Some Remarks on Generalized Inverse *-Semigroups

島根大学総合理工学部 今岡 輝男 (Teruo Imaoka) 飯貝 高史 (Takashi Iigai) Department of Mathematics, Shimane University Matsue, Shimane 690-8504, Japan

1 Preliminaries

A semigroup S with a unary operation $*: S \to S$ is called a regular *-semigroup if it satisfies the conditions:

- $(1) \ (a^*)^* = a,$
- (2) $(ab)^* = b^*a^*$
- $(3) \ aa^*a = a$

for any $a, b \in S$.

Let S be a regular *-semigroup. An idempotent e in S is called a projection if $e^* = e$. For a subset A of S, denote the set of projections of A by P(A).

A regular *-semigroup S is called a generalized inverse *-semigroup if E(S), the set of idempotents of S, satisfies the identity:

$$x_1 x_2 x_3 x_4 = x_1 x_3 x_2 x_4 \tag{1.1}$$

Such a semigroup is orthodox in the usual sense that $E(S)E(S) \subseteq E(S)$.

Result 1.1 ([12]) A regular *-semigroup S is a generalized inverse *-semigroup if, and only if. P(S) satisfies the identity (1.1).

Let S be a regular *-semigroup. For $a, b \in S$, define a relation \leq on S by

$$a < b \Leftrightarrow a = eb = bf$$
 for some $e, f \in P(S)$.

Result 1.2 ([5]) Let a and b be elements of a regular *-semigroup S. Then the following are equivalent:

- (i) $a \leq b$.
- (ii) $aa^* = ba^*$ and $a^*a = b^*a$.
- (iii) $aa^* = ab^*$ and $a^*a = a^*b$.
- (iv) $a = aa^*b = ba^*a$.

Result 1.3 ([4]) Let S be a regular *-semigroup. Then

- (i) $E(S) = P(S)^2$. In fact, for any $e \in E(S)$, there exist $f, g \in P(S)$ such that $f \mathcal{R} e \mathcal{L} g$ and e = fg.
- (ii) For any $a \in S$ and $e \in P(S)$, $a^*ea \in P(S)$.
- (iii) For $e, f \in P(S)$, $ef \in P(S)$ if, and only if, ef = fe.
- (iv) Each L-class and each R-class in S contains one and only one projection.

Result 1.4 ([8]) Let S be an orthodox semigroup. Then

$$\sigma = \{(a, b) \in S \times S : eae = ebe \text{ for some } e \in E(S)\}$$

is the minimum group congruence on S.

2 E-unitary generalized inverse *-semigroups

PG^* -semigroups

Let (G, X, Y) be a McAlister triple, and let $\{P_{\alpha} : \alpha \in Y\}$ be a family of disjoint non-empty sets indexed by the elements of Y. Put $P = \bigcup_{\alpha \in Y} P_{\alpha}$. For each pair α, β of elements of Y where $\alpha \geq \beta$, let $\rho_{\alpha,\beta} : P_{\alpha} \to P_{\beta}$ be a mapping such that the following two axioms hold:

(PG*1) $\rho_{\alpha,\alpha}$ is the identity mapping on P_{α} .

(PG*2) If $\alpha \geq \beta \geq \gamma$ then $\rho_{\alpha,\beta}\rho_{\beta,\gamma} = \rho_{\alpha,\gamma}$.

We call such a quintet $(G, X, Y, P, \{\rho_{\alpha,\beta}\})$ a PG^* -quintet.

Proposition 2.1 Let $(G, X, Y, P, \{\rho_{\alpha,\beta}\})$ be a PG^* -quintet. Then

$$S = \{ (\alpha, g, x_1, x_2) \in Y \times G \times P \times P : g^{-1}\alpha \in Y, x_1 \in P_\alpha, x_2 \in P_{g^{-1}\alpha} \},$$

with multiplication and a unary operation given by

$$(\alpha, g, x_1, x_2)(\beta, h, y_1, y_2) = (\alpha \wedge g\beta, gh, x_1 \rho_{\alpha, \alpha \wedge g\beta}, y_2 \rho_{h^{-1}\beta, (gh)^{-1}(\alpha \wedge g\beta)}),$$
$$(\alpha, g, x_1, x_2)^* = (g^{-1}\alpha, g^{-1}, x_2, x_1)$$

is an E-unirtary generalized inverse *-semigroup.

