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1 Preliminaries

A semigroup S with a unary operation x : § — § is called a reqular x-semigroup if it satisfies the
conditions: -

(1) (a*)* =a,

(2) (ab)* =b*a*

(3) aa*a=a

for any a.b € S. :

Let S be a regular *-semigroup. An idempotent e in S is called a projection if e* = e. For a subset
A of S, denote the set of projections of A by P(A).

A regular x-semigroup S is called a generulized inverse x-semigroup if E(S), the set of idempotents
of S, satisfies the identity:

T1LITLIT4 = T1T3TL2T4 (1.1)

Such a semigroup is orthodox in the usual sense that E(S)E(S) C E (S).

Result 1.1 ([12]) A regular x-semigroup S is a generalized inverse x-semigroup if, and only if. P(S)
satisfies the identity (1.1).

Let S be a regular *-semigroup. For a,b € S, define a relation < on S by
a<b&a=ceh=>bf for some e, f € P(S).

Result 1.2 ([5]) Leta andb be clements of a regular x-semigroup S. Then the following are equivalent:
(i) a <b.

(i) aa* = ba* and a*a = b*a.
(iii) aa® = ab* and a*a = a*b.
(iv) a = aa*b = ba*a.
Result 1.3 ([4]) Let S be o regular x-semigroup. Then
(i) E(S) = P(S)2. In fact. for any e € E(S). there ezist f,g € P(S) such that fReLg and e = fg.

(ii) For any a € S and e € P(S), a*ea € P(S).
(iii) Fore.f € P(S)., ef € P(S) if. and only if. cf = fe.
(iv) Each .#-class and each R-class in S contains one and only one projection.
Result 1.4 ([8]) Let S be an orthodoz semigroup. Then |
o ={(a,b) € § x S : eae = ebe for some ¢ € E(S)}

8 the minimum group congruence on S.
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2 FE-unitary generalized inverse *-semigroups

PG™-semigroups

Let (G.X.,Y) be a McAlister triple, and let {Pn : @ € Y} be a family of disjoint non-empty sets

indexed by the elements of Y. Put P = Uaey Pa- For each pair a.f of elements of Y where a0 > f3,
let pa g : Po = Py be a mapping such that the following two axioms hold:

(PG*1) pa.q is the identity mapping on Py.
(PG*2) If @ > B > 7 then pa o3+ = Pay-
We call such a quintet (G, X.Y, P,{pa,s3}) a PG™-quintet.
Proposition 2.1 Let (G, X,Y,P.{pa}) be a PG*-quintet. Then
S={(x.9.21.72) EY XGXPXP: g laeY,x) € Py,as € P14}
with multiplication and o unary operation given by |

(@, g,21.22)(B. b, y1,42) = (@ A gB. gh, B1pa,angs Y2Ph=13,(gh) 1 (ahgB) )-
(. g.z1.22)" = (97"

a, g7t xo,21)
is an E-unirtary generalized inverse x-semigroup.

We say that S is a PG*-semigroup and denoted by PG*(G, X, Y, P, {p, 3}), or simply by PG*(G. X, Y. P).
We now characterise the Green's relations £, %, the minimum group conguence ¢ and the natural
order < on PG*(G,X.Y, P, {pas})-

Proposition 2.2 Let («,g,z1,%2), (,B,h,yi,yg) be elements of S = PG"‘(G,‘X.‘Y._ P {pa;}).
(i) (@, 9.21,22) < (B, h,y1,92) if. and only of, « < B,g = h.ppa = T1, Y2Ph-134-1a = T2.
(i) (@, g, %1, 22) 0 (B, h,y1,y2) if. and only if, g = h.

(iii) (@, g,21,22).Z (B.h.y1,y2) if. and only if, g la= W18 and z9 = ya.

(iv) (o, g, w1, 22) 2 (B, h.yr.y2) of. and only if. = f and x1 = y1.
Now we have the following theorem.

