Let D(1) be the set of all non-overlapping words over Σ . A words in D(1) is also called a d-primitive word. Let $D=D(1)\cup [D(1)]^{(2)}\cup [D(1)]^{(3)}\cup \cdots$. By definition, it is immediate that $\lambda(D)=D(1)$ and that $Q\cap D=D(1)$. A word $x\in \Sigma^+$ is a cyclic square free word if $u=v_1w^2v_2$ for any $v_1,w,v_2\in \Sigma^*$ always implies w=1. For a word $u\in \Sigma^+$, $u=xy,x,y\in \Sigma^*$, yx is called a cyclic permutation of

the word u. Let cp(u) be the set of all cyclic permutations of the word u. That is, $cp(u) = \{yx | u = xy, x, y \in \Sigma^*\}.$

A word $u \in \Sigma^+$ is λ -cyclic-squre-free word if $\lambda(cp(u))$ is square-free. $\lambda(u)$ is called a cyclic-square-free word if a word u is λ -cyclic-squre-free. Let SF be the set of all square-free words and CSF be the set of all cyclic-squre-free words, and $\lambda - CSF$ be the set of all λ -cyclic-squre-free words.

For a language L, the equivalence relation P_L on Σ^* , called the *principal con*gruence by L is defined as $u \equiv v$ (P_L) if and only if $(xuy \in L \iff xvy \in L \text{ for any } x, y \in \Sigma^*)$.

If P_L is the equality, then we call L a disjunctive language.

3 premitive words and cyclic-square-free words

In this section, we show that for a word $u \in \Sigma^+$, every element of $\lambda(cp(u))$ is d-primitive iff it is square-free.

Lemma 1 cp(cp(u)) = cp(u) for every $u \in \Sigma^+$.

Proof. Since $u \in cp(u)$, it is obvious that $cp(u) \subseteq cp(cp(u))$. Suppose that $w \in cp(cp(u))$. We can write u = yx, and $w \in cp(xy)$ for $x, y \in \Sigma^*$. Let $u = a_1...a_ia_{i+1}...a_n$; $x = a_{i+1}...a_n$, $y = a_1...a_i$. Since $xy = a_{i+1}...a_na_1...a_i$, we can write $w = a_k...a_ia_{i+1}...a_na_1...a_{k-1}$, with i < k. In either case, $w \in cp(u)$.

Lemma 2 For $u \in \Sigma^+$, $i \ge 1$, $cp(u^i) = (cp(u))^{(i)}$.

Proof. Let $xy = u^i$ for $x, y \in \Sigma^*$. For $yz \in cp(u^i)$, and $u = u_1u_2$ with $u_1, \in \Sigma^+$; $u_2 \in \Sigma^*$, we can write as $yx = u_2u...uu_1 = (u_2u_1)^i \in (cp(u))^{(i)}$. Thus $cp(u^i) \subseteq (cp(u))^{(i)}$. Conversely, suppose that u = vw for $v \in \Sigma^+, w \in \Sigma^*$. We have that $(wv)^i = w(vw)^{i-1}v \in cp((vw)^i) = cp(u^i)$. Hence $(cp(u))^{(i)} \subseteq cp(u^i)$.

Lemma 3 [3] Let $u \in \Sigma^+$. Then $u \notin D(1)$ if and only if there exists a unique word $v \in D(1)$ with $|v| \leq (1/2)|u|$ such that u = vwv for some $w \in \Sigma^*$.

Proposition 4 For $u \in \Sigma^+$, the following two statements are equivalent.

- (1) $cp(u) \subseteq D(1)$.
- (2) $cp(u) \subseteq SF$.

Proof. $[(1) \Rightarrow (2)]$ Suppose that $cp(u) \not\subseteq SF$. There exist x and y such that xy = u and $yx \notin SF$. We can write $yx = z_1w^2z_2$ for $z_1, z_2 \in \Sigma^*$, and $w \in \Sigma^+$. Hence $wz_1z_2w \in cp(yx) \subseteq cp(cp(u)) = cp(u)$ by Lemma 1. Thus $cp(u) \not\subseteq D(1)$. $[(2) \Rightarrow (1)]$ Suppose that $cp(u) \not\subseteq D(1)$. There exist x and y such that xy = u and $yx \notin D(1)$. We can write yx = wvw for $v \in \Sigma^*$, and $w \in \Sigma^+$ by Lemma 3. Hence

Lemma 5 For $u \in \Sigma^+$, $\lambda(cp(u)) = cp(\lambda(u))$.

