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Abstract
A pattern matrix algorithm for multichain Markov decision processes with
average criteria proposed in our previous work[10] will be modified by use of
the so-called vanishing discount approach by letting 7 — 0 for the (1 — 7)
discount case.
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1 Introduction and notation

In this paper, we are concerned with the structured pattern matrix algorithm for mul-
tichain finite state Markov decision processes (MDPs) with an average reward criterion.
The efficient algorithm for finding an optimal policy in average reward MDPs have been
studied by many authors (cf. [5, 9, 13, 14, 15, 19]). For the unichain or communicating
case, the optimal policy can be found by solving a single optimality equation (cf. [15]).
However, for the multichain case, the optimal policy is characterized by two equations,
called the multichain optimality equations, which are solved, for example, by linear pro-
gramming (cf. [6, 15]) or policy iteration algorithms (cf. [7, 9, 15]).

The value iteration method based on classification of the state space into closed com-
municating subsets and transient one has been given by Schweitzer[17] and Ohno[14].
Ohno[14] has given the stopping rule to find an s-optimal policy in a finite number it-
erations using by Schweitzer’s value iteration method. Recently, Leizarowitz[13] has ex-
tended the above algorithm to the case of compact state space. In our previous work[10],
we have proposed an algorithm for the multichain finite state MDPs in which the state
classification is doue by use of the corresponding pattern matrices and the idea of value
iteration algorithm. However, the finding of an optimal policy for each communicating
subset is supposed to use the policy improvement.

The objective of this paper is to propose the modified algorithm in which, to obtain
an optimal policy for each communicating class. we use the so-called vanishing discount
approach by considering the corresponding (1 —7) discounted expected reward as letting
T —0.

In the reminder of this section, we will define finite state MDPs to be examined and
describe the basic results for the average and discounted case.

We define a controlled dynamic system with a finite state space denoted by S =
{1,2,.... N}. Associated with each state i € S is a non-empty finite set A(i) of available -
actions. When the system is in state ¢ € S and action a € A(i) is taken, then the system



moves to a new state j € S with probability g;;(a) where >~ g ¢;(a) = 1 foralli € §
and a € A(i) and the reward r(7,a) is earned. The process is repeated from the new
" state j € S. This structure is called a Markov decision process. denoted by an MDP
= (S, {A@G):ie 8},Q,r). where Q = (g;;(a):i.j € S.a € A(4)) and r = r(i,a) € R
for all i € S and a € A(i) and R is the set of all real numbers. The set of admissible
state-action pairs will be denoted by

K={(i,a):i€ S,a € A)}.

The sample space is the product space 2 = K> such that the projection (X;, A;) on the
t-th factor describes the state and action at the t-th time of the process (¢t 2 0). A policy
T = (o, 7y, . . .) is a sequence of conditional probabilities with m,(A(z;)|ze, ag. ..., z;) = 1
for all histories (2o, aq, ..., 7:) € KiS(t 2 0) where K°S = S. The set of all policies is
denoted by II. A policy = = (ng,71,...) is called randomized stationary if a conditional
probability v = (y(-}9) : i € S) given § exists, for which 7(-|zo, ao, ..., ;) = ¥(-|z;) for
all t 2 0 and (zo.a,....2¢) € K'S. Such a policy is simply denoted by 4. We denote
by F the set of functions on S with f(i) € A(i) for all i € S. A randomized stationarv
policy 7 is called stationary if there exists a function f € F such that v({f(i)}|i) = 1
for all i € S, which is denoted simply by f. For each 7 € II, starting state X, = i, the
probability measure Pr(-|Xo = ) on  is defined in a usual way. The problem we are
concerned with is the maximization of the long-run expected average reward per unit
time, which is defined by

T-1
» 1 )
(1.1) w(i,m) = 117{1_1_}£f TE" (;—0 r(Xe, &) | Xo = '2) ;

where E.(-|Xo = i) is the expectation w.r.t. P,(-| Xy = 1).
A policy 7* € II satisfying that

(1.2) yv(i, ) = sug v(i,7) :=v¢*(i) forallie S
TE
is called to be average optimal or simply optimal.

The structured algorithm treated with in this paper is based on a communicating
model introduced by Bather[l]. We say that the MDP I is communicating if there
exists a randomized stationary policy v = (y(:|¢) : i € S) satisfying that the transition
matrix Q(v) induced by ~ defines a irreducible Markov chain where Q(v) = (g;;(7)) with
i (V) = Laeap) %ii(a)r(ald) for all i.5 € S. Let B(S) be the set of all function on S.
The following fact is well known.