We say that S is a PG^* -semigroup and denoted by $PG^*(G, X, Y, P, \{\rho_{\alpha,\beta}\})$, or simply by $PG^*(G, X, Y, P)$. We now characterise the *Green's relations* \mathcal{L}, \mathcal{R} , the minimum group conguence σ and the natural order \leq on $PG^*(G, X, Y, P, \{\rho_{\alpha,\beta}\})$.

Proposition 2.2 Let $(\alpha, g, x_1, x_2), (\beta, h, y_1, y_2)$ be elements of $S = PG^*(G, X, Y, P, \{\rho_{\alpha, \beta}\})$.

- (i) $(\alpha, g, x_1, x_2) \leq (\beta, h, y_1, y_2)$ if, and only if, $\alpha \leq \beta, g = h, y_1 \rho_{\beta, \alpha} = x_1, y_2 \rho_{h^{-1}\beta, g^{-1}\alpha} = x_2$.
- (ii) $(\alpha, g, x_1, x_2) \sigma(\beta, h, y_1, y_2)$ if, and only if, g = h.
- (iii) $(\alpha, g, x_1, x_2) \mathcal{L}(\beta, h, y_1, y_2)$ if, and only if, $g^{-1}\alpha = h^{-1}\beta$ and $x_2 = y_2$.
- (iv) $(\alpha, g, x_1, x_2) \mathcal{R}(\beta, h, y_1, y_2)$ if, and only if, $\alpha = \beta$ and $x_1 = y_1$.

Now we have the following theorem.

Theorem 2.3 The semigroup $PG^*(G, X, Y, P, \{\rho_{\alpha,\beta}\})$ is an E-unitary generalized inverse *-semigroup and maximum group homomorphic image isomorphic to G.

Construction of E-unitary generalized inverse *-semigroups

Let S be an E-unitary generalized inverse *-semigroup. Put $G = S/\sigma$, and denoted its identity by 1. Since E(S) is a minimum group congruence class of S, E(S) is the identity of G. Let $E(S) \sim \sum \{E_{\alpha} : \alpha \in Y\}$ be the structure decomposition of E(S), that is E(S) is a semilattice Y of rectangular bands E_{α} ($\alpha \in Y$). Put $\mathcal{E} = \{E_{\alpha} : \alpha \in Y\}$. We shall construct PG^* -quintet.

First, we define a relation ρ on $\mathscr{E} \times G$ by

$$(E_{\alpha}, g)\rho(E_{\beta}, h) \Leftrightarrow xx^* \in E_{\alpha} \text{ and } x^*x \in E_{\beta} \text{ for some } x \in g^{-1}h.$$

Lemma 2.4 The relation ρ is an equivalence relation on $\mathscr{E} \times G$.

We shall write \mathscr{X} for $(\mathscr{E} \times G)/\rho$, and denote the ρ -class of $\mathscr{E} \times G$ which contains (E_{α}, g) by $(E_{\alpha}, g)\rho$. The following lemmas are immediate.

Lemma 2.5 For any element $x \in S$, $xx^* \in E_{\alpha}$, $x^*x \in E_{\beta}$ for some $\alpha, \beta \in Y$. Then

$$(E_{\alpha},1)\rho(E_{\beta},x\sigma)$$
 and $(E_{\beta},1)\rho(E_{\alpha},(x\sigma)^{-1})$.

Lemma 2.6 Let $\alpha, \beta \in Y$ and $g \in G$ such that $(E_{\alpha}, g)\rho(E_{\beta}, g)$. Then $\alpha = \beta$.

