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Summary
In this paper, we give some resuts on d-primitive words, square-free words and disjunctive
languages. We show that for a word u € X7, every element of A(cp(u)) is d-primitive
iff it is square-free, and also we give a condition of disjunctiveness for a language, which
strengthens the result in [5].
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1 Introduction

A lot of studies have been done for primitive words and square-free words, which
concern the decomposition and combination of word. (See for example [6], [7].) On
the other hand, various research have been done aboutg properties of a disjunctive
langauge. [5], [4].

In this paper, we give some resuts on d-primitive words, square-free words and
disjunctive languages. In section 2, we show that for a word u € £t every element of
A(cp(u)) is d-primitive iff it is square-free. In section 3, we study some properties of
disjunctive languages. First we show that p™g™ is a primitive word for every n,m > 1
and primitive words p, g, under the condition that |p| = |g| and (m,n) # (1,1).
Next we give the rearranged proof for Proposition 4.17 [5] by using the above result.
Moreover we investigate a condition of disjunctiveness for a language and give the
result which strengthens this proposition.

2 Preliminaries

Let ¥ be an alphabet consisting of at least two letters. ¥* denotes the free moniod
generated by X, that is, the set of all finite words over X, including the empty word
" 1,and &+ = ¥* — 1. For w in =* |w| denotes the length of w. A language over ¥ is
aset L C X*.

For a word v € £F, if 4 = vw for some v,w € ¥*, then v(w) is called a
prefiz(suffiz) of u, denoted by v <, u (w <,).

For a language L C *, we define L) = {wi|w € L} for i > 1. A nonempty word
u is called a primitive word if u = f*, f € £+, n > 1 always implies that n = 1. Let
@ be the set of all primitive words over Q. For u = p', p € Q, i > 1, let A(u) = p,
and call p the primitive root of u. For a language L C =7, let A(L) = {\(u)|u € L}.
A nonempty word u is a non-overlapping word if u = vz = yv for z,y € 1 always
implies that v = 1. Let D(1) be the set of all non-overlapping words over £. A
words in D(1) is also called a d-primitive word. Let D = D(1)U[D(1)]®u[D(1)]®uU
. By definition, it is immediate that A(D) = D(1) and that QD = D(1). A word
x € XV is a cyclic square free word if u = v,w?v, for any vy, w, v, € £* always implies

w = 1. For a word u € £*, u = zy,z,y € L*, yz is called a cyclic permutation of
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the word u. Let c¢p(u) be the set of all cyclic permutations of the word u. That is,

cp(u) = {yz|u = zy,z,y € T*}.

A word u € T is A-cyclic-squre-free word if A(cp(u)) is square-free. A(u) is
called a cyclic-square-free word if a word u is A-cyclic-squre-free. Let SF be the
set of all square-free words and C'SF be the set of all cyclic-squre-free words, and
A — CSF be the set of all A-cyclic-squre-free words.

For a language L, the equivalence relation P, on ¥*, called the principal con-
gruence by L is defined as u = v (Py) if and only if (zuy € L <= zvy € L for any
z,y €X%).

If P, is the equality, then we call L a disjunctive language.

3 premitive words and cyclic-square-free words

In this section, we show that for a word u € E*, every element of A(cp(u)) is

d-primitive iff it is square-free.
Lemma 1 cp(cp(u)) = cp(u) for every u € L.

Proof. Since u € cp(u), it is obvious that cp(u) C cp(cp(u)). Suppose that
w € cp(ep(u)). We can write v = yz, and w € cp(zy) for z,y € X*. Let
U = 01...0ii41.-0n) T = Gig1...0n, Y = G1...05. SiNCe TY = G;41...0,a1...0;, We can
write w = a}c...aia,-+1...ana1...ak_1, with k£ < 4, or w = @g...An0G1...0n01.-GiQiy1... A1,

with ¢ < k. In either case, w € cp(u). O

Lemma 2 Foru e T+, i > 1, ep(v) = (cp(u))®.

Proof. Let 2y = u’ for z,y € &*. For yz € cp(u*), and u = ujus with u;, € Tt;up €
T*, we can write as YT = Upu...utt; = (Upt1)? € (cp(u))®. Thus cp(u) C (cp(u))®.
Conversely, suppose that u = vw for v € £*,w € T*. We have that (wv)’ =
w(vw)~1v € cp((vw)?) = cp(u?). Hence (cp(u))® C ep(u?). 0

Lemma 3 [8] Let u € £*. Then u ¢ D(1) if and only if there ezists a unique word
v € D(1) with |v| < (1/2)|u| such that u = vwv for some w € L*.
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Proposition 4 For u € &7, the following two statements are equivalent.
(1) ep(u) € D(1).
(2) ep(u) C SF.

