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A Note on the Growth of Neighborhoods of Cellular
Automata
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Abstract

In this paper we investigate the growth of neighborhoods of cellular automata following
such of finitely generated groups particularly concerning the Garden of Eden theorem.

1 Introduction

A cellular automaton (CA for short) is a uniformly structured information processing system
defined on a regular discrete space S, which is typically presented by a Cayley graph of a finitely
generated group. The same finite automaton (cell) is placed at every point of the space. Every
cell simultaneously changes its state following the local function defined on the neighboring
cells. The neighborhood NV is also spatially uniform. Most studies on CA assume the standard
neighborhoods after John von Neumann and E. F. Moore.
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Figure 1: The von Neumann neighborhood Ny Figure 2: The Moore neighborhood N,

Changing the view point, however, we posed an algebraic theory of neighborhoods of CA for
clarifying the significance of the neighborhood itself, where the neighborhood N can be an arbi-
trary finite subset of S, see Nishio, Margenstern and von Haeseler (2004, 2005) [11, 13], where
the main topics is a question if an arbitrary neighborhood N fills or generates S. Evidently the
von Neumann and the Moore neighborhoods fill Z2. A typical nonstandard neighborhood a
3-horse N3y = {ab,a~%b,ab2} was proved to fill Z? [12]. Note that N3z dose not contain
the identity 1 of the group (origin of the space).
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Figure 3: A 3-horse N3y.

Now in this paper, assuming that the neighborhood fills the space, we study the growth of
neighborhoods of cellular automata following the growth of finitely generated groups obtained
my many authors with respect to the Garden of Eden theorem (GOE theorem for short), see
Machi and Mignosi (1993) [6] and others. We discuss the growth of neighborhoods of CA
particularly on the n-dimensional Euclidean space and the hyperbolic plane. For example we
will see that the GOE theorem holds for a CA with the neighborhood N3y in Z2 since its growth
is polynomial, but not for a CA with a similar neighborhood in the pentagrid {5, 4} since its
growth is exponential.

2 Preliminaries

2.1 Cellu_lar Automaton CA
A CA is defined by a 4-tuple (I'(S), N, Q, f).

o Cellular space T'(S) is a Cayley graph of a finitely generated group S = (G|R) with
generators G and relators R. If G = {g1, 92, ..., 9- }, every element of S is presented by a
word z € (GUG™Y)*, where G"1 = {g7!| g- 97! = 1, g € G}. The set R of relators
is written as

R={w;=w}|w,w, € (GUG ) i=1,..n}. )

Forz,y € I'(9), ify = zg, where ¢ € GUG™!, then an edge labelled by g is drawn from
vertex z to vertex y. In the sequel I'(S) and S are not distinguished.

o Neighborhood N = {ni,na,...,n,} is a finite subset of S. For any cell z € S, the
information of cell zn; reaches z in a unit of time. The set of all neighborhoods is denoted
by N°. If N c N’, where N and N’ € N5, N is called a subneiborhood of N'. When
S is understood, the set of neighborhoods is written without superfix S. The cardinality
#(N) is called the neighborhood size of CA. The set of the neighborhoods of size s is
denoted by N,. '

o Set of cell states Q = GF(q) where ¢ = p™ with prime p and positive integer n. Q =
Z/mZ is also considered.

o Local map f : QN — Q, where an element of Q" is called a local configuration.
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e Global map F : C — C, where an element of C = QS is called a global configuration.
F is uniquely defined by f and NV as follows.

F(C)(IL‘) = f(c(mnl)vc(zna), t ,c(a:ns)), (2)

where c(z) is the state of cell z € S forany c € C.

When starting with a configuration c, the behavior (trajectory) of CA is given by

F**(c) = F(F*(c)) forany t > 0, where F°(c) =c. (3)

2.2 Neigliborhood and Neighbors

Given a neighborhood N = {ny,n,, ...,ns} C S for a cellular space S = (G | R), we recur-
sively define the neighbors of CA. Letp € S.

(1) The I-neighbors of p, denoted as pN!, is the set

pN' = {pny, pna, ..., pm.}. @
(2) The m-neighbors of p, denoted as pN™, are given as

pN™ =pN™ 1. N, m>1, &)

where pN® = {p}. Note that the computation of pn; has to comply with the relation R. We
may say that the information contained in the cells of p N™ reaches the cell p after m time steps.

(3) co-neighbors of p, denoted as pN, is defined by

pN= = | J pN™. (6)

m=0
Without loss of generality, we can concentrate on the m-neighbors of the identity element 1 of
S, which is called m-neighbors of CA and denoted by N™. Then

(4) oo-neighbors of 1, denoted as N and called the neighbors of CA, is given by
[o <]
N® = U N™, v ¢
In order to discuss the growth of neighbors later, we define here the m-ball of radius m, denoted
by N™, as v
_ m
N7 =| N ®

k=0
Obviéusly, if 1 € N, then N™ = N™, In Sections 3 and 4, we will discuss the difference
between the m-ball and the ball of radius n in the group theory, B, = {w | |w| < n,w € S}. If
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N = GUG™, which is the case of Ny, then N™ = B,,.