Lemma 1.1 (cf. [15]). Suppose that there exists a constant g and a v € B(S) such that

(1.3) v = ::élg(\f){r(u a) + qu'j(a)'vj} —g fordlieS.

jes

Then, g is unigue and g = ¥*(i) = ¢*(i, f) for all i € S, where f(i) is a maximizer in
the right-hand side of (1.3) for alli € S.
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The expected total (1 — 7)-discounted reward is defined by

o0

(1.4) v (i7) =B, (2(1 — ) (X, A)

t=0

Xo =i) forie S and 7 € 1II,

and v;(¢) = sup,nv-(4, m) is called a (1 — 7)-discounted value function, where (1 —17) €
(0,1) is a given discount factor.
For any 7 € (0,1). we define the operator Uy : B(S) — B(S) by

(1.5) U,u(i) = max {r(i, a)+(1-71) Zq,;j(a)u(j)} for all i € § and u € B(S).

a€A ies
We have the following.
Lemma 1.2 ([15]). It holds that
(i) the operator U, is a contraction with the modulus (1 — 7) and
(i) the (1 — 7)-discount value function v.(i) is a unigue fized point of U,, i.e.,

(16) ‘ vr = Urvr,

(151) v, () = v.(i, fr) and lin(x) Tv.(1) = ¢*(i), where f; is a mazimizer of the right-hand
T
side in (1.6).

In Section 2. the methods of classifying the set of states by use of the corresponding
pattern matrices is proposed, which is used to find an optimal policy by the value iteration
algorithm in Section 4. In section 3, an optimal policy for each communicating class is
obtained by use of the vanishing discount approach by letting 7 — 0. In Section 5, a
numerical example is given to comprehend our structured algorithm.

2 Classification of the states

In this section, from our previous work[10] we quote the method of classifying the state
space and finding the maximum sub-MDPs by use of the corresponding pattern matrices,
whose idea is essentially the same as [13, 17].

For a non-empty subset D of S, if, for each i € D, there exists a non-empty subset
Ai) € A(4) with 3 jep 4ij(a) = 1foralla € ‘A(4), we can consider the sub-MDP with the
restricted state space D and available action space A(i) for 4 € D, which is denoted by
T = (D.{A(i): i € D}.Qp.rp) where Qp and rj are restriction of Q and r on {(¢, a) :
i € D,a € A(i)}. Forany sub-MDPT = (D, {A() : i € D}, Qp.7p). a non-empty subset
D of D is a communicating class in T if D is closed, that is, Y jepiila) =1forallie D

and a € A(7) and the sub-MDP (D, {A(¢) : i € D},Qp.rp) is communicating. Also, -

D is maximum communicating class if it is not strictly contained in any communicating
class.
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For any positive integer I, let C' and C™*! be the sets of I-dimensional row vectors
and [ x [ matrices with {0, 1}-valued elements, respectively. The sum (+) and product
(-) operators among elements in C' and C**! is defined by a + b = max{a,b} and a - b =
min{a, b} for a,b € {0.1}.

For each i € S and a € A, we define m;(a) = (ma(a). mia(a),...,min(a)) € CN by
1 if q,'j(a) > 0, .
2.1 4 = € 9).
2.1 (o) {O ey ues)
For a sub—MDP_I" (D, {A(i) : i € D}.Qp,rp) with D = {iy.ia,....4}, we put
mi(L) = (mui, (T). mus, (1), .. .mu,( )) = Laeawmilall) (@ (i € D). where mi(alT) =
(mi;, (@), m, (a .),..._.mz,,(a)) (i € D,a_€ A(i)). Using my(T) (i € D), we define a
pattern matrix A (T) for the sub-MDP T by
i, (T)
(2.2) M(T) = : e C,
m;, (T)

We note that for i, j € D, m;;(T) = 1 means that there exists a € A(i) with g;;(a) > 0.

The pattern matrix defined above is called a communication matrix (cf. [13]). How-
ever, since M (T) determines the behaviour pattern of the sub-MDP T, we call it a pattern
matrix in this paper. For the pattern matrix M(T'), we define M(T) € C*! by

(2.3) MT) = Z M(T)k.
k=1

Then, we have the following.

Lemma 2.1. For a non-empty subset D of D. D is a communicating class if and only

if, for each i € D,
m;(T) = ! Zf 7e -
0 i j¢D,
where ;;(T) is the (i,j) element of M(T) and M(T) = (m;;(T)).

