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ABSTRACT

We consider the problem of calibrating k& (= 2) channels or signal processors and se-
lect the best one, that is the one having the largest signal-to-noise ratio (SNR). Assuming
a Gaussian distribution for the background white noise or clutter, the problem reduces
to selection from k (> 2) normal populations the one with the largest value of the ab-
solute mean. Assuming unknown means and a common unknown variance, we proceed
under Bechhofer’s (1954) indifference-zone formulation. Since the common variance is
unknown, a single-stage procedure guaranteeing a minimum probability of correct selec-
tion (PCS) would not exist. We revisit a two-stage procedure proposed by Jeyaratnam
and Panchapakesan (1998) and in order to reduce oversampling, we propose a modified
two-stage selection methodology along the lines of Mukhopadhyay and Duggan (1997).
In this paper, we provide asymptotic approximations for both the average sample size
(ASS) and the minimum PCS for our modified two-stage procedure, successively leading
up to significantly higher than second- or third-order terms. This analysis significantly
advances the techniques found in Mukhopadhyay (1999).

Keywords: Average sample size; Data analysis; Higher-order approximations; Indifference-
zone; Largest SNR; Multiple comparisons; Noise; Preference-zone; Probability of correct
selection; Selection methodologies; Signal processing.

1. INTRODUCTION

Let II;,IIy, ..., IIx denote k (> 2) independent normal populations with unknown
means py, iz, ..., py respectively, and a common unknown variance 02, —00 < 1, fi2, ..., Mk
<00, 0 <o <oo. Let 6 =|u|, i =1,..., k. The populations are ordered according to
the absolute values of their means. Let 6};) < 69 < ... < 6] denote the ordered 6; values,
however, we assume no prior knowledge about the correspondence between the ordered
and the unordered 6; values.

Our goal is to select the population associated with Oy, the largest 6; value. Since
the populations have a common variance o2, this problem is equivalent to selecting the
population associated with the largest 6;/c (that is, the largest |p;|/o) value, which is the
signal-to-noise ratio (SNR) well-known in communication theory. In terms of comparing
k different electronic devices, our goal is to select the device having the largest SNR. It
may be noted that 6;/c0 is the customary Mahalanobis distance between the populations
I1; and N(0,0?). That is, our goal is to identify that population which is most markedly
different from the simple white Gaussian noise.



We formulate our problem by using the indifference-zone approach of Bechhofer (1954).
Based on sample data, we wish to select one of the k signal processors (populations) and
claim it to be the best, namely, the one associated with the parameter 6 or equivalently
the largest SNR. A correct selection (CS) is said to occur if the selected signal processor
is indeed the one with mean signal strength max |p|, that is O

We also require that the probability of correct selection (PCS) is at least P*,1/k <
P* < 1, whenever 0 — 0x—1) > 6 > 0, where § and P* are specified in advance by the
experimenter. Let us denote the full parameter space

Q= {0=(01,...,6k)20,' 20, 1= 1,...,k}
and a parameter subspace
Q6) = {0 ¢ RHE G[k] - o[k._l} >4}

The parameter subspace Q(6) is called the preference-zone and its complement 2¢(4)
is called the indifference-zone. We can rewrite the minimum PCS requirement for any
selection rule under consideration as follows:

P(CS) > P* whenever 6 € Q(9). (1.1)

In other words, we wish to correctly identify the best signal processor with the minimum
preassigned probability P* whenever 6 is ahead of 61 by at least § amount. Inside
the indifference-zone Q°(4), that is when ) — fx—1) < d, we are not interested to identify
the largest SNR because all £ SNRs are then judged to be too “small” under practical
considerations. This fundamental approach was due to Bechhofer (1954).

2. FORMULATION AND AN EXISTING
TWO-STAGE METHODOLOGY

Having recorded n observed signals Xji,..., X;, from the ** channel or processor,
1=1,2,...,k, let us denote:
Xin =n"1 30 Xijy Sh=(n— 1)1 0 (X — Xin)?,
Pooled Sample Variance: S2 = k~13% | 82, with the (2.1)
degree of freedom v = k(n — 1).

2.1. Known Variance: Fixed-Sample-Size Selection Rule

Rizvi (1971) considered the above selection problem assuming o2 to be known. In this
case, he proposed a single-stage selection procedure based on a sample of size n from each
signal processor. It was shown that the smallest sample size n necessary to satisfy the
PCS requirement (1.1) is obtained by solving

T(A) = P* with A = Ay p» = 64/n/0, where

T(N) = 2(k = 1) [7°{2®(u) — 1}¥2{®(—u + A) + O(—u — A)}d®(u). (2.2)
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Now, having determined n this way, the observed signals X;; would be recorded from the
it* channel or processor, j =1,2,...,n; i = 1,2,..., k.

Selection Rule: One would obtain X;, and W; = {X—in[, i=1,2,...,k, and then
select as best the channel or processor that yields the largest W;. But, note that for given
k, P and 4, the determination of the required sample size n from (2.2) would depend on
the knowledge of 0.

Rizvi (1971) tabulated A p- values satisfying the equation T'(A) = P*. Table A.8 from
Gibbons et al. (1977) also provides some of these Ag p~ values.

2.2. Unknown Variance: Existing Two-Stage Selection Rule R

When ¢ remains unknown, no single-stage procedure would guarantee the PCS re-
quirement (1.1). One may refer to Dudewicz (1971). Hence, one would necessarily im-
plement an appropriate two-stage selection rule in the light of Bechhofer et al. (1954)
that was developed in the light of Stein’s (1945, 1949) pathbreaking two-stage estima-
tion methodologies. In the specific problem of selecting the processor or channel with
the best SNR, Jeyaratnam and Panchapakesan (1998) introduced the following two-stage
procedure methodology.

Selection Rule R: We initially record m (> 2) observed signals X, ..., Xim from
the i** channel or processor and obtain X;m, S2,, ¢ = 1,2,...,k and the pooled sample

2
variance S2, whose degree of freedom is v = k(m — 1). Let us determine

N = N(S2%) = max {m <h;§3">} , (2.3)

where (y) denotes the smallest integer > y and h = hg p+ . (> 0) is a design constant
that is to be made precise shortly. If N = m, we need no more observed signals from
any processor. Otherwise, that is if N > m, then we record a second sample of (N —m)
observed signals from each processor or channel. Based on the combined datasets from
the two stages of sampling, we define X;y = N~! E;V:I Xij, the over-all mean of N
observations from II; and let W; = |Xin|, ¢ = 1,2,...,k. Then, we select as best the
channel or signal processor that yields the largest W;.

Now, we show that the selection rule R from (2.3), with a proper choice of h, satisfies

the PCS requirement (1.1). But, first we note the following facts that were given by Rizvi
(1971):

(a) For any fixed n, the distribution function of W; is given by:
Fo(w,6,)=® (%—ﬁ(w - 0,-)) -® (?(—w - 0;)) , w20, (2.4)

where ®(-) stands for the distribution function of a standard normal variable.

(b) For every fixed n (> m), the infimum of P(CS|N = n under rule R) over the
preference-zone Q(d) occurs when ) = --- = 0y = 0 and f; = 4. In other words,
6 = (0,...,0,6) is the least favorable configuration (LFC) under the selection rule R
conditionally given N = n whatever n (> m).
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Since the LFC does not depend on n, it follows that the LFC for P(C'S under rule R)
is given by 6 = (0, ...,0,0). Recall our T'(\) from (2.2) and observe that

dT(V)/dA = 2(k — 1) /0 " 20(u) — 112 {d(—u+ A) — d(—u — A)}d@(u),

which is positive since ¢(—u + A) — ¢(—u — A) > 0 for all » > 0 and A > 0. Thus, T'())
is a non-decreasing function in A (> 0). Hence, we have:

Prrc(CS|R) = Ppas(Wiy 2 Wy, i =1,...,k— 1)
= o { [ R @, 0aFn(w.5)
= E, {T (NN/U) } (2.5)
>E {T (h\/W) } (2.6)

where the last step follows since it is obvious from (2.3) that N > h2S2 /§2.