The intrinsic m-neighbors [N™] = N™\ N™! are considered as the cells whose information
can reach the origin in exactly m steps. Obviously, N = [ J>_ [N™].

Now we have an algebraic result, which is proved by the fact that the procedure to generate a
subsemigroup is the same as the above mentioned recursive definition of N*°.

Proposition 1 -
N*=(N| R)sg, )

where (N | R),, means the semigroup obtained by concatenating the words from N complying -

with R.
In general, if (N | R),, = S’ C S, N is said to sg-generates S’

We also have the following easily proved proposition.

Proposition 2
(N|R)g=(NUNT'|R)y, (10)

where (N | R), is the smallest subgroup of S which contains N.
If N = G, then we have the following lemma as a corollary to Proposition 2.

Lemma 1
(91592, s 9r|R)g = (91,92, 9r 971 925 -+, 95 | R)ag- an
Example: Z? = (a, b| ab = ba), = (a,b,a7,b7!| ab = ba),,

3 Growth of groups

The growth function s of a finitely generated discrete group S = (G|R) is defined by means
of the cardinality of the ball of radius n. That is

vs(n) = #Bn = #{w | |w| < n, w € S}. (12)

For a free group F' = (a,b|0), v# = 2". For 2-dimensional Euclidean space S = Z? =
{a,blab = ba), vs = 2n? + 2n + 1.

3.1 Growth rate of groups

For most theory concerning the growth of groups, its asymptotic behavior called the growzh rate
is of interest. Though there are several definitions of the growth rate, they are all equivalent.
The following one is due to Babai (1997) [1].

Definition 1 Two monotone non-decreasing functions fy, f2 : N — N are said to be equivalent
(f1 ~ f2), if there exist constants '
¢1, ¢z, C1, Ca,n9 > 0 such that for all n > ny,

Cifi(an) < fa(n) < Cafi(ean). (13)
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The relation ~ is evidently an equivalence relation. The equivalence class of f is denoted by
[f]. Let [f1] and [f,] be the equivalence classes to which f; and f» belong, respectively and
define an order [f1] 3 [fo] if C fi(en) < fa(n) for constants C, c,ng > 0 and for all n > ny.

Example 1 [n?] < [n%], [a"] 3 [n’], and a™ ~ b" for any positive integers n, a, b > 1.

The growth rate [vs] of a group S is an equivalence class to which s belongs. For Z2, [yg] ~
n?. The growth rate of groups is simply called the growth of groups.

3.2 Past results on the growth of groups
1) The grthh of a group is independent from the generators, Milnor(ll 968)[8].

Lemma 2 (Lemma 1 of [8]) Let G, = {g1, ..., gp} and G2 = {hy, ..., hq} be two different sets
of generators and let v, (n) and y;(n) be the corresponding growth functions. Then, there exist
positive constants k, and k; so that

72(n) < m(kin)

and
N(n) < v2(kan)
Joralln.

By Lemma 2 we have [y;] ~ [v2] in Babai’s sense.

2) There are three classes of the growth of groups; polynomial 3 subexponential % exponential.
Gri/gorchuk (1983) gives a group S which has subexponential growth [3][4];
2777 < [1s) 2% with € > 0 and o = log,, 31 < 1.

3) A nilpotent group G has polynomial growth [14][2];
[v6] ~ n?, where d = ", krank(Gx/Gy41) and {Gy} is the lower central series of G.

4 Growth of neighborhoods
The growth function 6(n,s) of neighborhood N in S = (G|R) is defined by
Sv.s)(m) = #{w | w € N™}, (14)

where N™ is the m-ball of radius m defined by Equation (8). Note that N™ is generally different
from B,,. For example, in case of a 3-horse N3y, the word a of length 1 is included by N3 (and
N3) but not by N'. Moreover the identity 1 of length 0 first appears in N'2 [12].

The growth rate [§(n,s)] of a neighborhood N C S is similarly defined to be an equivalence
class to which §(,s) belongs.

We discuss here the difference between the growth functions/rates of the neighborhood N and
of the group S itself. The problem is not trivial even though we have Lemma 2 by Milnor. First,
it is seen that if N = G U G~ which is the case of Ny, then 6(n,5) = 7s.



Example 2 For the von Neumann and the Moore neighborhoods in S = 72, we have é(n,, 5)(m) =

2m? +2m+ 1 = y5(m) and d(n,,,5)(m) = 4m? +4m +1 > v5(m), respectively. Both neigh-
borhoods have the same growth rate m?, which is equal to the growth rate of S = 72.

We show below a numerical computation of the growth function of N3y compared with the von
Neumann neighborhood Ny. The 3-horse seems to grow faster than the von Neumann, but both
growth rates are equal to n’.

| n 1] 2] 3] 4] 5] 6{ 7| 8] 9] 10

oy (n) | 5|13 |25]41|61| 81]113|145] 181|221
Bnen(n) | 3] 918 3562|100 | 147 | 208 | 277 | 353

4.1 Basic properties of the growth of neighborhoods
First we notice some basic properties of the growth of neighborhoods.