By reordering the states in D, M(T') can be transformed to the standard form:

(2.4) M) = (d21).

where E; is a square matrix whose elements are all 1 (1 £ j £ d) and [R K] does not
include a sub-matrix having the above form.

For any sets U.V, if U NV = (), we write the union UUV by U + V.

Here, we get the classification of the state space.
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Theorem 2.1. For a sub-MDP T = (D.{A(i) : i € D},Qp,rp), the state space D is
classified as follows:

(2.5) D=U+Uy+---+Us+L (d21),
where U; is a communicating class for T (1 £ j £d) and L is not closed.

The algorithm of obtaining the state-decomposition (2.5) through (2.4) by use of the
pattern matrix will be called Algorithm A.

When the not-closed class L in (2.5) is non-empty, we go on with the state classifica-
tion of L by finding the maximum sub-MDP. The basic idea of the following algorithm
is the same as in [13], called Algorithm B hereafter.

Algorithm B:
1. Set Ky =Land n=1.

2. Suppose that {K; : 1 £ i £ n} with K7 2 K 2 -+ 2 Kn (K # 0) is given.
Then, set V = § — K, and each ¢ € K, set A,(¢) = A(¢) — T(3), where T(i) =
{a € A(D)| X e mij(a) = 1}. Set Knyy = {i € K| 41(d) # 0}.

3. The following three cases happen:

Case 1: Kpi1 # 0 and K, 2 Kni1.
For this case, put n=n+ 1 and go to Step 2 with {K;: 1 S i S n+1}.

Case 2: K, = K,. _ . _
For this case, set D := K,4;. Then, T = {D,{A(i) : i € D},Qp,7p} is a
maximum sub-MDP in L. Apply Algorithm A for this sub-MDP T

Case 3: K,.1 = 0. Stop the algorithm.
For this case, the set L does not include any sub-MDP and it holds that

(2.6) max_Pr(X, € L|Xo=1i) < L

ieL,mell

Starting with the MDP T = (S, {A4(3) : i € S},Q,r) given firstly, we apply Algorithm
A and B iteratively, so that we get the following.

Theorem 2.2. Let T’ = (S,{A(i) : i € S},Q,r) be the fizted MDP. Then, there exists a
sequence of sub-MDPs

Cr = (Sk. {.4k(’i) NS Sk}. Qs, ’I‘sk) (k=0,1.... ,n’")
satisfying the following (i)-(ii).

(i) So=5282 2 S
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(ii) The state space S is decomposed to:

(2.7) S=Up+ Ui+ +Un +1L,

where

(2.8) Ue=Ua+Usa+ -+ Uy, (05 k<0,

Uy (1 £ j £ I) is a mazimum communicating class (m.c.c.) for the sub-MDP

[y, and L is a transient class, that is, for any i € L and a € 4( ). there exists an
integer n 2 1 such that

(2.9) max P,r(X € LiXo=1)<1.

ieL,n

3 Optimal policies for the communicating class

In this section, we show the method of finding an optimal policy for the communicating
class by letting 7 — 0 in the discount criterion case.
For the communicating case, we have the following.

Lemma 3.1 ([11)). Suppose that Q = (g;;(a)) is communicating. Then, there is a
constant M such that

(3.1) limsup | v (1) = v-(j) |[S M forall i.j€S.

70

Let P(S) be the set of all probability distributions on 3. i.e..

=l

N ’
P(5) = {u = (urpiz, o pn) | 1 20, = 1forall i€ S} .
Let @ = (gi;(a)). For any 7 € (0,1) and g = (pu9. 2, ..., un) € P(S), we perturb Q to
Q™" = (q;;*(a)) which is defined by :
(3.2) ¢ (a) = Tp; + (1 — 7)gij(a) fori,j € Sandac€ A.

The matrix expression of (3.2) is Q™ = Tep + (1 —7)Q, where e = (1.1,....1)! is a
transpose of N-dimensional vector (1,1,...,1). Then, we find that (1.6) in Lemma 1.2
can be rewritten as follows.

(3.3) or(i) = max {r(z’, a)+ > g (@ j)} -7 pe(j) forallieS.