 $vw^2 \in cp(yx) \subseteq cp(cp(u)) = cp(u)$. Thus $cp(u) \not\subseteq SF$.

Proof. Let $u = f^i$ for $f \in Q$. By Lemma 2, it follows that $\lambda(cp(u)) = \lambda(cp(f^i)) = \lambda((cp(f))^{(i)})$. Since $cp(f) \subseteq Q$, we have that $\lambda((cp(f))^{(i)}) = cp(f) = cp(\lambda(u))$. Thus the result holds.

Corollary 6 The following two statements are equivalent for $u \in \Sigma^+$.

- (1) $\lambda(cp(u)) \subseteq D(1)$.
- (2) $\lambda(cp(u)) \subseteq SF$.

Proof. Let $u = f^i$ for $f \in Q$, and $i \ge 1$. By Lemma 5, it follows that $\lambda(cp(u)) = cp(f)$. Since $cp(f) \in D(1)$ if and only if $cp(f) \in SF$ by Proposition 4, the result holds.

4 disjunctive languages

In this section, we study some properties of disjunctive languages. Next two Lemmnas are well-known results

Lemma 7 [6] Let $uv = f^i$, $u, v \in \Sigma^+$, $f \in Q$, $i \ge 1$. Then $vu = g^i$ for some $g \in Q$.

Lemma 8 [8] Let $u, v \in \Sigma^+$. If uv = vu, then u and v are powers of a common primitive words.

The following two lemmas are immediate.

Lemma 9 If $f \in Q$, then $cp(f) \subseteq Q$.

Lemma 10 If pq = qp for $p, q \in Q$, then p = q.

The following is the key lemma for results in this section.

Lemma 11 If $y = xx' \in Q$ with $x, x' \in \Sigma^+$, then $(xx')^k x \in Q$ for $k \geq 2$.

Proof. Suppose that $(xx')^k x \notin Q$. Let $(xx')^k x = p^j$ for $p \in Q$, and $j \ge 2$. (Case 1)|x| > |p|

Then $x=p^su_1=u_2p^s$ with $|u_1|=|u_2|<|p|$ for some $s\geq 1$, and $p=u_1u_1'=u_2'u_2$ with $|u_1'|=|u_2'|$. Since $(u_1u_1')^su_1=u_2(u_2'u_2)^s$, we have that $u_2'=u_1'$, and $u_1=u_2$. Hence $x=p^su_1=u_1p^s$. Both p^s and u_1 are in a^+ for some $a\in \Sigma$. Thus $p\in a^+$, and $x'\in a^+$. This contradicts to that $y\in Q$.

(Case 2) |x| < |p|

(2.1) $p = (xx')^s w = w'(x'x)^s$ for $s \ge 1$, and some $w, w' \in \Sigma^+$ with |w| = |w'|, and $w <_p x$, $w' <_s x$. Let x = wz = z'w'. Since $(xx')^k x = p^j$, $(wzx')^k (wz) = ((wzx')^s w)^j$. It follows that (x'w)z = z(x'w). This implies that both x'w and z are in a^+ for some $a \in \Sigma$. Thus both x and x' are also in a^+ . Hence $y \in a^t$ for $t \ge 2$. This is a contradiction.

(2.2) $p = (xx')^s xu = u'x(x'x)^s$ for $s \ge 0$, and $u, u' \in \Sigma^+$ with |u| = |u'|, and $u <_p x'$, $u' <_s x'$. Let x' = uv = v'u'.

 $(2.2.1) \ s \ge 1$

Since $(xx')^k x = p^j$, $(xuv)^k x = ((xuv)^s xu)^j$, uvx = vxu. we have that y is in a^t for $t \ge 2$. This is a contradiction.

