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1 The Rayleigh-Bénard Problems

Consider a plane horizontal layer (see Fig.1) of an incompressible viscous fluid
heated from below. At the lower boundary: z = 0 the layer of fluid is maintained at
temperature T + 6T and the temperature of the upper boundary (2 = h) is T.

Fig.1. Fluid layer model

As well known, under the vanishing assumption in y-direction, the two-dimensional
(z-z) heat convection model can be described as the following Oberbeck-Boussinesq
approximations [1]: '

U + Uy + WU, = —Pz/po + VAu,
we + uwg +ww, = —(p; +9gp)/po +vAw, (1)
Uy +w, = 0,
0: +ub, +wh, = kAS.

Here, u, w: velocity in = and z, respectively, p: pressure, : temperature, p: fluid
density, po: density at temperature T + 8T, v: kinematic viscosity, g: gravitational
acceleration, «: coefficient of thermal diffusivity, *¢:=8/9¢(€ = z, 2,t), A:= 8% /8% +
8%/02%. And p is assumed to be represented by p — py = —pga(f — T — 6T, where a

is the coefficient of thermal expansion.
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The Oberbeck-Boussinesq equations (1) have the following stationary solution:

oT oT
u* =0, w* =0, 6~ =T+5T—'——Z, P* =P0—.‘JPO(3+9—22)a

h 2h

where pg is a constant. By setting

4= u, W= w, g :=6*—0, pi=p" —p,
we obtain the transformed equations:
Uy + Ul +0h, = Pg/po+ vAd,
Wy + Uy + W, = P,/po — gabd + vAwb, )
iz +w, = 0,
0, + 8Tw/h+ 1460, + w8, = kKAG.

By further transforming to dimensionless variables:
t—kt, u—i/k, w—ob/k, 60— 0h/6T, p— p/(pok?)

of (2), we have the dimensionless equations:

U +uuy +wu, = p;+ Plu,
Wy + uW, + Www, = p,— PRO+ PAw, (3)
Uy +w, = 0,
0, +w+ul, +wh, = A8

Here R := (§T'g)/(kvh) is the Rayleigh number and P := v/« is the Prandtl number.

2 Fixed-point formulation of problem

We describe the problem concerned as a fixed-point equation of a compact map on
the appropriate function space. Since we only consider the the steady-state solutions,
uy, wy and 6; vanish in (3). And also assume that all fluid motion is confined to the
rectangular region 2 := {0 < z < 27/a, 0 < z < 7} for a given wave number a > 0.

Let us impose periodic boundary condition (period 27/a) in the horizontal direction,
stress-free boundary conditions (u, = w = 0) for the velocity field and Dirichlet
boundary conditions (8 = 0) for the temperature field on the surfaces z = 0,,

respectively. Furthermore, we assume the following evenness and oddness conditions:
u(z, 2) = —u(-z,2), w(z,2)=w(-z2), 6(z,z2)=06(-z,2).

We use the stream function ¥ satisfying v = —V,, w = ¥, so that u, + w, = 0. By
some simple calculations in (3) with setting © := VPRSE, we obtain

{ PA2Y = PRO, -V, AV, + T AT,

4
-A® = —/PRY,+V¥,0,-Y,0,. @
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From the boundary conditions, the functions ¥ and © can be assumed to have the

following representations:

U= i i Amnsin(amz) sin(nz), © = Z Z Bmn cos(amz) sin(nz).  (5)

m=1n=1 m=0n=1

We now define the following function spaces for integers k>0:

{\IJ Z Z Amn sin(amz) sin(nz) | Ajmn €R, Z Z((am)zk +n?k)A2 < oo}

m=1n=1 m=1n=

{@ Z Z Bmn cos(amz) sin(nz) | Bmn € R, E Z((am)% +n?*)BZ,, < 00}

m=0n=1 m=0n=1

In order to get the enclosure of the exact solutions for the problem (4), we need
some appropriate finite dimensional subspaces. For My, N;, My > 1 and Ny > 0, we
set N := (Mj, N1, M3, N;) and define the finite dimensional approximate subspaces
by

1 1
S(l) {Z Z A sin(ama) sin(nz) | Apmn € R} ,
m=1n=1

M, N,
s® _ {Z Z B cos(amz) sin(nz) | Bpn € R} ,

m=0n=1
Sy =S x 89

Let denote an approximate solution of (4) by @y := (¥x,0x) € Sy. We now set

fl(‘I’a 6) = VPRO; - ¥, AV, + ¥V, AV,,
fz(\I’,@) = —-VPRY,+V.0,-7,0,,

where ¥ = Uy + w), © = Oy + w®. Then (4) is rewritten as the problem with
respect to (w1, w®) € X4 x Y? satisfying

{ PAWM = fi(Ty+uwD, 8y +w®) - PA2Dy, (6)

—Auw® = fo(¥y +w®,6x +uw?) +Aby,
which is so-called a residual equation. Setting w = (w®),w(®)) and

hl('UJ) = fl(‘i’N +w(1)7éN +w(2)) "PAz\i’Nv
ha(w) = fo(Iy +w®,6y +w?) + ABy,
h('IU) = (hl (w), hz(’U))),
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by virtue of the Sobolev embbeding theorem and the definition of f; and f;, h is a
bounded continuous map from X3 x Y to X% x Y0, Moreover, it is easily shown that
for all (g1,92) € X° x Y9, the linear problem:
Az‘II = g1,
{ %6 C 0
= 92
has a unique solution (¥,0) € X* x Y2. We denote this mapping by ¥ = (A2)~1g,
and © = (—A)~lg,, then the operator:
K:=(P1A%)1,(-A)1): XOxY° > X3 xY!
is a compact map because of the compactness of the imbedding X* — X3 and
Y? — Y! and the boundedness of (A%)~!: X0 — X4 (=A)~1: Y% — Y2, Thus, (6)
is rewritten by a fixed-point equation:
w = Fuw (8)
for the compact operator F := K o h on X2 x Y. Therefore, by the Schauder fixed-

point theorem, if we find a nonempty, closed, bounded and convex set W € X3 x Y1,

satisfying :
FWcCcwW (9)

then there exists a solution of (8) in W. The set W in (9) is referred as a candidate

set of solutions(2, 3].

3 Extended System

Moreover, in order to obtain the enclosure of the bifurcation point, we set
Z:=X3xY?, G:=I-F
and an operator S : Z — Z by
Sw = S(¥,8) := (¥(zr +7/a,2),0(z + 7/a, z))

satisfying SGw = GSw. Using this “symmetric” operator S, we have the decompo-
sition

Z == Zs @ Za,
where Z, = {w € Z; Sw = w} and Z, = {w € Z; Sw = —w}. Next, considering R as
a variable, let G on Z; X Z, X R be a map defined by

G(w,R)
G(w,v,R) := ( Dy Glw, Rlv ) (10)
L(v) - 1.



Here £ is an appropriate functional on Z,. We will check the extended system
G(w,v, R) = 0 has an isolate solution (w, v., R.) € Zs X Z, X R and show a sufficient
condition such that R, is a symmetry-breaking bifurcation point [4] of G(w,R) = 0

by computer-assisted proof.
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