JES JES

For any fixed ig € S, let u,(j) = v.(j) — v-(ip) for all j € S. Then from (3.3), we get

(3.4) ur (1) —max{ i.a) +Zq57(a ur(j }—Tzujv (1€ 9).

j€S jES



From Lemma 3.1, for each j € S. «,(j) is uniformly bounded and continuous in 7 €
(0,1), so that we can imagine that u, — u as 7 — 0 for some u € B(S). Also, by
LO]}]}ID& 1.2 (iil). 73 es #07(7) in (3.3) converges to v* = Y. o p;v*(j). Thus, since
(IZ (@) — g;;(a) as 7 — 0, we get the following average optimality equation:

(3.5) u(i) = max {r(i, a) + Z qij(a)u(j)} —¥* (i €89),

ac. -
JES”

Observing that both S and A are supposed to be finite sets, for sufficiently small 7 > 0,

we have that f, = f*, where f* is a maximizer of the right-hand side of (3.5). which is
average optimal.

From the above discussion, we have the following.
Theorem 3.1. Suppose that Q = (g;;(a)) is communicating. Then, it holds that
(i) ¥*(3)(:= ¢*) is independent of i € S and there exist a u € B(S) satisfying (3.5),
(it) for any pr € P(S), T3 cs 1iv-(j) in (3.8) converges to 4™ as T — 0, and

(iii) there exists 7o € (0,1) such that f, in Lemma 1.2 (i) is average optimal for any
TE (0,7’0).

For sufficiently small 7 > 0, applying Theorem 3.1 to each communicating sub-MDP
Iyj = (U {Ak(7) 1 i € Uy}, Quy,»u, ), we get an optimal stationary policy fi; and a
nearly optimal average reward g;; for sub-MDP TI'y;, called relatively o.p. and relatively
n.a.r., respectively, which is summarized in Table 1.

We note that a stationary policy fy; is absolutely optimal on Up; (1 £ j £ lp) because
optimization is done in the MDP T

4 Algorithm for obtaining an optimal policy

In this section, from[10] we review a value iterative algorithm based on data in Table 1
to find an (absolutely) optimal policy for the MDP T, and show the effectiveness of the
algorithm.

Let K := {(i.a)li € L and a € A(¢)} and B(L) = {v|v : L — R}. For any function
d on Kj,. the map Ty : B(L) — B(L) will be defined as

(4.1) Tye(i) = max {d(i.a) + 3 g(a(i)} (i€ L)
JEL

The map Ty is shown to be monotone and n-step contractive(cf. [1, 10]) where n is given
in (2.9). For each function d on K, the unique fixed point of T; will be denoted by
v{d}.

Let K = {(5.5)|0 £ s £ n*,1 £ j £ I;} where n* and [, are given in Theorem 2.2.
For D C S. let ¢;(Dla) := }:je p ¢ij(a). In the ensuring discussion, we give the value
iteration algorithm, called Algorithm C7, with data in Table 1.

Algorithm C. '
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1. Set n =1, g,5(1) = gI, for (s,j) € K and g;(1) = «{d1 }(i) for i € L,
where di(4,a) = 3, jjex 6:(Usjla)g,;(1).

2. Suppose that {gs;(n) : (s,7) € K} and {g;(n) : i € L} are given (n 2 1).
Let for i € § — L,

4.2 P =
(4.2) | 9i = ;g%(‘f){d i, a +§Qz] a QJ
J

where dy (i, a) = 3, jyex 6i{Usjla)gsi(n).
Let g.;(n + 1) = max;er,; g; and g;(n + 1) = v{d,}(¢) for i € L.
3. Let n =n+1 and go to Step 2.
Concerning with Algorithm C7. we have the following.
Lemma 4.1 ([10]). In Algorithm C7, we have: |
(i) It holds that

(4.3) 9si(n+1) 2 gsj(n) for (s,j) € K. and
(4.4) : gi(n+1) 2 gi(n) forie€ L.

(i) The Algorithm C” converges, i.e., when n — oo g,;(n) — g,; for (s, j) € K and
gi(n) — 7, forie L.

For g,; and g, in Lemma 4.1. we have the following.

(4.5) Ty = ;??(:L){d i.a)+ ;qij(a)‘g'j} fori e U,; and (s.j) €K,
and
(46) g = max{d(i,a) + ;mw for i € L,

where d(i,a) = Z(s,j)elc Qi(b'ﬁj'a)gsj'v
Let f* be any stationary policy such that

foi(@) fori€ Uy (LS j S lo)
any maximizer in (4.5) and (4.6) for i € S;.