(2.2.2) s = 0

If $v <_p x$, then we can write $x = vv_1$ for some $v_1 \in \Sigma^+$. Since $(xx')^k x = p^j$, $(xuv)^k x = (xu)^j$. Since $k \ge 2$, vxu = xuv. Thus $p = xu, v \in a^+$ for some $a \in \Sigma$. we have that $p \in a^t$ for some $a \in \Sigma$ and $t \ge 2$. This is a contradiction. If $x <_p v$, then we can write $x' = up^t w$, for $t \ge 0$, and $p = ww' w' \in \Sigma^+$. Since $(xx')^k x = p^j$, $w(p^{t+1}w)^{k-1}x = p^{j-t-1}$, that is, $w((ww')^{t+1})^{k-1}x = (ww')^{j-t-1}$. By $k \ge 2$, we have

that $j \ge t+3$, that is, $j-t-1 \ge 2$. Thus www' = ww'w. This implies that both w and w' is in a^+ for some $a \in \Sigma$. Hence $p \notin Q$. This is a contradiction. if x = v, then we have that xu = ux = x' since $(xux)^k x = (xu)^j$ for $k \ge 2$. Thus $y = xx' \notin Q$. \square

Remark 1 Unfortunately, the previous Lemma does not hold for k = 1. For example, for $\Sigma = \{a, b\}$, let x = abba, x' = bbaabb. Then $xx'x = (abbabba)^2 \notin Q$.

Proposition 12 For $p, q \in Q$ with $p \neq q$ and |p| = |q|, $pq^n \in Q$ and $p^nq \in Q$ for every $n \geq 2$.

Proof. It suffices to show that $pq^n \in Q$. Let $p, q \in Q$ and $p \neq q$. Suppose that there exists $y \in Q$ such that $pq^n = y^r$ for some $r \geq 2$. If |y| = |p|, that is, p = y, then immediately y = q. This contradicts that $p \neq q$. (Case 1) |y| < |p|

Let $p=y^sx$ for some $s\geq 1$ and $x\in \Sigma^+$ with $x<_p y$. Thus $x<_p$, and $x<_s p$. Let y=xx' for $x'\in \Sigma^+$. By $pq^n=y^r$, $n\geq 2$, and |p|=|q|, we have that $q^n=(x'x)^{r-s-1}x'$ with $r\geq (n+1)s+1$. Since $r-s-1\geq ns\geq 2$, and $x'x\in Q$, it follows that $(x'x)^{r-s-1}x'$ is in Q by the Lemma 11. This is a contradiction. (Case 2) |p|<|y|

If $y = pq^s$ for $s \ge 0$, then $p \in q^+$. This contradicts to that $p, q \in Q$ and $p \ne q$. Thus $y = pq^tx$ for some $t \ge 0$ and $x \in \Sigma^+$ with $x <_p q$. Let q = xw for $\in \Sigma^+$. If r = 2, then we have that $pq^tx = wq^{n-t-1}$ and |x| = |w| = (1/2)|q|. It follows that q = xw = wx. This implies that $q \notin Q$. Thus $r \ge 3$. Let $z = q^tx$. Since $pq^n = y^r$, $q^n = (zp)^{r-1}z$ with $r - 1 \ge 2$. Since $y = pz \in Q$, and $n \ge 2$, this conradicts to the Lemma 11.

Corollary 13 For $p, q \in Q$ with $p \neq q$ and |p| = |q|, $p^n q^m \in Q$ for every $n, m \geq 1$ with $(n, m) \neq (1, 1)$.

Proof. Let $p, q \in Q$ with $p \neq q$ and |p| = |q|. If $n \geq 2$ and $m \geq 2$, then $p^n q^m \in Q$ in either |p| = |q| or not, by [5]. For other cases, the result holds by Proposition 10. \square

Remark 2 As mentioned in [5], the previous corollary does not hold for n = 1, $m \ge 2$ or $n \ge 2$, m = 1 without the condition |p| = |q|. On the other hand, for n = m = 1, let p = aba and q = bab. Then $pq = (ab)^3 \notin Q$.

Corollary 14 Let $p, q \in Q$ with $p \neq q$ and |p| = |q|. Then $pqp^n \in Q$ and $p^nqp \in Q$ for every $n \geq 2$.

Proof. Since $n+1 \geq 2$, $qp^{n+1} \in Q$ and $p^{n+1}q \in Q$ by Proposition 12. By Lemma 9, $pqp^n \in cp(qp^{n+1}) \subseteq Q$ and $p^nqp \in cp(p^{n+1}q) \subseteq Q$.

Proposition 15 [6] Let $A \subseteq X^*$. Then the followings are equivalent.