Let g,(u) be the chi-square density with v = k(m — 1) degrees of freedom. Thus, for
a fixed set of values of k, P and m, the PCS requirement (1.1) is clearly satisfied if we
choose A in such a way that

/0 “r (h\/ETJ) 9, (w)du = P*. (2.7)

In other words, suppose that one finds the design constant h = hy p+ n satisfying (2.7)
and implements Jeyaratnam and Panchapakesan’s (1998) selection methodology R from
(2.3). Then, one will have:

emin Prrc(CS|R) > P* whatever be o°. [Ezact Consistency Property] (2.8)
€Q(é)

For its proof, one should refer to Jeyaratnam and Panchapakesan (1998).
The expression
n = A\0?/§° : (2.9)

is regarded as the optimal required fixed number of observed signals from each channel
or processor had o2 been known. Now, from (2.3), one has

which means that on an average the two-stage methodology (2.3) oversamples compared
with n. This may not be surprising because the two-stage selection methodology is de-
signed to work when o2 is unknown to begin with. What may be a damaging characteristic
associated with the two-stage selection methodology is the following property:

2
lim E,2 [%] = % > 1. [First-Order Asymptotic Inefficiency] (2.10)
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The property (2.10) means that on an average the two-stage methodology (2.3) oversam-
ples compared with n even asymptotically, that is, as § becomes small. This is referred
to as the first-order asymptotic inefficiency property.

In Table 2, we have included the values of both kA and A plus the oversampling per-
centages when m = 10,20,30, £ = 2,3,4,5, and P* = 0.95. From these oversampling
percentage figures, one gets a feel that oversampling can be rather substantial, especially
when the pilot sample size m or the number of processors k is small.

Surely, for a fixed k, the oversampling percentages go down as m increases. This is
clear from Table 2. But, in field trials, one may feel uneasy to start with m large in
the absence of any knowledge about o2, because then m itself may overshoot n found in
(2.9)! An appropriate choice of m is crucial and a new practical approach via information
considerations has been put forward in Mukhopadhyay (2005).

In some field trials, one may reasonably assume that o > o, where o,(> 0) is known
from one’s familiarity and experience in handling the kind of experiment and equipment
on hand. Mukhopadhyay and Duggan (1997) first derived asymptotic second-order char-
acteristics of a suitably modified Stein’s (1945, 1949) two-stage procedure. They obtained
asymptotic expansions of the upper and lower bounds for the average sample size (ASS)
and the coverage probability (CP) respectively up to the orders o(1) and o(62) as § — 0.
Mukhopadhyay (1999) subsequently obtained asymptotic third-order characteristics by
proving analogous asymptotic expansions of the upper and lower bounds for the ASS
and the CP respectively up to the orders o(4?) and o(6*) as § — 0. Later, Aoshima
and Takada (2000) gave asymptotic expansions of both the ASS and the CP themselves
up to the orders o(1) and o(4?), respectively, as § — 0. Those asymptotic expansions
given by Aoshima and Takada (2000) are referred to as the second-order asymptotic ef-
ficiency property and as the second-order asymptotic consistency property, respectively.
Such methodologies were successfully extended and implemented in solving some inter-
esting problems in multiple comparisons by Aoshima and Aoki (2000), and Aoshima and
Mukhopadhyay (2002), among others.

In the sections that follow, we assume that ¢ > o, where o.(> 0) is known in the
context of our best SNR selection problem and accordingly modify the two-stage selection
methodology R of Jeyaratnam and Panchapakesan (1998) from (2.3). Then, we provide
asymptotic expansions of the upper and lower bounds for the ASS and the PCS under the
LFC respectively up to the orders o(¢6°) and 0(6®) as 6 — 0. This advances the techniques
of Mukhopadhyay (1999) in obtaining significantly sharper rates of convergences! Then,
we also provide an approach to come up with the optimal choice of a design constant in
lieu of h determined from (2.7).

3. A MODIFIED TWO-STAGE METHODOLOGY
WITH ASYMPTOTIC APPROXIMATIONS

Under the assumption that o > o, where o,(> 0) is known, we modify the original
two-stage selection procedure R as follows. Clearly, the optimal fixed-sample-size n from
(2.9) will exceed A202 /42 and hence we ought to choose the pilot sample size m = A\%02/42.
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Modified Selection Rule R,: We let

oo ().

where mqo(> 2) is a fixed integer and ) is the constant defined by (2.2). According as
(3.1), we initially record m observed signals X, ..., Xim from the i** channel or processor

and obtain Xjn,S2,, i = 1,2,...,k and the pooled sample variance S2, whose degree of
freedom is v = k(m — 1). Then, with a proper choice of h (> 0), we let

N=max{m,<%—§—2m->}, (3.2)

and implement this two-stage selection procedure as we did in the case of (2.3). Based on
the combined datasets from the two stages of sampling, we define X;y = N~! Z;L 1 Xijs
the over-all mean of N observations from II; and let W; = |X;n|, i = 1,2, ..., k. Then, we
select as best the channel or signal processor that yields the largest W;.

Notice that the distribution of the sample size N would involve the parameter o2

alone. Also, the random variables J(N = b) and X, are obviously independent for all
fixed integers b > m, where I(-) stands for the indicator function of (-). Hence, we have
from (2.5) that
Prrc(CS|R.) = Ep2 [Q(N/n)], (3.3)
with
Q(z) = T(A\Vz),z > 0. Denote Q©¥(z) = d*Q(z)/dz*, s = 1,2, ... (3.4)
Note that Q(1) = P*.
The following theorem provides the fifth-order approzimation for the ASS associated
~ with the modified two-stage selection procedure. Recall that an expansion for E,2[N —n]
up to o(1) is referred to as a second-order expansion. This constitutes a non-trivial exten-

sion of what is found in Mukhopadhyay and Duggan (1997, second-order approzimation)
and Mukhopadhyay (1999, third-order approzimation).

Theorem 1. (Fifth-order approximation for ASS) For the modified selection
procedure R, from (3.1)-(3.2), we have as § — 0:

a1p + agp*n~! +azp®n? + agp*n3 + 0o(6%) < E,a[N —n] < (1 + a1p)
+agp®n! + azpn? + agptn + o(49),

where n = A\202/8%, p = 0?02, and the coefficients a1, ...,a4 are defined in (B.2).

Its proof and those of the following theorems are successively outlined in Appendix.

Remark 1. For the second-order approximation, we can obtain that
i) E,2[N —n] = a1p+ 5 + 0(1) [Second-Order Asymptotic Efficiency],
ii) PLrc(CSIR.) = P* +n~1 {QW(1) (a1p + 1) + QP(1)k~*p} + 0(8?)
[Second-Order Asymptotic Consistency),
along the lines of Aoshima and Takada (2000).
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The following theorem provides the third-order approximation for the PCS under the
LFC. This result is slightly different from an analogous third-order approximation found
in Mukhopadhyay (1999). A subtle difference arises because in the Taylor expansion given
by (B.19), we have actually evaluated E,2[n=3(N — n)?] whereas Mukhopadhyay (1999)
used bounds for it.