Proposition 2.7 Let $E_{\alpha}, E_{\beta}, E_{\gamma} \in \mathscr{E}$ and $g, h \in G$. If $\alpha \leq \beta$ and $(E_{\beta}, g)\rho(E_{\gamma}, h)$, then there exists $\delta \in Y$ such that $\delta \leq \gamma, (E_{\alpha}, g)\rho(E_{\delta}, h)$.

We define a relation \leq on \mathscr{X} as follows:

$$A \leq B \Leftrightarrow \alpha \leq \beta, (E_{\alpha}, g) \in A, (E_{\beta}, g) \in B$$

for some $\alpha, \beta \in Y$ and $g \in G$. The proof of the following is straightforward from Proposition 2.7 and the definition of \leq .

Corollary 2.8 Let $A \leq B$, where $A, B \in \mathcal{X}$. If $(E_{\gamma}, h) \in B$, then there exists $\delta \in Y$ such that $\delta \leq \gamma$ and $(E_{\delta}, h) \in A$.

Lemma 2.9 The relation \leq is a partial order on \mathcal{X} .

Let

$$\mathscr{Y} = \{(E_{\alpha}, 1)\rho : \alpha \in Y\}.$$

We define an action of G on \mathscr{X} by order automorphisms. Suppose first that $(E_{\alpha}, g)\rho(E_{\beta}, h)$. This means that there exists $x \in g^{-1}h$ such that $xx^* \in E_{\alpha}, x^*x \in E_{\beta}$. Let $k \in G$. Then $x \in (kg)^{-1}(kh)$ and so $(E_{\alpha}, kg)\rho = (E_{\beta}, kh)\rho$. We can therefore define $\circ : G \times \mathscr{X} \to \mathscr{X}$ by

$$k \circ (E_{\alpha}, g)\rho = (E_{\alpha}, kg)\rho.$$

We shall show that the triple $(G, \mathcal{X}, \mathcal{Y})$ form a McAlister triple.

Lemma 2.10 The mapping $\varphi: Y \to \mathscr{Y}$ defined by $\alpha \varphi = (E_{\alpha}, 1)\rho$ is an order isomorphism.

Lemma 2.11 The mapping \circ is an action of G on \mathcal{X} , on the left by order automorphisms.

Lemma 2.12 With the above notation:

- (i) \mathscr{Y} is an order ideal of \mathscr{X} .
- (ii) $G \circ \mathscr{Y} = \mathscr{X}$.
- (iii) $g \circ \mathcal{Y} \cap \mathcal{Y} \neq \square$ for all $g \in G$.

By the lemma above, we have that the triple $(G, \mathcal{X}, \mathcal{Y})$ is a McAlister triple. We shall construct PG^* -quintet by making use of McAlister triple $(G, \mathcal{X}, \mathcal{Y})$ and form the PG^* -semigroup $PG^*(G, \mathcal{F}, \mathcal{Y}, P)$. Put $P_{\alpha} = P(E_{\alpha})$ for each $\alpha \in Y$ and let $P = \bigcup_{\alpha \in Y} P_{\alpha}$. For each pair α, β of elements of Y where $\alpha \geq \beta$, define the mapping

$$\rho_{\alpha,\beta}: P_{\alpha} \to P_{\beta} \text{ by } e\rho_{\alpha,\beta} = efe \text{ where } f \in P_{\beta}.$$

Lemma 2.13 With the definition above. $\rho_{\alpha,\beta}$ is a mapping satisfying the conditions (PG*1) and (PG*2).

Thus $PG^*(G, \mathcal{X}, \mathcal{Y}, P, \{\rho_{\alpha,\beta}\})$, constructed above, forms a PG^* -semigroup.

Lemma 2.14 For any $xx^* \in P_{\alpha}$ and $e \in P_{\beta}$, $xex^* \in P_{\alpha \wedge (x\sigma)\beta}$.

Lemma 2.15 The mapping $\theta: S \to PG^*(G, \mathcal{X}, \mathcal{Y}, P, \{\rho_{\alpha,\beta}\})$ defined by

$$x\theta = ((E_{\alpha}, 1)\rho, x\sigma, xx^*, x^*x),$$

where $xx^* \in E_{\alpha}$, is a *-isomorphism.