Theorem 2.3 The semigroup PG*(G.X,Y, P,{pas}) is an E-unitary generalized inverse x-semigroup
and mazimum group homomorphic image isomorphic to G.

Construction of E-unitary generalized inverse *-semigroups

Let S be an E-unitary generalized inverse *-semigroup. Put G = S/o. and denoted its identity by 1.
Since E(S) is a minimum group congruence class of . E(S) is the identity of G. Let E(S) ~ S AE«:
a € Y} be the structure decomposition of E(S). that is E(8) is a semilattice Y of rectangular bands
E,(a€Y). Put & = {E,: @ € Y}. We shall construct PG*-quintet.

First, we define a relation p on § X G by

(Ea,g)p(Ep, h) & x2™ € Eq and 2"z € Eg for some z € g th.
Lemma 2.4 The relation p is an equivalence relation on & X G.

We shall write 2 for (€ x G)/p, and denote the p-class of & x G which contains (Eq. g) by (Eq.g)p.
The following leminas are immediate.
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Lemma 2.5 For any element © € S, 21* € Eq.2*2 € Eg for some o, €Y. Then
(Ea.1)p(Eg,x0) and (E3.1)p(Eq. (za)71).
Lemma 2.6 Let o, €Y and g € G such that (E,.g)p(Ez,g). Then a = .

Proposition 2.7 Let E,.E3.E, € & and g,h € G. If a < f8 and (Eg.g)p(E,. h). then there exists
5 €Y such that § < v, (Eq.g9)p(Es, h).

We define a relation < on 2 as follows:
A<B&a<pB (Bag)€A(Bpg) €B

for some «, 8 € Y and g € G. The proof of the following is straightforward from Proposition 2.7 and
the definition of <.

Corollary 2.8 Let A < B, where A,B € . If (E,. h) € B. then there erists § € Y such thut § <
and (Es,h) € A,

Lemma 2.9 The relation < is a partial order on 2.
Let
¥ ={(Es.l)p: €Y}

We define an action of G on 2 by order automorphisms. Suppose first that (E,,g)p(Ey.h). This
means that there exists z € ¢g~1h such that z2* € E,,2*v € E3. Let k € G. Then z € (kg) (kD)
and so (E,. kg)p = (Ej. kh)p. We can therefore define o : G x 2" = 2 by

ko (Ea,9)p = (Ea.kg)p.

We shall show that the triple (G, 27, %) form a McAlister triple.
Lemma 2.10 The mapping ¢ : Y = % defined by ap = (Eq. 1)p is an order isomorphism.
Lemma 2.11 The mapping o is an action of G on ¥, on the left by order automorphisms.
Lemma 2.12 With the above notation:

(i) % 1is an order ideal of X .

(i) Go¥ = &

(iii) go ¥ N& # 0O forall g€ G.

By the lemma above, we have that the triple (G. .27, %) is a McAlister triple. We shall construct
PG*-quintet by making use of McAlister triple (G, #°. #) and form the PG*-semigroup PG™(G. 2. ¥ . P).
Put P, = P(E,) for each « € Y and let P = | aey Pa. For each pair a.f of elements of Y where
« 2 3, define the mapping

Pap: Pa = P3 by epop =cfe where f € Py.

Lemma 2.13 With the definition above. pop is a mapping satifying the conditions (PG*1) and
(PG*2).

Thus PG*(G, 2", %, P, {pa;}). constructed above, forms a PG*-semigroup.
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Lemma 2.14 For any z2* € Py and e € Py, rex”™ € Pop(ro)p-

Lemma 2.15 The mapping 0 : S - PG*(G, 2, %, P, {pas}) defined by
20 = ((Ey, 1)p, z0, 22%, 2" 2),
where z2* € Ey. 1s a x-isomorphism.

Now we have the structure of generalized inverse *-semigroups.

Proposition 2.16 A generalized inverse -semigroup is E-unitary if, and only if. it is *-isomorphic
to some PG*-semigroup.