Theorem 2. (Third-order approximation for PCS) For the modified selection
procedure R, from (8.1)-(3.2), we have as § — 0:

2 2
P*+> oun™ +0(6*) < PLpc(CSIR.) < P*+ ) Bin™" +o(8*),

i=1 i=1

where n = A\202/6%, p = 0%/02, and

a1 =QW(Nap+QP(1) (1+k7p),
az = QW (1)azp® + QA1) (3 + arp+ (k7' + 2a:k™" + 1ai) p°)
+QO(1) (3+71p + $57%0% + ark™10%) + 3QW (1K,

Br=Q0 )1 +ap) + QP (1) (-1 +k7p),
Be = QW (1azp? + QI(1) (k! + 2a:k7" + a?) p*
+QBP(1) (3671 + 467207 + a1k~ p%) + JQW(1)k %02,
with (a1, a2) defined in (B.2).

The following theorem gives the fourth-order approximation for the PCS under the
LFC which is more involved than what we have stated in Theorem 2.

Theorem 3. (Fourth-order approximation for PCS) For the modified selection
procedure R, from (8.1)-(3.2), we have as § — 0:

3 3
P*+) oin~ +0(0%) < PLro(CSIR.) S P*+ ) Bin™ +0(8%),

i=1 i=1

where n = \202/6%, p = 0?/0? and

a1 = QW (Narp+ QP (1) (1 +47p) - V(1) + 3@ (1),

a2 = QW (azp® + QP(1) (3 + arp+ (k7 + 2a1k7* + 1a?) p?)
+QP(1) (-3 —ap+ 57 (3671 + a1) p7)
+QW(1) (3 + 570+ 3K + ap)
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ag = QW (1)asp’
+QD(1) (a2p® + (k7' + k702 + 2%k 7'ay + a1 (219"1 +az)) )
+QO(1) {—azp? + (k'ay (1 + 4k™") + 2k~"a? + La?
+ k7 (3k 1+az))p}
+QW(1) {3+ 3k o+ jap+ k7 (37 + a1) 47 + agfp?
4 (K7 2k Jad) ¢ K (K 2k 4 00+ ) )
+QO(1 )(Zk“2p2+§k 38+ ,f—,k_zalpa) + éQ(ﬁ)(l)k_a 3

A =QW(1) (1+a:p) +QP(1) (-1+k7') + Q¥ (1) - %Q(“)(l),
Bz = QU (1)aze® + QA (1) (k7! + 201k7" + §ai) p°
+QOA) {3 + k7 p+ap+ k7 (8671 + ar) p°}
+QW(1) (-3 -k o+ 3k —a1p),
Bs = QW (1)azp® + QP (1) (k7' + k7 'a? + 2k Yag +ay (2671 + az)) p*
+Q®(1) {3 + tawp+ (k7' + 2k7'ay + 3a}) p* + a2p?
+ (k7'ay (1 +4k71) + 267 1a? + lai‘ +3k2+kla ) p°}
+QW(1) {~1 - laip— (k' + 2k 'a; + al) P — ayp?
+ k7 (K7 4 2672 + Rk lay + 1a) 0%}
+QUIL) (426" + #4725 + bk 70?) + §QO(K-
with (ay, az,a3) defined in (B.2).

The following theorem gives fifth-order approzimation for the PCS under the LFC
which is more involved than what we have stated in Theorem 3.

Theorem 4. (Fifth-order approximation for PCS) For the modified selection
procedure R, from (8.1)-(8.2), we have as § — 0:

P+ Z ain™* +0(6%) < Prrc(CS|R,) < P* + Z Bin™* + 0(8%),

i=1 =1

where n = X202/8%, p = 0%/0? and

o1 = QU(Darp + QA1) (1 +k79) — QV(1) + 3QU()
—3Q%(1) + £Q® (1),
Q(l)(l)azp + Q3 (1) (2 +a1p+ (K71 +2k7'ay + 1a?) p?)
+Q(3)(1) (-3 —ap+ k1 (367" +a1) p°)
+QW() (3 + k7o + 2k720% + a1p) + QV(1) (-3 — k7'p — Zayp)
+QO(1) (5 + 3 o+ jap)
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a3z = Q(})(l)a:%PS
+QP(1) {ap® + (k' + ke + 2k lap + a1 (267 + a2)) 6%}
+Q®(1) {—a2p® + (a1 (k7' + 4k7%) + 27 'al + 1a}
+ 3k + k7 lay) p*}
+QW) {2+ 3k o+ Jarp+ (4k 72 + ap + k71 + 3k + La?) 2
+k7H (k7N 4+ 2672 + Rk lay + 3a)) 0°)
+QO 1) (-} — Lk 'p— Laip + k72 (3K + La1) PP
— (3k72 4+ 3k7la1 + k71 + 1a? + Za,) o7}
+QO() {1+ 2k p+ 17202 + 30 + Larp + k7 (471 + a)) P
+ 3K+ 30+ dad) o+ aar),
as = QW(1)agpt + QP(1) {asp® + (k' + k7" + 2k a3 (1 + a1)
+ 10} + 2k 'ag + ay (267 + a3)) p*}
+Q®(1) {—asp® + (k7 %ad + a? (2 + 4k 7% + lay)
+ k7 lay (14 8k71 +4dag) + k7L (47 + ap + 4k Y0z + ag)) p*}
+QW(1) {& + lawp+ 3k 1+ klay + La? + 1ay) P
+ (4k%ay + §ad + 3k (a1 + 0] + ag) + arae + k1 + §k 7% + a3) p°
+ (@ Gk + 767 + k'l + Lat + k7l (RhTT 4+ 8672 + )
+ k72 (2 + 6571 + Lay)) p*}
+QO(1) {-& - laip— (3671 + k'ay + 1a? + 1ay) P
— (k™' +a1 3k + 4k72 + ay) + 3k 'a? + 2ad + 3k,
+ 567+ 2a3) p° + k71 (a2 (K7 + BE7?) + 8k7ad + §ad
+ k7 (467 + 2K + fan)) p*)
Q) {3+ (o + K1) po+ (R + $ar + 3170+ ol o+ o)
+ G+ 3R+ 2K+ Tk ey + k%0 + 2676l + 2o
+ Ik 'y + 2a1an + Lag) P + K7E (3671 + B2 + Ik7lay + 1a?) o)
+QV (1) (H5720° + 3k7%0* + 4k %a1pt) + QO (150",

Bi=QWM)(1 +ap) + QP (1) (-1 +k7'p) + QV(1) - 3Q1(1)
+309(1) - 2@ (1),

Bz = QW (N)azp® + Q¥ (1) (k7! + 2k "ay + 1a?) p?
+QB) 3+, o+ ap+ k(37 + a1) p7)
+QW(1) (-3 — ko + 3k720% — a1p) + QO(1) (3 + k70 + Ja1p)
+Q@(1) (= — 3k o - jarp),



Bs = QW ()azp® + QP(1) (k71 + k7 'ad + 2k 'az + 0 (267" + ap)) p°

+Q®1) {% + Laip+ (k7' + 2k7"ay + Jai + an) p*
+ (a1 (k7 + 4k72%) + 2k a? + Lad + 8k + kT lag) 0%}

+QW(1) {1 - fa1p— (k7' + 2k 'a; + La? + a3) p?
+ k71 (k7 + 2672 + Qi lag + 1a2) PP}

+QOM) L+ 3k o+ Jaip+ k7% (3671 + Lan) PP
+ (Lk72 + ark ™' + k71 + 2k 7tay + 2a? + 2a,) p?)