Now we have the structure of generalized inverse *-semigroups.

Proposition 2.16 A generalized inverse *-semigroup is E-unitary if, and only if, it is *-isomorphic to some PG^* -semigroup.

3 The compatibility relations

Let S be a regular *-semigroup. For all $s, t \in S$, the left compatibility relation is defined by

$$s \sim_l t \Leftrightarrow st^* \in E(S)$$
,

the right compatibility relation is defined by

$$s \sim_r t \Leftrightarrow s^*t \in E(S)$$
,

and the compatibility relation, the intersection of the above two relations, is defined by

$$s \sim t \Leftrightarrow st^*, s^*t \in E(S).$$

It is clear that all three relations are reflexive and symmetric, but none of them need be transitive (see Theorem 3.2 for a characterisation of the generalized inverse *-semigroups having a transitive compatility relation). The next lemma describe some of the basic property of these relations.

Lemma 3.1 Let S be a generalized inverse *-semigroup and ρ be any one of the three relations \sim_l , \sim_r , and \sim . Then the following two properties hold.

- (i) $s \rho t$ and $u \rho v$ imply that $su \rho tv$.
- (ii) $s \le t, u \le v$ and $t \rho v$ imply that $s \rho u$.

Theorem 3.2 Let S be a generalized inverse *-semigroup. Then the compatibility relation is transitive if, and only if, S is E-unitary.

Proof Suppose that \sim is transitive. Let $es \in E(S)$, where e is an idempotent. Then $s \sim es$ since elements $s(es)^*$ and s^*es are idempotents. Clearly $es \sim s^*s$, and so, by our assumption that the compatibility relation is transitive, we have that $s \sim s^*s$. But $s(s^*s)^* = s$, so that s is an idempotent.

Conversely, suppose that S is E-unitary and $s \sim t$ and $t \sim u$. Clearly $(s^*t)(t^*u)$ is an idempotent and

$$(s^*t)(t^*u) = s^*u(t^*u)^*(t^*u)$$

But S is E-unitary and so s^*u is an idempotent. Similarly, su^* is an idempotent. Hence $s \sim u$.

Proposition 3.3 Let S be a regular *-semigroup. Then the following are equivalent:

- (i) The left and right compatibility relations are equal.
- (ii) For all $s, t \in S$, we have that $st \in E(S)$ if, and only if, $ts \in E(S)$.

A congruence ρ on an orthodox semigroup S is said to be idempotent pure if $a \in S, e \in E(S)$ and $(a, e) \in \rho$ then a is an idempotent.

Proposition 3.4 Let S be an E-unitary regular *-semigroup. Then a congruence ρ is idempotent pure if, and only if, $\rho \subseteq \sim$.

Proof Let ρ be idempotent pure and let $(a,b) \in \rho$. Then $(ab^*,bb^*) \in \rho$. But ρ is idempotent pure and bb^* is an idempotent. Thus ab^* is an idempotent. Similarly, a^*b is an idempotent. Thus $a \sim b$.

Conversely, let ρ be a congruence contained in the compatibility relation. Let $(a, e) \in \rho$, where e is an idempotent. Then $a \sim e$. Thus $ae^* \in E(S)$. But e^* is an idempotent and so a is an idempotent, since S is E-unitary.

4 Enlargements

We proved in Section 2, that E-unitary generalized inverse *-semigroups are essentially isomorphic to the generalized inverse *-subsemigroups of PG^* -semigroups. The point is that if X is a meet semi-lattice, we can form the semigroup $PG^*(G, X, X, P, \{\rho_{\alpha,\beta}\})$, which contains $PG^*(G, X, Y, P, \{\rho_{\alpha,\beta}\})$ as a generalized inverse *-subsemigoup. In the following proposition, we shall describe the abstract relationship between $PG^*(G, X, Y, P, \{\rho_{\alpha,\beta}\})$ and $PG^*(G, X, X, P, \{\rho_{\alpha,\beta}\})$.