3 The compatibility relations
Let S be a regular *-semigroup. For all s,t € S, the left compatibility relation is defined by
s~ t & st* € BE(S),
the right compatibility relation is defined by
P ~. t & 5"t € E(S),
and the compatibility mlatibn, the intersection of the above two relations, is defined by
s~t&st* s*t e E(9).

It is clear that all three relations are reflexive and symmetric, but none of them need be transitive
(see Theorem 3.2 for a characterisation of the generalized inverse *-semigroups having a transitive
compatility relation). The next lemma describe some of the basic property of these relations.

Lemma 3.1 Let S be a generalized inverse *-semigroup and p be uny one of the three relations ~y, ~y,
and ~. Then the following two properties hold.

(i) spt and wpv imply that suptv.

(ii) s <t,u<v andtpv tmply that spu.

Theorem 8.2 Let S be a generalized inverse x-semigroup. Then the compatibility relation is transitive
if. and only if. S is E-unitary.

Proof Suppose that ~ is transitive. Let es € E(S), where e is an idempotent. Then s ~ es since
elements s(es)* and s*es are idempotents. Clearly es ~ s*s, and so, by our assumption that the
compatibility relation is transitive, we have that s ~ s*s. But s(s*s)* = s, so that s is an idempotent.

Conversely, suppose that S is E-unitary and s ~ t and ¢ ~ u. Clearly (s*t)(t*u) is an idempotent
and :

(s*t)(t*u) = s"u(t )" (t"u)
But S is E-unitary and so s*u is an idempotent. Similarly, su* is an idempotent. Hence s ~ u. |

Proposition 3.3 Let S be a regular x-semigroup. Then the following are equivalent:

(i) The left and right compatibility relations are equal.

(1) For all s,t € S. we have that st € E(S) if. and only if. ts € E(S).
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A congruence p on an orthodox semigroup S is said to be idempotent pureif a € S,¢ € E(S) and
{(a,e) € p then « is an idempotent.

Proposition 3.4 Let S be an E-unitary regular x-semigroup. Then a congruence p is idempotent
pure if, and only if, p C ~.

Proof Let p be idempotent pure and let (a,b) € p. Then (ab*,bb*) € p. But p is idempotent pure
and bb* is an idempotent. Thus ab” is an idempotent. Similarly, a*b is an idempotent. Thus a ~ b.
Conversely, let p be a congruence contained in the compatibility relation. Let (a,e) € p, where €
is an idempotent. Then a ~ e. Thus ae* € E(S). But e* is an idempotent and so a is an idempotent,
since S is E-unitary. |

4 Enlargements

We proved in Section 2, that E-unitary generalized inverse *-semigroups are essentially isomorphic to
the generalized inverse x-subsemigroups of PG*-semigroups. The point is that if X is a meet semi-
lattice, we can form the semigroup PG*(G, X, X, P,{pas}), which contains PG*(G,X,Y, P,{pazs})
as a generalized inverse *-subsemigoup. In the following proposition, we shall describe the abstract
relationship between PG*(G, X,Y, P,{pq 3}) and PG*(G. X, X, P,{pag})-

Proposition 4.1 Let (G. X,Y.P,{pas}) be a PG*-quintet. where X is o meet semiluttice.
(i) The idempotents of PG*(G, X.Y, P) form an order tdeal of PG*(G. X, X, P).
(ii) If (o g.21,22) € PG*(G,X. X, P) is such that
(@, g.21,22)* (e, g, 21, 22), (@, g, 21, Z2) (@, g, 1, 72)" € PG™(G. X.Y. P)
then (v, g,11,%2) € PG*(G, X,Y, P). |

(iif) For each projection (a,1,z,2) € PG*(G, X, X, P) there exists a projection (3,1.y.y) €
PG*(G,X,Y, P) such that (a,1,z,2) Z (8,1,v,y). '

On the basis of the above proposition, we make the following definition. Let S be a generalized
inverse *-subsemigroup of a generalized inverse x-semigroup T'. We say that T is an enlargement of S
if the following three axioms hold:

(E1) E(S) is an order ideal of E(T).
(E2) If t € T and t*t,#t* € S then t € S.
(E3) For every projection ¢ € T' there exists a projection f € S such that e 7 f.