+QO) {-3 -k p - 1k + 1k730% — tawp
- (%k_z + alk_l + %k—l + %k'lal + %a? + %az) p2} ’

Br= QY (1)asp* + QP1) (k' + k7'a? + ap (26" + 2k 1ay)

+ 103 + 2k az + a1 (267  +a3) } p*

+Q®(1) {3asp® + (k' + k7'a} + 2k "z + a; (267" + a3) + a3) p°
+ (k7a® + 0% (2671 + 4k7% + Lap) + k7 'ay (14 8k7" + 4ay)
+ k7! (4k7! + ap + 4k lay + a3)) p*}

+Q“¥(1) {—%a2p2 - (k' +ka? + 2k + o (267! + ag) + a3) p°
+(a? Bk + 7672 + k76l + Lal + ke (BETT 4857 + ag)
+ k2 (2+6k71 + Lag)) p*}

+QOM) {4 + o+ tap+ B2+ 3k 0 + Jao + 267 + 1ad) P
+ (k“l + %k‘z +2k72 + 3k la;, + -23219"201 + %k"laf + %a:f
+ 3k 'az + araz + 2a3) p° + k7 (§a} + Sk 70l + ag (K7 + BE7?)
+ k71 (471 + 2572 + La2)) o}

+QOW [~ ~ ko~ o
- e+ o+ o K (7 + o))
-Gk - Bk -2k - Tk7lay — 2k 7%y — Rk7a} - La}
Y0 = B~ Jaa) 4 K7 (B B+ B+ 1) )

+QV(1) {$5730° + 3k7%p* + 5k a1p*} + QP (1)K,

with (a1, az,as,a4) defined in (B.2).

Remark 2. It should be noted that the average of the coefficients of order n™*, namely
(o + 3;)/2, remains same among three approximations found in Theorems 2-4 for the
PCS under the LFC. In view of Remark 1 (ii), it is shown that |Prrc(CS|R.) — {P* +
(a1 + B1)n1}| = o(6?). In Section 4, we investigate the role of the expression P* +
Si_1 3(ci + B;)n~* as an approximation for the PCS under the LFC.

4. AN APPROXIMATION FOR THE OPTIMAL
DESIGN CONSTANT

The question we address now is this: Can we find a suitable design constant h, so
that the associated modified two-stage selection methodology R, from (3.1)-(3.2) would

152



have higher-order asymptotic consistency property, namely Prpc(CS|R.) = P* + o(6®)
as § — 07 In view of Remark 2, we feel that we should be able to come up with such h.,
which will then be referred to as an “optimal” choice given the sharpest rate of convergence
available at this point. The following results give precise statements of what is at stake.

Theorem 5. (Optimal design constant) For the modified selection procedure R,
from (3.1)-(3.2), we have as § — 0 that

P*+ 3 §(0i + Bin™ = P* + 0(¢) (4.1)
if the design constant h? used in (3.2) can be asymptotically ezpanded as follows:
h? = X2 (1 4+ aym™ + agm~2 + agm =3 + agm™*) + o(m™4). . (4.2)

Here, m comes from (3.1), and p = o%/0?, Q; = QW (1)/QM(1), j = 2,..,8, with
a; = ai(p), 1 =1,...,4, defined as:

ar(p) = —3p7 = k71Qy,

az(p) = —(80*) ' Q2 + (kp) ' Q2 — k7' Qa + 2k72Q0° — K77Q)°
—3k72Q3 + k2Q2Q3 — 3k7%Q4,

a3(p) = —k71Qz — 1(kp®) 7' Q2 + (kp)'Q2 + 3(kp*) Q3 + 4k72Q3
—3(k*p)71Q5 — 3(kp*) Q3 — k72Q5 + (K?0) Q3 — 5k3Q3
+3k7%Q5 — 1k7°Q5 — 8k72Qs + 2(k%0) ' Q3 + 1(kp?) ' Q2Qs
+2k7%Q2Qs — 2(k%0) ' Q2Qs + Rk 2Q2Q3 — 2k73Q3Qs
+3673Q3Qs + $57°Q% — k3Q2Q% — L(kp*) ' Qs — k°Qs
+(k*0)7'Qa — 2k73Qu + BE73Q0Qu — kT2Q3Q4 + 3k7°Q3Q4
—3k73Qs5 + 357°Q20Q5 — 1k73Qs,

ay(p) = —k7'Qa2 — 1(k0*) Q2 + (kp) ' Q2 — 3(k0*) Q5 + (k0*) Q3
+3(F0%)71Q5 + 6k7%Q% — 6(k*p) 1QF — 3zp 4@ + 3 (k0°) Q3
—3k72Q2 — (k") Q3 — J(K*")1Q; + 10(K°0) Q2
+2(k%p) 7' Q5 — 15k 73Q3 + 3(K*0*)'Q) — R (K°0) 7' Q3
+14k™4Q5 + 9%k 7%Q% — 2 (K%0%) Q5 — 2k7%Q5 + (k%) Q3
—14k™4Q5 + 5k Q3 — 2k 7Q] — 4k72Qs — (K%0%) Qs
+4(K2p) Qs + g1p 1Q2Qs — (kp®) ' Q2Qs + (ko) ' Q2Qs
+3k72Q2Qs + 2(k%0?) 1 Q2Q5 — 4(K*p) 1 Q2Qs + 20k 2Q2Qs
—2(k*0) ' Q2Q3 — 22k7°Q3Qs — 28k7*Q3Qs + 5k Q3Qs
—3(K°0*) ' Q3Qs + B (K0) ' Q3Qs + 3 (K1) ' Q3Qs
~5(k°p) ' Q3Qs + 42k Q3Qs — $k*Q3Qs + Bk Q305
FH) Q4+ 0k-0G] — B(ktp) 1+ k-4
—3(K0%) 7 Q2Q] — 3k7°Q2Q] + 3(k*p) ' Q2Q3 — 1k Q203
+57Q7Q — HEQ3Q5 — 3K 7UQ3 + k1 Q2Q3 — 370 Qs
+3(kp*)1Qa — 2(kp")71Qu — 3k72Q4 — 3(K20P) ' Qa + 2(K*0) Q4
—6k73Q4 + 4(k3p) Qs + K (K20%) 1 Q2Q4 + 135 73Q2Q,
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—B(k%p) 71 Q2Qa + 12k74Q2Q4 — 3(K*0?) ' Q3Q4 — 3k 3Q3Q4
+3(k%p) 'Q3Qs — BEQ5Qu + 12k7'Q3Qs — BEQ5Q4

+2 (K 0%) ' Q3Qa + 357%QsQs — 3(K%p) 1 Q3Qs + BEQ3Qq

— 85 Q2Q5Qs + RETQIQ3Qu — 1k7*Q2Q + 3574Q]
—~3k7QaQ2 — L(K?p?) Qs — 4k 3Qs + B(k*p)'Qs — BEQs
+L(K0%) Q205 + 367°QaQs5 — 2(K3p) Q205 + 2k Q0Q5
6k Q3Qs + Bk Q305 + 2k Q3Qs — kT1Q2Q3Q5 — 1k73Qs
+35k7QuQs — % (K0°) Qs + 1 (K%p) Qs — Bk Qs + §E1Q2Qs
—2k7'Q2%Q6 + 3k 71Q3Q6 — 2k74Qr + 1K7*Q2Q7 — LK *Qs.

Remark 3. The specific design constant h satisfying (2.7) was used in (2.3) so that one
could claim the ezact consistency property found in (2.8). This specific design constant
h? can also be asymptotically expanded in the following form:

A2 (1 +aygm 1+ agEm“"’ + a3Em‘3 + a4Em"4) + O(m_5), with
arg = ak™}, ap = ak™! + bk7?, azgp = ak™! + 2bk2 + ck~3, (4.3)
and a4p = ak™! + 3bk~2 + 3ck~3 + dk 4,

with the coefficients a;b,c, and d the same as those in Lemma 1 in Section B.1. From
Remark 1, one has as § — 0O:

i) Ep2[N —n] = —k7'Qap+ 5 + 0(1) for (2.7), —k™'Qzp+0(1) for (4.2),
i) PLro(CS|R.) = P* + in71QW(1) + 0(d2) for (2.7), P*+o0(6%) for (4.2).