Proof. [(1) = (2)] Suppose that cp(u) € SF. There exist z and y such that zy = u
and yz ¢ SF. We can write yz = zjw?z for 21,20 € I*, and w € £*. Hence
w2 zw € ¢p(yz) C ep(ep(u)) = ep(u) by Lemma 1. Thus cp(u) € D(1).

[(2) =(1)] Suppose that cp(u) € D(1). There exist z and y such that zy = u and
yz ¢ D(1). We can write yz = wvw for v € £*, and w € ¥* by Lemma 3. Hence
vw? € ep(yz) C ep(ep(u)) = cp(u). Thus cp(u) € SF. o

Lemma 5 For u € %, A(cp(u)) = ep(A(uw)).

Proof. Let u = f* for f € Q. By Lemma 2, it follows that A(cp(u)) = A(cp(f?)) =
M(ep(£))?). Since ep(f) C Q, we have that A((cp(f))®) = ep(f) = ep(M(u)). Thus

the result holds. O

Corollary 6 The following two statements are equivalent for u € L+,

(1) Mep(u)) € D(1).
(2) Mcp(u)) C SF.

Proof. Let u = f! for f € Q, and i > 1. By Lemma 5, it follows that A(ep(v)) =
cp(f). Since cp(f) € D(1) if and ounly if cp(f) € SF by Proposition 4, the result
holds. O

4 disjunctive languages

In this section, we study some properties of disjunctive languages. Next two Lemm-
nas are well-known results -

Lemma 7 [6] Letuv = f*, u,v € L¥, f € Q, i > 1. Then vu = g* for some g € Q.



Lemma 8 [8] Let u,v € &F. If uv = vu, then u and v are powers of a common

primitive words.

The following two lemmmas are immediate.

Lemma 9 If f € Q, then cp(f) C Q.
Lemma 10 If pg = qp for p,q € Q, thenp=gq.

The following is the key lemma for results in this section.
Lemma 11 Ify = zz' € Q with 2,2’ € &%, then (z2')*z € Q for k > 2.

Proof. Suppose that (zz')fz ¢ Q. Let (zz')kzr =p’ for p€ Q, and j > 2.
(Case 1)[s] > |p
Then z = p*u; = ugp® with |uy| = |up| < |p| for some s > 1, and p = wyu} = uhus
with |u]| = |uj|. Since (uu})*u; = ug(uhuy)®, we have that u) = u}, and u; = u,.
Hence z = p*u; = u1p®. Both p® and u; are in a* for some a € ¥. Thus p € at,
and 7’ € a*. This contradicts to that y € Q.
(Case 2) |z| < |p]
(21) p = (z2')w = w'(2'z)® for s > 1, and some w, w' € T with |w] = ||,
and w <p 2, W' <, z. Let z = wz = Zw'. Since (zz')fz = p!, (wzz')*(wz) =
((wzz')*w)?. 1t follows that (z'w)z = z(z'w). This implies that both z'w and z are
in a* for some a € . Thus both z and z’ are also in a*. Hence y € a? for t > 2.
This is a contradiction.
(2.2) p = (zz')’zu = v'z(2'z)® for s > 0, and u, v’ € T+ with |u| = |«|, and u <, 2,
W <,z Let ' = uv =o',
(221)s>1

Since (zz')ez = p?, (zuv)*z = ((zuv)*zu)’, uvr = vru. we have that y is in a?
for ¢ > 2. This is a contradiction.
(2.2.2) s =0

If v <, z, then we can write £ = vv, for some v; € £*. Since (zz')fz = p’,
(zuv)*z = (zu)’. Since k > 2, vzu = zuv. Thus p = zu,v € a* for some a € X.
we have that p € a’ for some a € ¥ and ¢ > 2. This is a contradiction. If z <, v,
then we can write 2’ = up‘w, for ¢t > 0, and p = ww’ w' € T*. Since (zz')*z = p’,
w(p*tlw)k 1z = p! 71, that is, w((ww')*1)* 1z = (ww')~*"1. By k > 2, we have
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that j > ¢+ 3, that is, j —¢t —1 > 2. Thus www' = ww'w. This implies that both w
and w' is in o™ for some a € . Hence p ¢ Q. This is a contradiction. if z = v, then

we have that zu = uz = 2’ since (zuz)*z = (zu)? for k > 2. Thusy=zz' ¢ Q. O

Remark 1 Unfortunately, the previous Lemhza does not hold for k = 1. For exam-
ple, for £ = {a,b}, let z = abba, =’ = bbaabb. Then zz'c = (abbabba)?® ¢ Q.