The following is easy to prove.

Lemma 4.2 Let S be a generalized inverse x-subsemigroup of T. Then aziom (E1) holds if. and only
if. § s am order ideal of T'.

We may find a PG*-representation of an E-unitary generalized inverse *-semigroup.

Theorem 4.8 Let G be a group and X o semilattice. and let S be a generalized inverse x-subsemigroup
of the generalized inverse x-semigroup PG*(G, X, X, P.{pap}). Suppose that PG*(G.X,X.P.{pas})
s an enlargement of S. Let

Y={c€eX:(al,2,y) € E(S)} andQ={z € P:(a.1,z,y) € E(S)}.
Then (G, X.Y,Q.{pap}) is « PG*-quintet and S = PG*(G.X,Y.Q,{pas})
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5 A Structure Theorem

We can now prove the uniqueness of the PG*-representation of an E-unitary generalized inverse -
semigroup.

Theorem 5.1 Let (G, X,Y, P, {pa,s}) and (G', X" Y", P' {pl, 5}) be two PG*-quintets. Let 6 : G —
G' be a group isomorphism and let ¢ : X — X' be an order isomorphism such that vy is an
isomorphism from the semilattice Y onto Y'; now let £ : P — P’ be a bijection. Suppose also that. for
all g in G. a in X and x in Py.

(ga)¢ = (g6) (),

(xpp ) = (2€)ppy i+

where B,y €Y such that 8 > ~. Then the mapping ¢ : PG*(G. X.Y,P) — PG*(G', X".Y', P') defined
by ' ,

(@, 9,2,y)¢ = (¥, g6, z&, y§)
is a x-isomorphism. Conversely, every *-isomorphism from PG*(G.X.Y, P) onto PG*(G'. X'.Y', P")
1s of this type.

6 The minimum group congruence

In this subsection, we shall first give an alternative characterization of the minimum group congruence
on a generalized inverse *-semigroup.

Theorem 6.1 If S is a generalized inverse x-semigroup. then the relation
o={(a,b) € SxS:eaf =ebf for some e, f € P(S)}
is the minimum group congruence on S.

Idempotent pure congruences, the minimum group congruence and E-unitary generalized inverse
*-semigroups are all linked by the following result.

Theorem 6.2 Let S be a generalized inverse x-semigroup. Then the following conditions are equiva-
lent:

(1) S is E-unitary.
(ii) ~ =o0.
(iii) o ts idempotent pure.
(iv) o(e) = E(S) for any idempotent e.

Proof (i) & (iv). Immediate.
(i) = (ii). Let a ~ b. Then ab*,a*b € E(S). Thus

(ab*)}(ab*)*a(a*b)(a*b)* = ab*ba*aa*bb*a
= ab*ba*bb*a
= ab*(ba™)(ba™)bb*a
= (ab®)(ab™)"h(a™b)(a™b)™.

Hence acb.
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Conversely, suppose ac b. Then eaf = ebf for some e, f € P(S) by Theorem 6.1. Thus we have
(ebf)(ebf)” = eafb*bb*e = (eab™)bfbe € E(S).

But bfb*e is an idempotent. Thus, by (i), eab* € E(S). By using (i) again, we obtain ab™ € E(S)
since e € E(S). Similarly, b is an idempotent.

(ii) = (iii). Let (a,e) € o, where e is an idempotent. Clearly. e ~ a”a. But ~ = ¢ and so a ~ a”a.
Hence o is an idempotent.

(ili) = (i). Let @ € S and e € E(S) such that ea € E(S). Then eae = e(eae)e. Thus, by Result 1.4,
(a,eae) € 0. But eae = (ea)e € E(S) and so a is an idempotent since o is idempotent pure. | |
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