It may also be noted that lim,_,o a;(p) = a;g, i =1, ...,4. In view of Theorem 5, we can
see that the specific design constant h satisfying (2.7) that was used in (2.3) to claim the

exact consistency property is optimal in our sense when o? is large or o2 is poorly set.
Y perty « 18D y

Now, since the optimal design constant given by Theorem 5 involves the unknown
parameter o2 through p (= 0%/0?), we give an approximate (asymptotic) optimal design
constant h involving S? instead of 0%. The following theorem shows that the modified
two-stage selection procedure R, from (3.1)-(3.2) with such estimated design constant h
would also enjoy the asymptotic consistency property as 6 — 0 at the same rate as o(6%)
that was given in Theorem 5.

Theorem 6. (Asymptotic optimal design constant) Consider p (= 0%/02) and
suppose that we estimate it with p = S?,/0? where S?, is the pooled sample variance based
on the pilot data from all k channels or signal processors. Define a;(p) where, that is to
replace p with p in the expressions of a;(p), 1 = 1,2, 3,4, which were given in Theorem 5.
Now, for the modified selection procedure R, from (3.1)-(3.2), we have as § — 0 that

P+ 31 Hos + Bi)n = P* + o(6®) (4.4)
when the design constant h? used in (3.2) is replaced by h? that

B2 = X2 (14 aym™ + Gom™2 + agm™3 + am™4). (4.5)



Here, m comes from (3.1), and &;, i = 1,...,4, are defined as:

a; = al(ﬁ),

Gy = ag(p) — (kD) ™' Qq,

a3 = a3(p) + ;(kp*) 7' Qa2 — (k%) Q3 — (kp) Q2 + 3(K%5) Q3
—(K*0)7'Q5 — 2(K°5) ' Qs + 2(K*5) ' Q2Q3 — (K25) ' Q4

as = a4(p) — %(kﬁs)"ng + %(kﬁs)_leQs - %(kﬁs)—lQ&
+3(60") Q2 + §(K*P7) Q2 — F(kAY) Q5 — 2(K* %) Q)
+(k5%)71Q3 — (K*8%)7'Q5 + (K%6%)71Qs — F(K*5%) ' Q2Qs
+2(k%6%) Q305 + 3(K25) 71 Qs — (K*5%) ' Q2Qa — (Kp) ' Q2
+6(k2)71 Q8 — 2(k25) Q8 — 10(k%5)1 Q3 + B(k%5) Q4
—3(K°0)7'Q5 - 4(K*D) 7' Qs + 4(K*H) ' Q2Qs + D(k°0) ' Q:Qs
—-2(K*0)7'Q3Qs + 5(K*5) ' Q3Qs + R(K*5) 7' Q3 - 3(k*5) ' Q2Q3
—2(k%5) 7' Qa — 4(K*5) ' Qu + L(k°5) ' Q2Q4 — 3(K*5) 1 Q2Q4
+%(k3ﬁ)—lQ3Q4 - 1§°(k3ﬁ)_1Q5 + %(ksﬁ)_leQs - %(k:;ﬁ)-le-

APPENDIX A:
TABLES FOR EVALUATING THE APPROXIMATIONS

A.l1. Evaluations of Approximations

Table 1. Values of Q¥)(1), i =1, ...,8, and

Qi =QW(1)/QM(1), i=2,..,8

k 2 3 4 5
P* =0.95
QW(1) 0.110433 0.128363 0.138330  0.145240
Q?(1) -0.251373 -0.331680 -0.379901 -0.415017
Q®(1) 0593235 0.862970 1.029791  1.154240
QW(1) -1.459467 -2.261786 -2.728646 -3.064282
Q®(1) 3.757703 5.973744 6.942852  7.451249
Q©(1) -10.14030 -15.90426 -16.33991 -14.78087
QM(1) 2864187 4269261 32.12851 11.59280
Q®(1) -84.36110 -115.5652 -30.60812 106.1388
Q2  -2.276250 -2.583910 -2.746334 -2.857460
Qs 5371897 6.722862 7.444437 7.947124
Qs  -13.21586 -17.62018 -19.72559 -21.09807
Qs 34.02700 46.53774 50.19041  51.30302
Qs  -91.82307 -123.9003 -118.1225 -101.7686
Q7  259.3507 332.5917 232.2594 79.81823
Qs  -763.9121 -900.2970 -221.2684 730.7824
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Table 1. (Continued)

k 2 3 4 5
P*=0.90
QW(1) 0.155875 0.188437 0.205769  0.217630
Q?(1) -0.251706 -0.357508 -0.418285 -0.461816
Q®(1) 0423512 0.683192 0.832424 0.938673
QW) -0.745775 -1.315539 -1.595362 -1.761299
Q®(1) 1.377195 2.553347 2.846286  2.765058
Q®(1) -2.664714 -4.996568 -4.326876 -2.196113
QM) 5.383323 0.859685 3.716734 -8.422874
Q® (1) -11.29565 -19.62083 9.589869  62.92136
Q.  -1.614792 -1.897227 -2.032784 -2.122022
Qs 2716993 3.625567 4.045422 4.313159
Qs  -4.784426 -6.981306 -7.753152 -8.093088
Qs  8.835226 13.55011 13.83240 12.70531
Qs  -17.09515 -26.51580 -21.02778 -10.09104
Q7 3453606 52.32341 18.06261 -38.70271
Qs  -72.46586 -104.1239 46.60492  289.1207

Recall the specially defined function Q(z) from (3.4) and its s**-order derivative denoted
by Q¥ (x) = d*Q(x)/dz®,s = 1,...,8. Also, we have denoted @Q; = Q¥ (1)/QM(1),i =
2,...,8. In evaluating the upper and lower bounds found in the Theorems 1-4, one would
first need Q)(1) and @, for s = 1,...,8. In Table 1, we have provided values of these
expressions when k£ = 2,3, 4,5 and P* = 0.90,0.95.

A.2. Design Constant, Its Role, and Optimality
Table 2. Values of the design constants Ag p« from (2.2), hg p»  from

(2.7) and its approximation error (h — r'/2)), within parentheses, given
by Lemma 1, and the oversampling percentage when P* = 0.95

m k=2 k=3 k=4 k=5
A = 2.756050 A = 3.079897 A = 3.258250 A = 3.380284
10 h = 2.939961 h = 3.233331 h = 3.386455 h = 3.490330
(0.000135453) (0.000079433) (0.0000487757)  (0.0000339652)
h?/)? ~ 1.14 h?/X2 ~1.10 h2/)\? ~ 1.08 h%/2? ~ 1.07
Oversampling 14% Oversampling 10% Oversampling 8% Oversampling 7%
20 h = 2.840716 h = 3.151045 h = 3.317990 h = 3.431726
(4.21803 x 107%)  (3.00188 x 107%)  (1.78956 x 107%)  (8.11535 x 10~7)
h?/X? ~ 1.06 h?/)2 ~ 1.05 h?/)2? ~ 1.04 h?/\? ~ 1.03
Oversampling 6%  Oversampling 5% Oversampling 4%  Oversampling 3%
30 h = 2.811036 h = 3.126206 h = 3.297192 h = 3.413850
(5.31065 x 10-7)  (7.00935 x 10~7)  (5.28897 x 1077) (~—7.39785 x 107%)
h2/)2 ~ 1.04 h2/A? ~ 1.03 h2/)? ~ 1.02 h2/2% = 1.02

Oversampling 4%  Oversampling 3%  Oversampling 2%  Oversampling 2%

Recall that the constant A = Ag p+ from (2.2) was needed for the determination of n =
X202 /62%, the optimal fixed sample size from each channel. On the other hand, h = hi pr m
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from (2.7) was required to implement the selection methodology R from (2.3). Table 2
provides the values of A\x p« and hy p« , for k = 2,3,4,5, P* = 0.95, and m = 10, 20, 30.
On the second line of each block in Table 2, we have also provided the value of A — r/2)
within parenthesis when r was determined via Lemma 1 from Section B.1. We had already
remarked about the ratio h?/A? both in and underneath (2.10). It should be obvious
from Table 2 that the magnitude of oversampling relative to n can be quite substantial,
especially when k& or m or both are small.