(4.7) £7G0) = {
Since G,;.7; and f* in (4.5)-(4.7) are depending on 7 € (0,1), we denote them by 95;- 97
and f2 respectively. Then, we have the following from Theorem 3.1.
Theorem 4.1. It holds that

(i) there exists 7o € (0.1) such that f* is average optimal for any 7(0 < T < 1), and

(i) as T — 0,75 — ¥*(i) fori € Uy, (s.j) € K, and g7 — ¢*(i) fori € L.



5 A numerical example

Here, in order to comprehend our modified algorithms working effectively we will consider
a numerical example as follows, which is dealt with in [10]. In our previous work[10], the
finding of an optimal policy for each communicating subset is supposed to use the policy
improvement. In this paper, we use the nearly optimal policy f, and nearly optimal
average reward gy, (s,7) € K in each communicating sub-MDPs with sufficiently small
>0,

Let S = {1,2,3,4.5,6,7,8} and A(1) = {1.2}, A(2) = {1},A(3) ={1,2,3}, A4) =
{1,2}, A(5) = {1,2}, 4(6) = {1.2,3}, A(7) = {1.2} and A(8) = {1,2,3}, whose transi-
tion probability matrix @ = (g;;(a)) and rewards r = r(i.a),%,j € S,a € A(i) are given
in Table 2.

First, applying the Algorithm A we have the classification of the states:
S=Un+Up+L,

where Uy = {3,6.8}, Upe = {2,4}, L = {1,5,7}. Next, we apply Algorithm B to the
set of transient states L = {1,5,7}. Then, we find the maximum sub-MDP ‘

1= (51, {A:(9),i € 51},Qs,.75,)

where S§; = {5,7}. 41(5) = {1}, A1(7) = {3} and Qg,.rs, are restrictions of Q.7 on
i,j € Sy and a € A(i1),i € S, respectively. Applying Algorithm A to I'y, we find
that T'; is communicating and hence we set Uy; = {5.7}. In the end. the decomposition
of S in (2.7) is shown as

S=Un+Up+Un+LwithL= {1}

Next, for each communicating class we calculate a nearly optimal policy(n.o.p., for short)
and nearly optimal average reward(n.a.r., for short) through the vanishing discount ap-
proach. We set discount rate 7 = 0.0001 and gJ;. (s, j) € K are replaced by arithmetic
mean of 77,(), i € U,; where 77.(i) is n.a.r. by value iteration with repeating the steps
n until max;ey,; [T2H1(i) — T2(i)| < = := 107%. Then, data in Table 1 is given in Table 3.

Applying Algorithm CT™ to Table 3, we have n.o.p. and n.a.r. as in Table 4. More-
over, if we use the policy iteration algorithm for each m.c.c. in order to get relatively
a.r., then applying Algorithm C in [10], the optimal policy(o.p., for short) and optimal
average rewards(o.a.p., for short) can be found as in Table 4 such that

FFR)=1©)=f@ =202 =1Lf)=2f06)=1(71)=3f(1) =2

and

¥"(3)
¥ (8)

It is noted that in Algorithm C7, the process are lumped as Table 5. On the other
hand, by using the iterative method([8]) with the same rule ¢ = 107 for repeating the
algorithm we have the following result as in Table 6 through Algorithm C in [10].