Proposition 12 For p,q € Q with p # ¢ and |p| = |q|, pg" € Q and p"q € Q for
every n > 2.

Proof. It suffices to show that p¢" € Q. Let p,qg € @ and p # q. Suppose that
there exists y € @ such that pg" = y" for some r > 2. If |y| = |p|, that is, p = v,
then immediately y = ¢. This contradicts that p # q.

(Case 1) |y| < |p|

Let p = y°z for some s > 1 and z € £+ with z <, y. Thus z <,, and z <, p.
Let y = 2z’ for 2’ € £*. By pg" = ¢y", n > 2, and |p| = |g|, we have that
¢" = (z'z) "'z’ withr > (n+1)s+ 1. Sincer —s—1>ns > 2 and 2’z € Q, it
follows that (z'z)"*~'z’ is in Q by the Lemma 11. This is a contradiction.

(Case 2) [p| < |y]

If y = pg® for s > 0, then p € g*. This contradicts to that p,q € Q and p # q.
Thus y = pg'z for some ¢t > 0 and z € £+ with z <, ¢. Let ¢ = zw for € T+. If
r = 2, then we have that pg‘z = wg" ! and |z| = |w| = (1/2)|q|. It follows that

= zw = wz. This implies that ¢ ¢ Q. Thus r > 3. Let z = ¢*z. Since pg" = 3,
¢" = (2p)""1z with 7 — 1 > 2. Since y = pz € @, and n > 2, this conradicts to the
Lemma 11. a

Corollary 13 For p,q € Q with p # q and |p| = |g|, p"¢™ € Q for everyn,m > 1
with (n,m) # (1,1).

Proof. Let p,q € Q with p # g and |p| = |q|. If n > 2 and m > 2, then p"¢™ € Q
in either |p| = |q| or not, by [5]. For other cases, the result holds by Proposition 10. O
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Remark 2 As mentioned in [5], the previous corollary does not hold for n = 1,
m > 2 orn > 2, m =1 without the condition |p| = |q|. On the other hand, for
n=m =1, let p=aba and g = bab. Then pq = (ab)? ¢ Q.

Corollary 14 Let p,q € Q with p # q and |p| = |g|. Then pgp™ € Q and p"qp € Q
for every n > 2.

Proof. Since n +1 > 2, gp"*! € Q and p"*'q € Q by Proposition 12. By Lemma
9, pgp™ € cp(gp™*') C Q and pgp € cp(p™tg) C Q. m

Proposition 15 [6] Let A C X*. Then the folllowings are equivalent.
(1) A is a disjunctive language.

(2) If u,v € X*, |u| = |v|, and u = v (Pa), then u =v.

(3) If u,v € Q, |u| = |v|, and u = v (P,), then u = v.

Proof. (1) = (2), (2) = (3), and (3) are immediate. (3) = (1). _

Suppose that (3) holds and let z, y € £* be such that z = y. Take a € X. Let
a = azab™ and B = ayab™ with n > 2maz{|z|, |y|} + 2. Hence we have tha both «
and S are primitive, and a = S(P4). Moreover, aa = aff = fa(Py).

(Case 1) af € Q

By Lemma 9, S € Q. Since |af| = |Bal, af = Ba by (3). By Lemma 10, we have
that o = 4. Hence z = y.

(Case 2) aff ¢ Q.

(2.1) @ = . Immediately z = y.

(2.2) a # B. By Proposition 12 and Corollary 13, both aaaf and aafBa are in Q.
Since |acaf| = |aaBfal, we have that aaaB = aafa by (3). It follows that a8 =
Ba. By Lemma 10, we see that o = 8. Thus z = y. a

Proposition 16 Let A C X*. Then the folllowings are equivalent.
(1) A is a disjunctive language.

(2) If u,v € X*, |u| = |v], and u = v (Pa), then u =v.

(3) If u,v € Q, [u| = [v|, and u = v (Py), then u = v.

(4) If u,v € D(1), |u| = |v|, and u = v (Pa), then u=v.
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Proof. (1) = (2), (2) = (3), and (3) = (4) are immediate.

[(3) = (1)] (See [6])

[((4) = (2)] Suppose (4) holds, and let z,y € X* be such that |z| = |y| and
z =y (P4). Take b € X. Then bzb = byb(P,4). For n > |bzb| = |byb|, consider
the word o = bzba™ and B = byba™ with a # b. It is easy to see that a, § € D(1).
Since |a| = |8| and @ = 8 (P4), we have that o = 3. Hence z = y. Thus (2) holds. O
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