APPENDIX B:
ADDITIONAL LEMMAS AND SELECTED
OUTLINES OF PROOFS OF THEOREMS

In this appendix, we do not show all the details of proofs. Rather, we systematically
state a number of lemmas in order to provide road-maps for some of the crucial expansions
needed for numerous intermediate links. This will hopefully help readers to connect the
dots in order to come up with full-blown proofs of our theorems stated in Sections 3 and
4. We approach this way not because the formal proofs are trivial extensions of known
results. We do this to keep the length of our presentation within reason.

B.1. Additional Lemmas

The following result is a generalization of Lemma 1 in Aoshima and Takada (2000).
Its proof is omitted.
Lemma 1. Suppose that Q(z) is a distribution function with x > 0 such that there

exists constants ¢; > 0, |o;| < 00, i =1,..., s, for which

(i) QU9(z) is continuous at x = 1;
(ir) QU (x)| < i, ciz™ in a neighborhood of T = 1.

- Then, the constant v (> 0) such that E [Q (rx2/v)] = Q(1) is asymptotically given by

r=1l+av '+ i+ 3+dvt+0W™), (B.1)
where x2 is a chi-square random variable with v degrees of freedom, Q; = Q¥ (1)/QM(1), i =
2,...,8, and

a=—Q,

b=2Q3 - ;Q3 - $Qs + Q:Qs — 3Qu,

c= ~503 + 304 - 103 + $@:Qs - 2Q1Qs + $Q5Qs + §03
—2Q3 —2Qs + 1—§Q2Q4 - Q¥Q. + %Q3Q4 — %Qs + %QzQ _ %Qs,

d = 14Q% — 14Q5 + 5Q8 — Q7 — 28Q2Qs + 42Q3Qs — 2Q4Qs
+H08Qs + Q8 - 00:0% + $2301 - 30302 - 45
+Q2Q3 +12Q2Qs — FQ7Q4 + 12Q3Q4 — 5Q2Qu + FQsQu
~-80,Q5Q4 + 2Q2Q3Qu — Q204 + Q% - $Q,Q2 — ¥Qs
+%0Q,Q5 — 6Q3Q5 + HQ3Qs + 2Q5Qs — Q2Q3Qs + 1Q4Qs — $Qs
+3Q2Qs — TsngQs +3Q3Q6 — 2Q7 + 1Q2Q7 — 5 Qs.
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Now, we let 7 = h%/)\? with A and h coming from (3.1) and (3.2) respectively. Let us
formally write
r=1l+am +am2+asm> +am™*+ o(m™%), (B.2)

where the coefficients a,, ..., a4 are free from m and 4.

We note that the function Q(z) defined in (3.4) satisfies the sufficient conditions (i)
and (ii) described in Lemma 1. Now, utilizing (2.6) and Lemma 1, it follows that if the
selection procedure R has the exact consistency property, then we must have:

r=1+am*+am?2+aym3+am*+0(m?), with
a; =ak™!, ay = ak 1+ bk2, a3 = ak™! + 2bk~2 + ck 8,
and a4 = ak™' + 3bk~2% + 3ck3 + dk—4.

The following two lemmas can be proved using techniques similar to those found in
Mukhopadhyay and Duggan (1997).

Lemma 2.  For the modified selection procedure R, from (8.1)-(3.2), consider the
stopping variable N. Then, we have as 6 — O:
Fp2(N =m) = O(n"),

where n = p~texp(1—p~1) with p = 0%/0? so that p~! is a positive proper fraction. Here,
K is a positive number that may be chosen as large as possible.

Lemma 3.  For the modified selection procedure R, from (8.1)-(8.2), consider the
stopping variable N. Then, we have as § — 0:
(1) nY3N -n)5 N(0,2p) as § — 0;
(2) n YN —n)? is uniformly integrable for 0 < 6 < & with sufficiently
small &,

where n = A\202 /6% and p = 0%/02.

The following two lemmas are very crucial in our investigations for deriving asymp-
totic expansions of various characteristics beyond second- and third-order. The required
techniques are substantially more involved than what one finds in Mukhopadhyay and
Duggan (1997) or Mukhopadhyay (1999).

Lemma 4.  For the modified selection procedure R. from (8.1)-(8.2), consider the
stopping variable N. Then, we have as 6 — 0:

(1) Bafn™ (N = m)] = 07 (§ + a1p) + o(n™Y),

(2) Ep2[n"3(N - n)?] = n7Y(2k71p) + o(n~%/?),

(8) Ep2[n3(N —n)*| = n~%(8k™ p + 6a, k1 p? + 8k~2p?) + o(n72),

(4) Ealn™*(N — n)"] = n=2(12k%%) + o(n"%/2),

(5) E,2[n 5(N — n)®] = n=3(30k~2p? + 60a:k~2p® + 160k —3p%) + o(n %),

(6) Eye[n 8(N —n)] = n~3(120k~34%) + o(n""/?),

(7) Ep2[n"(N = n)"] = n (4205 3p® + 840a;573p* + 3360k *p*) + o(n™%),

(8) Epa[n~8(N — n)®] = n~4(1680k~*p*) + o(n™%),
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where n = A\20%/8%, p = 0%/0?, and a, is given by (B.2).

Proof of Lemma 4. Here, we provide only a sketch. Let us write that

h2S2, h2S2\  h2SZ h2S?
N=" +(< s >~ > )+(N—< 52m>). (B3)

We note that h2S? /6% = nrx?/v with r = h2/)\? and v = k(m — 1). Now, using tech-
niques similar to those in Hall (1981) and Aoshima and Takada (2000), we can claim
that U = (h252%/6%) — h2S2 /62 is asymptotically distributed as U(0,1). Also, with
D = N — (h?S2,/6%) and using Lemma 2, we can show that E,2(D?) converges to zero at
an arbitrarily fast rate, whatever be g (> 0) fixed.

Now, without any loss of generality, let § (> 0) converge to zero through a sequence
such that A\202/6% remains an integer and we may write m = A\%02/6%. From (B.2), we
can express 7 = 1 + A where

A= pnHay + azpn”! + a3p’n % + agp®n %) + o(n7Y). (B.4)
Let Y = x2/v — 1. Then, from (B.3), we have:
n"Y(N-n)=A+(1+AY +n U +n"'D. (B.5)
Noting that E(Y?"!) = O(v*) and E(Y?*) = O(v™*), s = 1,2, ..., it follows that
Ep2[n*(N —n)?
_ [ EY*)+sn Y aip+ EY ") +o(n~ /2, s=1,3,... (B.6)
T E(Y®) +o(ne+V/2) 5 =24, ...