Il

v (6) = ¢ ( ) = 11.333333,¢"(2) = ¥*(4) = 9.714286,
v*(7) 2 10.793648, v*(1) = 10.793650.
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While the algorithm in the iterative method([8]) calculates nearly optimal average
rewards directly, the vanishing discount approach calculates nearly optimal discount
reward U, firstly, and then n.a.r. is given by 7%,. Hence, for sufficiently small 7 >
0. vanishing discount approach can get wore significant digits which is close to the
optimal value than the method in [8] if we repeat the value iteration algorithm until
max;ey,, [0711(i) — 72(é)| < &. Moreover. our modified algorithin only use value iteration
method, so that it is easily to calculate the nearly optimal values with smaller numbers of
multiplication per iteration than other algorithms. Table 7 shows the results of applying
the Algorithm C7 for some cases of 7. Table 4 illustrates that our modified algorithm
works well in this example.
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. 1 - 7 T
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Table 1‘: Relatively o.p. and n.a.r.
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state | action transition probabilities ¢;;(a) reward
i ac€ ARy | j=1 j=2 j=3 j=4 j=5 j=6 j=T7T ;=8 r(i.a)
1 0 1/2 1/4 0 0 1/4 0 0 9
1 2 1/8 0 0 14 0 14 1/8 1/4 | 10
2 1 0 T7T/I0 0 3/10 0 0 0 0 11
1 0 0 1/2 0 0 14 0 14 5
3 2 0 0 1/8 0 0 /8 0 3/4 2
3 0 0 3/16. 0 0 3/4 0 1/16 2.5
1 0 3/5 0 2/5 0 0 0 0 7
4 2 0 25 0 35 0 0 0 0 8
1 0 0 0 o 12 0 1/2 0 12
5 2 /8 12 0 0 1/8 1/8 1/8 0 2
1 0 0 1/4 0 0 1/2 0 1/4 6
6 2 0 0 1/16 0 0 3/16 0 3/1 0.75
3 0 0 5/8 0 0 1/4 0 1/8 2.25
1 1/4 0 0 o 14 0 12 0 6
. 2 1/4 0 0 1/8 1/4 0 1/4 1/8 7
3 0] 0 0 0 1/4 0 3/4 0 10
1 0 0 1/2 0 0 1/2 0 0 14
8 2 0 0 116 0 0 116 0o 7/8 | 13
Table 2: A numerical example
m.c.c. U, = {3.,6.8} U = {2,4} Un = {5,7}
relatively no.p. | f(3)=7(6)=f8)=2 | F@)=1FH) =2 | FB) =1,7(7) =3
relatively n.a.r. 11.332634 9.714254 10.666710

(f,; is abbreviated to f)

Table 3: Relatively n.o.p. and n.a.r. for each maximum communicating subclass

m.c.c. and L (/'0] = {3, 6,8} UQQ = {2,4} l.f'n = {5’ 7} L= {1}
n.0.p. F(3)=7F(6)=F(8)=2 f@)=1,f4d)=2 | 75 =1F7 =3 —
n.a.r. 11.332634 9.714254 10.793171 10.793171

0.p. f@)=f6)=@)=2| ff2)=LfU)=2] f*B)=1(T=3| fr1) =2
o.a.r. 11.333333 9.714286 10.793648 10.793650

Table 4: The table of n.o.p. and n.a.r. with 7 = 0.0001, and o.p. and o.a.r.




Table 6: The table of n.o.p. and n.a.r. with 7 = 0.0001 by using the iterative method in

r

L

ija | Un | Up|ly| L

1l 1001 o0

312 1 0101/ o0
31107010

Un 1] 1 0 0 0
612 1 0 0| o
31110101l o

gl1] 1 ]o]o]o

2/ 11010 o
2110|140/ o0
Utz TR 0] 0
“l2l o0l 110 ]o
s|1] 00170

2| 1/8|1/2|1/4]1/8

V1o 11 0| 0 |[3/4]1/4
Ti201/811/811/2|1/4

3/l 0010
ol 22l o | oo
2 01/2|1/4]1/8|1/8

Table 5: Lumped transition matrix

m.c.c. and L U = {3,6.8} foa = {2, 4} Uiy = {5,7} L={1}
relatively nop. | f(3)=F(6)=f(8) =2 | f(2)=1,f4) =2 | F(5)=1F(7) =3 —
relatively n.a.r. 11.330055 9.715645 10.667990 —

n.0.p. fB)=7®)=F8)=2 | F@=1F4)=2|F5)=1,7(7) =3 —
n.a.r. 11.330055 9.715645 10.791915 10.791918
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7 =0.01 7 = 0.001 7 = 0.0001 7 = 0.00001
1.0.p n.a.r, n.0.p 1.a.r. 1.0.p n.a.r. 11.0.p n.a.r.
2 11225040 | 2 | 11322578 | 2 | 11332257 | 2 | 11.333225
U 2 [11212615 | 2 | 1132145 | 2 [11.332123 | 2 | 11.333211
| 2 | 11352416 | 2 | 11.335243 | 2 [ 11.333523 | 2 | 11.333351
w 11.263657 11.326355 11.332634 11.333262
- 1 | 0732574 | 1 | 0716210 | 1 | 9714468 | 1 | 9.714303
) 2 | 9680899 | 2 | 0711837 | 2 | 9714040 | 2 | 9.714260
it 9.711237 9.714024 9.714254 9.714282
- 1| 10.684384 10.668443 | 1 | 10.666843 10.666683
1| 10.657806 10.665777 | 1 | 10.666577 10.666657
u',v; 10.671095 10.667110 10.666710 10.666670

Table 7: Table of the results for applying the Algorithm C”
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