Proposition 4.1 Let $(G, X, Y, P, \{\rho_{\alpha,\beta}\})$ be a PG^* -quintet, where X is a meet semilattice.

- (i) The idempotents of $PG^*(G, X, Y, P)$ form an order ideal of $PG^*(G, X, X, P)$.
- (ii) If $(\alpha, g, x_1, x_2) \in PG^*(G, X, X, P)$ is such that

$$(\alpha, g, x_1, x_2)^*(\alpha, g, x_1, x_2), (\alpha, g, x_1, x_2)(\alpha, g, x_1, x_2)^* \in PG^*(G, X, Y, P)$$

then $(\alpha, g, x_1, x_2) \in PG^*(G, X, Y, P)$.

(iii) For each projection $(\alpha, 1, x, x) \in PG^*(G, X, X, P)$ there exists a projection $(\beta, 1, y, y) \in PG^*(G, X, Y, P)$ such that $(\alpha, 1, x, x) \mathcal{D}(\beta, 1, y, y)$.

On the basis of the above proposition, we make the following definition. Let S be a generalized inverse *-subsemigroup of a generalized inverse *-semigroup T. We say that T is an *enlargement* of S if the following three axioms hold:

- (E1) E(S) is an order ideal of E(T).
- (E2) If $t \in T$ and t^*t , $tt^* \in S$ then $t \in S$.
- (E3) For every projection $e \in T$ there exists a projection $f \in S$ such that $e \mathcal{D} f$.

The following is easy to prove.

Lemma 4.2 Let S be a generalized inverse *-subsemigroup of T. Then axiom (E1) holds if, and only if, S is an order ideal of T.

We may find a PG^* -representation of an E-unitary generalized inverse *-semigroup.

Theorem 4.3 Let G be a group and X a semilattice, and let S be a generalized inverse *-subsemigroup of the generalized inverse *-semigroup $PG^*(G, X, X, P, \{\rho_{\alpha,\beta}\})$. Suppose that $PG^*(G, X, X, P, \{\rho_{\alpha,\beta}\})$ is an enlargement of S. Let

$$Y = \{\alpha \in X : (\alpha, 1, x, y) \in E(S)\} \text{ and } Q = \{x \in P : (\alpha, 1, x, y) \in E(S)\}.$$

Then $(G, X, Y, Q, \{\rho_{\alpha,\beta}\})$ is a PG^* -quintet and $S = PG^*(G, X, Y, Q, \{\rho_{\alpha,\beta}\})$.

5 A Structure Theorem

We can now prove the uniqueness of the PG^* -representation of an E-unitary generalized inverse *-semigroup.

Theorem 5.1 Let $(G, X, Y, P, \{\rho_{\alpha,\beta}\})$ and $(G', X', Y', P', \{\rho'_{\alpha',\beta'}\})$ be two PG^* -quintets. Let $\theta: G \to G'$ be a group isomorphism and let $\psi: X \to X'$ be an order isomorphism such that $\psi|_Y$ is an isomorphism from the semilattice Y onto Y'; now let $\xi: P \to P'$ be a bijection. Suppose also that, for all g in G, α in X and x in P_{β} .

$$(g\alpha)\psi = (g\theta)(\alpha\psi),$$
$$(x\rho_{\beta,\gamma})\xi = (x\xi)\rho_{\beta\psi,\gamma\psi},$$

where $\beta, \gamma \in Y$ such that $\beta \geq \gamma$. Then the mapping $\phi: PG^*(G, X, Y, P) \to PG^*(G', X', Y', P')$ defined by

$$(\alpha, g, x, y)\phi = (\alpha\psi, g\theta, x\xi, y\xi)$$

is a *-isomorphism. Conversely, every *-isomorphism from $PG^*(G, X, Y, P)$ onto $PG^*(G', X', Y', P')$ is of this type.