- (1) A is a disjunctive language.
- (2) If $u, v \in X^*$, |u| = |v|, and $u \equiv v$ (P_A) , then u = v.
- (3) If $u, v \in Q$, |u| = |v|, and $u \equiv v$ (P_A) , then u = v.

Proof. (1) \Rightarrow (2), (2) \Rightarrow (3), and (3) are immediate. (3) \Rightarrow (1).

Suppose that (3) holds and let $x, y \in \Sigma^*$ be such that $x \equiv y$. Take $a \in \Sigma$. Let $\alpha = axab^n$ and $\beta = ayab^n$ with $n \geq 2max\{|x|,|y|\} + 2$. Hence we have tha both α and β are primitive, and $\alpha \equiv \beta(P_A)$. Moreover, $\alpha\alpha \equiv \alpha\beta \equiv \beta\alpha(P_A)$.

(Case 1) $\alpha\beta \in Q$

By Lemma 9, $\beta \alpha \in Q$. Since $|\alpha \beta| = |\beta \alpha|$, $\alpha \beta = \beta \alpha$ by (3). By Lemma 10, we have that $\alpha = \beta$. Hence x = y.

(Case 2) $\alpha\beta \notin Q$.

- (2.1) $\alpha = \beta$. Immediately x = y.
- (2.2) $\alpha \neq \beta$. By Proposition 12 and Corollary 13, both $\alpha\alpha\alpha\beta$ and $\alpha\alpha\beta\alpha$ are in Q. Since $|\alpha\alpha\alpha\beta| = |\alpha\alpha\beta\alpha|$, we have that $\alpha\alpha\alpha\beta = \alpha\alpha\beta\alpha$ by (3). It follows that $\alpha\beta = \beta\alpha$. By Lemma 10, we see that $\alpha = \beta$. Thus x = y.

Proposition 16 Let $A \subseteq X^*$. Then the followings are equivalent.

- (1) A is a disjunctive language.
- (2) If $u, v \in X^*$, |u| = |v|, and $u \equiv v$ (P_A) , then u = v.
- (3) If $u, v \in Q$, |u| = |v|, and $u \equiv v$ (P_A) , then u = v.
- (4) If $u, v \in D(1)$, |u| = |v|, and $u \equiv v$ (P_A) , then u = v.

- **Proof.** (1) \Rightarrow (2), (2) \Rightarrow (3), and (3) \Rightarrow (4) are immediate.
- $[(3) \Rightarrow (1)]$ (See [6])
- [(4) \Rightarrow (2)] Suppose (4) holds, and let $x, y \in X^*$ be such that |x| = |y| and $x \equiv y$ (P_A). Take $b \in X$. Then $bxb \equiv byb(P_A)$. For n > |bxb| = |byb|, consider the word $\alpha = bxba^n$ and $\beta = byba^n$ with $a \neq b$. It is easy to see that $\alpha, \beta \in D(1)$. Since $|\alpha| = |\beta|$ and $\alpha \equiv \beta$ (P_A), we have that $\alpha = \beta$. Hence x = y. Thus (2) holds. \square

References

- [1] J. Berstel and D. Perrin, Theory of Codes, Academic Press, New York, 1985
- [2] M.Ito, H. Jürgensen, H. J. Shyr and G. Thierrin, Outfix and infix codes and related classes of languages, Journal of Comp. and Sys. Sci. vol 43, pp 484-508, 1991.
- [3] Hsu, S.C., Ito, M., Shyr, H.J.: Some properties of overlapping order and related languages. Soochow Journal of Mathematics 15, 29-45 (1989).
- [4] C.M.Reis and H.J.Shyr, Some properties of disjunctive languages on free monoid. Information and Comtrol, vol 37, pp 334-344, 1978.
- [5] H.J.Shyr, Disjunctive languages on a free monoid, Information and Comtrol, vol 34, pp 123-129, 1977.
- [6] H.J.Shyr, Free monoids and languages, Hon Min Book company, Taichung, Taiwan, 2001
- [7] Chen-Ming Fan, H.J.Shyr, S.S.Yu, d-words and d-languages, Acta Informatica, vol 35, pp 709-727, 1998.
- [8] Lyndon, R.C., Shützenberger, M.P.:The equation $a^M = b^N c^P$ in a free group. Michigan Math. J.9, pp289-298, 1962.