Some simple calculations would now yield the results. O

Lemma 5.  For the modified selection procedure R, from (8.1)-(8.2), consider the
stopping variable N. Then, we have as § — 0:

L, < Epxn™(N-n)"]<U, s=1,2,..,8,
where n = X202/8%, p = 0?/02, (ay,...,a4) are given by (B.2), and

Ly = a;pn 4 agp*n~? + agp®n=3 + ayp'n~* + o(n7?),

Ur = (a1p+ 1)n" ! + agp’n™2 + azp®n=3 + agpin~™ + o(n™*); (B.7)
Ly = (—2+2k7Yp)n™! + (2k7! + 4k~2a; + a?) p*n~2
+2{k™ 1 + ka? + 2k Yay + a; (2k! + ap)} pPn 3
+ {4k 'az (1 + a1) + a2 + 2k~ + 2k a? + 4k~ lag

+ 2a1 (2k7 + a3)} pin~t + o(n7Y), (B.8)

Uy = (2+2k72p)n~t + {1 4+ 2a:p + (2™ + 4k~ tay + a2) p*} n~2
+{2a20% + 2 (k™Y + k712 + 2k~ Yay + a3 (2k71 + @2)) P} 73
+ {203[73 + (4]0_10,2 (1 + a1) + a% +2k7 1 + 2k‘1af + 4k”1a3
+ 2a; (2k7! + a3)) p*} n~% + o(n?);
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Ly = —6n"1+ {-3 —6aip+ 2k~ (4k7' + 3a;) p*} n2
+ {—6agp® + (6k~ta; (1 + 4k71) + 12k~2a? + a}
+ 2k~ (8k™! + 3ay)) pP}n3
+{—6a3p® + 3 (2k7'ad + 2k~ (4k~! + az + 4k laz + a3)
+ 2k7Ya; (1 + 8k + 4ag) + a;% (471 + 8k~2 + a3)) p*} ™% + o(n?),
Us=6n"1+{3+6k 1p+6a1p+2k~' (4k~! + 3a;) p?} n2 (B.9)
+ {1+ 3a1p+ 3 (2k7! + 4k~ ta; + a4?) p? + 6agp?
+ (@1 (6k71 + 24k72) + 12k~ 'a? + a3 + 16k~% + 6k1ay) p*} n~3
+{(8azp? + 6 (k! + k~1a? + 2k 'az + a1 (2k7! + a2) + a3) p°
+3(2k71ad + a2 (4k~! + 8k + ap) + 2k 1a; (1 + 8k~ + 4ay)
+ 2k~ (4k7Y + ag + 4k7tag + a3)) p*} nt + o(nY);

Ly=—16n"1 + (=12 — 24k~ 1p + 12k~2p® — 24a,p) n2
+{—4—12a;p — 12 (2k7! + 4k~ 'a; + a? + 2a,) p?
+ 4k~ (6k~1 + 12k~2 + 20kta, + 3a2) p¥} n3
+{—12az0% — 24 (k™' + k7 'a? + 2k~ Yay + a1 (27! + a3) + a3) p°
+(12ka? (1 + 14k7) + 8k~ ta; (4k! (5 + 6k71) + 3a3)
+24k~1a} + a + 4k~2 (9 + 36k + 20a,)) p*} n™* + o(n™*),
Ug = 16071 + (12 + 24k~ p + 12k2p? + 24a,p) n 2
+{4+12k71p + 12a;p + 8k~ (4k~! + 3a,) p? (B.10)
+ 12 (2k™! + 4k~ta; + a? + 2a5) p?
+ 4k~ (6K (1 + 2k 1) + 20k 'ay + 3a?) p3}n~3
+ {1+ 4a1p + 6 (2k + 4k 1a; + a? + 2a;) p?
+24 (k7 + k7 'a? + 2k tag + a1 (2k7! + ap)) B
+4 (a; (6k~! + 24k~2) + 12k a2 + a3 + 2k~ (8k~! + 3ay)) p°
+ (126102 (1 + 14k~1) + 8k~1a; (4k~" (5 + 6k™1) + 3az) + 24k~143
+ 4k™2 (9 + 36k~ + 20az) + af) p* + 24a3p®} n~t + o(n™*);

Ls = —40n~! + (—40 — 120k~1p — 80a;p) n 2
+{—20 — 60k1p — 60a;p — 40 (4k~2 + 3k la; + 2a;) p?
— 60 (257! + 4k~ 'ay + a?) p? + 20k~% (8k~! + 3ay) p*} 3
+{=5 — 20a,p — 30 (2! + 4k~'a, + a? + 2a3) p?
-120 (k_l + k‘1a§ + 2k"1a2 +a (2k_1 + az)) p3
—20 (6k~ta; (1 + 4k™1) + 12k~ 1a? + @} + 2k~ (8%~ + 3ay)
+ 4ag) p® + 4k~ (10kta, (3 + 26k 1) + 80k a2 + 5a?
+ 3k~ (8k71 (5+ 4k71) + Bay)) p} nt + o(n7?),
Us = 400" + (40 + 120k™p -+ 80a, p) n~2 (B.11)
+ {20 + 60k~1p + 60k~2p? + 60a;p + 40k~ (4k + 3a;) p? + 80azp?
+60 (27! + 4k~ tay + a?) p? + 20k™2 (8k~! + 3a;) p3} n3
+ {5 =+ 2Ok’1p + 20a1p + 20k~1 (4]9_1 + 30.1) p2 + 60a2p2
+30 (2k! + 4k ta; + a?) p? + 20k (6K~ + 12k72 + 20k la,
+3a?) p® + 120 (k7! + k7 'a? + 2k lay + a; (27! + a)) p°
+20 (6k~1a; (1 + 4k71) + 12k a2 + ad + 2k~ (8K~ + 3a,)) p°
+4k~1 (10k~1a; (3 + 26k71) + 80k~'a? + 5a3
+ 3k71 (40k~1 + 32k~2 + 5az)) p* + 80azp®} n™* + o(n%);



L¢ = —96n~! + (—120 — 480k ~!p — 240a,p) n~2
+ {—80 — 360k ~1p — 360k2p? + 120k 3p® — 240a1p — 240ayp?
—240k™1 (4~ + 3a,) p? — 240 2k~ + 4k~la, + a?) p?} 3
+ {30 — 120k~1p — 120a1p — 120k} (4k~" + 3a;)
~180(2k~! + 4k, + a?) p? — 240azp?
—120k~" (651 (1 + 2k~Y) + 20k~"a; + 3a2) p°
—480 (k71 + k7'a? + 2k tagy + a1 (2k7 + ap)) p°
—120(6k'a; (1 +4k71) + 12k 2a? + ad + 2k~ (8™ + 3a,)
+ 2a3) g + 20k~2 (2k~1 (9 + 52k~1) + 84k~1a, + 9a2) p*} n
+o(n*),
Us = 96n~" + (120 + 480k~p + 240a, p) n~2
+ {80 + 360k~1p + 240a,p + 360k~2p? + 240k~ (4k~! + 3a,) p?
+ 240 (2k7! + 4k~ 1a; + a?) p? + 240a2p? + 120k~3p%} n =3
+ {30 + 120k~1p + 180k~2p% + 120a1p + 120k~ (4k~* + 3a,) p?
+120k72 (8k~! + 3a;) p° + 180 (2k™! + 4k~ la; + a;?) p?
+240a2p? + 120k~ (6k~1 (1 + 2k~1) + 20k~1a; + 3a2) p°
+120 (6k~2ay (1 +4k71) + 12k~ 1a? + a3 + 2k~ (8k ™! + 3az)
+ 2a3) p* + 480 (k™1 + k~ta? + 2k 1ay + a1 (2k71 + ap)) pB
+ 20k~2 (2k71 (9 + 52k71) + 84k la; + 9a?) p*} nt + o(n7?);