Lemma 3 If N’ C N then
dv,5) < Ows)

From this lemma and Proposition 2, we have

Lemma4 Forany N C S,

d(n,5) < dvun-1,5) and b)) 3 [vwl, (15)
where vy is the growth function of the group (N | R),.
Then we have the following theorem.

Theorem 1 For a cellular space S = (G|R)4 and any neighborhood N C S,

b)) = sl (16)
where the equivalence holds if and only if N fills S.
Proof: By Lemmas 3 and 4 we have the theorem. : |

4.2 Growth of the hyperbolic horse

The CA on the hyperbolic space has been investigated by M.Margenstern and other authors,
see [7] for his latest literature. Generally, the hyperbolic space does not allow a Cayley graph
presentation of a group. However, the pentagrid {5,4} can be treated by means of its dual
hyperbolic grid {4, 5}, which is seen to be a Cayley graph of the group H,s; as is shown
below.

Hpasy = (1,2,3,4,5|12 =21,23 = 32,34 = 43,45 = 54,51 = 15, i =i~1,1 <4 < 5),
where {1, 2, 3,4, 5} is the symbol set of generators.

First, as for the growth of the group H{ 5}, the following proposition holds.
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Proposition 3 The growth rate of the pentagrid {4, 5} is exponential.

Next, we investigate the horse power problem on the hyperbolic plane: for a neighborhood N,
decide if N fills the space S or not. If N consists of s elements, it is called an s-horse.

First we give the following Theorem 3.8 of [13], which has been rewritten in my formulation.

Theorem 2 (Theorem 3.8 of [13]) N5HHﬁ”S H{4,5}, where NSHH = {nl, N9, N3, N4, n5},

ng £ 145.412.254 =4
ng £ 251.523-315=5
ng £ 312-134-421=1
ng 2 423.245.532=2
ng = 534-351-143=3,

where for instance 145 - 412 - 254 = 4 means that a concatenation of words 145, 412 and 254
makes 4.

Proof. The above 5 elements n; = 4, ...,ns = 3 constitute the generators of Hyy ). [ |

Finally, contrary to a 3-horse: N3y in 2-dimensional Euclidean space, we see that a 2-horse
Nyp g is enough to fill H{,5) by Theorem 3.9 of [13]. Then by Theorem 1, we have

Proposition 4 The growth rate of Nagy is exponential; [0n,y, ] ~ 2™.

5 Garden of Eden theorem

The Garden of Eden (GOE) theorem was originally proved for Z2 by E.Moore(1962) [9] and
J.Myhill(1963)[10].

Definition 2 A finite configuration (pattern) is called a Garden of Eden (GOE), if it is not in the
image of F' (A GOE has not an ancestor). Two distinct patterns p, and p, are called mutually
erasable if two configurations c,, c;, which contain p, and p,, respectively and coincide outside
of the supports of p, and p,, are mapped to the same configuration.

Theorem 3 (Moore) If there are mutually erasable patterns, then there are GOE patterns.
Theorem 4 (Myhill) If there are GOE patterns, then there are mutually erasable patterns.

If there is no GOE patterns then F' is surjective and if there is no mutually erasable patterns
then F is injective when it is restricted to the finite configurations. Therefore these theorems
together claim the following theorem, which is called the GOE theorem today.

Theorem 5 (GOE theorem) F is surjective if and only if F is injective when it is restricted to
the finite configurations.
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Idea of Moore’s proof of Theorem 3: Let #(c(N™)) be the cardinality of different patterns
contained by cells in m-neighbors N™. For S = Z? and Moore neighborhood, if there are mu-
tually erasable patterns, then #(c(N™')) becomes greater than #(c(N™)) when m becomes
large enough, which implies the existence of GOE patterns. This proof is based on the fact that
the growth of neighbors is not too fast (polynomial).

After the seminal papers by Moore and Myhill, group theorists have revealed that the GOE
theorem holds for groups of polynomial and subexponential growth, but does not for exponential
growth, see Machi&Mignosi(1993) [6] and Gromov(1999) [S]. The group theorists usually
discuss the GOE theorem assuming the generators of the group as the neighborhood. This fact
is one of the reasons why we are interested in the growth of neighborhoods.

5.1 GOE theorem for general neighborhoods

We discuss here the problem if the GOE theorem holds for CAs having the neighborhood which
is not necessarily the generator set of the group.

Theorem 6 The GOE theorem holds for a CA which has a neighborhood of polynomial growth.

Proof: The Moore’s proof shown above generally applies to such a CA. |

We conjecture that the GOE theorem does not hold for CAs havmg the nelghborhoods of expo-
nential growth.

6 Concluding remarks

In this paper, we have defined and analyzed the growth of neighborhoods of CA. A problem
for future research is to consider other growth-specific properties than the GOE theorem. Many
thanks are due to Maurice Margenstern and Thomas Worsch.
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