6 The minimum group congruence

In this subsection, we shall first give an alternative characterization of the minimum group congruence on a generalized inverse *-semigroup.

Theorem 6.1 If S is a generalized inverse *-semigroup, then the relation

$$\sigma = \{(a,b) \in S \times S : eaf = ebf \ \text{ for some } e,f \in P(S)\}$$

is the minimum group congruence on S.

Idempotent pure congruences, the minimum group congruence and E-unitary generalized inverse *-semigroups are all linked by the following result.

Theorem 6.2 Let S be a generalized inverse *-semigroup. Then the following conditions are equivalent:

- (i) S is E-unitary.
- (ii) $\sim = \sigma$.
- (iii) σ is idempotent pure.
- (iv) $\sigma(e) = E(S)$ for any idempotent e.

Proof (i) \Leftrightarrow (iv). Immediate.

(i) \Rightarrow (ii). Let $a \sim b$. Then $ab^*, a^*b \in E(S)$. Thus

$$(ab^*)(ab^*)^*a(a^*b)(a^*b)^* = ab^*ba^*aa^*bb^*a$$

$$= ab^*ba^*bb^*a$$

$$= ab^*(ba^*)(ba^*)bb^*a$$

$$= (ab^*)(ab^*)^*b(a^*b)(a^*b)^*.$$

Hence $a \sigma b$.

Conversely, suppose $a \sigma b$. Then eaf = ebf for some $e, f \in P(S)$ by Theorem 6.1. Thus we have

$$(ebf)(ebf)^* = eafb^*bb^*e = (eab^*)bfb^*e \in E(S).$$

But bfb^*e is an idempotent. Thus, by (i), $eab^* \in E(S)$. By using (i) again, we obtain $ab^* \in E(S)$ since $e \in E(S)$. Similarly, a^*b is an idempotent.

- (ii) \Rightarrow (iii). Let $(a, e) \in \sigma$, where e is an idempotent. Clearly, $e \sim a^*a$. But $\sim = \sigma$ and so $a \sim a^*a$. Hence a is an idempotent.
- (iii) \Rightarrow (i). Let $a \in S$ and $e \in E(S)$ such that $ea \in E(S)$. Then eae = e(eae)e. Thus, by Result 1.4, $(a, eae) \in \sigma$. But $eae = (ea)e \in E(S)$ and so a is an idempotent since σ is idempotent pure.

References

- [1] T. E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bulletin of the Australian Mathematical Society 1 (1969), 195-208.
- [2] P. M. Higgins, Techniques of semigroup theory, Oxford University Press, New York, 1992.
- [3] J. M. Howie, Fundamentals of Semigroup Theory, Academic Press, London, 1995.
- [4] T. Imaoka, On fundamental regular *-semigroups, Memoirs of the Faculty of Science. Shimane University, 14 (1980), 19-23.
- [5] T. Imaoka, Prehomomorphisms on regular *-semigroups, Memoirs of the Faculty of Science. Shimane University, 15 (1981), 23-27.
- [6] T. Imaoka, H. Yokoyama and I. Inata, Some remarks on E-unitary regular *-semigroups, Algebra Colloquium (2) 3 (1996), 117-124.
- [7] M. V. Lawson, Inverse semigroups The theory of partial symmetries -, World Scientific, Singapore, 1998.
- [8] J. C. Meakin, Congruences on orthodox semigroups II, Journal of Australian Mathematical Society 11 (1972), 259-266.
- [9] M. Petrich, Inverse semigroups, John Wiley and Sons, New York, 1984.
- [10] M. B. Szendrei, A generalization of McAlister's P-theorem for E-unitary regular semigroups, Acta Scientiarum Mathematicarum (Szeged) 57 (1987). 229-249.
- [11] M. B. Szendrei, E-unitary regular semigroups, Proceedings of the Royal Society of Edinburgh 106A (1987), 89-102.
- [12] M. Yamada, Regular semigroups whose idempotents satisfy permutation identities, *Pacific Journal of Mathematics* 21 (1967), 371-392.