L; = —224n"1 + (—336 — 1680k~'p — 672a,p) n~2
+{—280 — 1680k ~1p — 2520k~2p? — 840a,p — 672a5p>
— 1120k~ (4k~! + 3a;) p? — 840 (27! + 4k~ la; + a?) p?}n 3
+ {—140 — 840k~1p — 1260k~2p? — 560a; p -+ 840k =3 (k1 + a;) p*
—840k~1 (4k~" + 3a,) p? — 840k~2 (8k~" + 3a,) p?
—840 (27! + dkta; + a?) p? — 840ayp?
—840k~! (6K (1 + 2k~ 1) + 20k~ *a; + 3a?) p®
—1680 (k7! + kta? + 2k~lay + a; (27! + a2)) p°
—560 (6k~1a, (1 + k™) + 12k~1a2 + o
+ 2k71 (8k™! + 3ag)) p* — 672a30%} n™* + o(n™4),
Ur = 224n~" + (336 + 1680k~p + 67241 ) n 2
+ {280 + 1680k ~p + 2520k 2 + 840, p + 672a20°
+ 1120k~ (4k~! + 3a1) p? + 840 (2k~! + 4k~ la; + a?) p*}n3
+ {140 + 840k~ p + 1260k ~2p% + 840k~3p® + 560a, p
+840k~3 (4k~! + a;) p* + 840k~ (457! + 3a;) p?
+840k~2 (8k~1 + 3ay) p® + 840 (2! + 4k~lay + a?) p?
+840k~1 (6k~! (1 + 2k~1) + 20k~ 'a; + 3a?) p®
+840a,0% + 1680 (k! + k~a? + 2k~ Yay + a; (2k™! + ag)) p°
+560 (6k~ta; (1 +4k~!) + 12k 1a? + a2
+ 2k~ (8k! + 3az2)) p® + 672a3p%} n™* + o(n™4);

(B.12)

(B.13)
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Lg = —512n! + (—896 — 5376k ~1p — 1792a,p) n 2
+ {896 — 6720k "!p — 13440k~2p? — 2688a,p — 1792a,p°
— 4480k~ (4k~! + 3a;) p* — 2688 (2k~* + 4k'a; + a?) p?} n~3
+ {—560 — 4480k ~'p — 2240a;p — 10080k ~2p? — 2688ap”
—4480k~ (4k™1 + 3a;) p? — 3360 (2k~1 + 4k~tay + a?) p?
—4480k! (6K~ (1 + 2k~1) + 20k~ 1a; + 3a) p?
—5376 (k™! + ka2 + 2kYay + a; (2k7! + ap)) p?
—2240 (6k~'a; (1 + 4k™Y) + 12k 'a? + ad + 2k (8k! + 3a,)) p°
— 6720k2 (9% ! + 3a;) p® — 1792a3p° + 1680k ~4p*} n=* + o(n™*),
Us = 512n~! 4 (896 + 5376k~1p + 1792a,0) n~2
+ {896 + 6720k~ p + 13440k~20? + 2688a,p + 1792ap?
+ 4480k~ (4k~! + 3ay) p? + 2688 (2k ! + 4k~ a; + a?) p?} n3
+ {560 + 4480k~1p + 10080k ~2p? + 6720k ~3p% + 1680k~*p* + 2240a,p
+4480k~! (4k™! + 3a1) p® + 3360 (2k~ + 4k~1a; + a?) p?
+4480k~1 (6k~1 (1 + 2k~1) + 20k~La, + 3a2) 58
+2688a2p° + 5376 (k1 + k~'a? + 2k~ ay + a1 (267! + a3)) p°
42240 (6k~1ay (1 + 4k~1) + 12k~'a2 + a? + 2k~ 8k~ + 3a2)) p°
+6720k~2 (8k™! + 3a1) p® + 1792a3p3} n™4 + o(n=*).

(B.14)

Proof of Lemma 5. Let us define

242
T = max {m, h;’"} . (B.15)

Note from Lemma 2 that m*F,2(T = m) converges to zero at an arbitrarily fast rate,
whatever be s (> 0) fixed. Hence, we can show that

Ep[n™*(T —n)°] = Ex[(rY + A)°] +o(n™*) (B.16)

as § — 0, where Y = x2/v — 1 and A was defined by (B.4). Since T < N < T +1, in
view of (3.2) and (B.15), one observes

LsO ..<.. n—s(N - n)s S UsO
with
Lo =T°n"*—s(T +1)*'n!° + 1s(s — 1)T**n®* — ... 4+ (-1)°, (B.17)

Up=(T+1)’n~* —sT* 'n'° + 1s(s = 1)(T+1)* 2n®° — ... + (-1)°.  (B.18)

Now, by combining (B.17)-(B.18), (B.16), as well as E,2[L,o] and E,2{U,] yield the desired
results. . O

Lemma 6.  For the modified selection procedure R. from (3.1)-(3.2), consider the
stopping variable N. Then, we have as § — 0:

E,2[n8(N — n)BQ®(W)] = 1680k 4p*Q® (1)n~* + o(n™*),

where W is a random variable between Nn~! and 1, with n = \20%/6?%, and p = 0?/0?

*°
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Proof of Lemma 6. Note that Q(z) meets the conditions (i)-(ii) in Lemma 1. Then, the
result can be obtained in a way similar to Lemma 3.1 in Mukhopadhyay (1999). a
- B.2. Proofs of Theorems

Proof of Theorem 1. The result is obtained from (B.7) in a straightforward fashion. O

Proofs of Theorems 2-4. From (3.3), recall that Prpc(CS|R.) = E,2[Q(N/n)]. Now,
with some suitable random variable W between 1 and Nn~!, we can write:

o [Q (%)]

—P*+Q<1>(1)E,,= [222] + 1Q®() B | (X52)
+10®(1) [ )} 1Q(4)(1Ez LV_:_.) (B.19)
meﬂ(l)E,z [( “)]+ HQO()E [(%52)

+ #aQM(WEs [(%2)'] + mémEz[(”,,") Q“’( )] -

In what follows, sometimes we write E, instead of E,:[n"*(N — n)®], s = 3,4,..,,8,
which are given by Lemma 4, parts (3) through (8). Also, recall the expressions of L,
and U,, s = 1,2, ...,6, which are given by (B.7) through (B.12) in Lemma 5. Now, note
that Q@(1), Q¥ (1) and Q® (1) are all negative. Thus, in view of Lemma 6, as § — 0,
we obtain the following results.

Third-Order Approzimation: P*+ LiQW(1) + 1U,Q®@ (1)
+5E:Q% (1) + 5 E.QW(1) + 0(6*) < E [Q (F)] < P* (B.20)
+U1QM(1) + 3L,QP(1) + §EsQ® (1) + 5 EaQW (1) + o(6*);

Fourth-Order Approzimation: P*+ L,QW(1) + %UzQ(z)(l)
+3LQO() + ZUQO(1) + g BsQO (1) + 5 EeQ® (1)
+0(6®) < E» [Q ()] < P+ U1Q<1>(1) 10,Q®(1)
HURD() + £LQW() + 5 EQ0(1) + g BV (1) + o)

Fifth-Order Approzimation: P* + L;QM(1) + %Usz (1)
+1LsQ® (1) + ZUsQW(1) + £ LsQ® (1) + 75 Us@® (1)
e RO + s BQO(D) + o) < F [Q (2)] (B.22)
< P+ U,QW(1) + éLgQ 2(1) + éUsQ(a)(l)wL L4Q(4)(1)
+1UsQP (1) + 735 L@ (1) + g5 B-Q™M(1) + 40320E8Q(8)(1) + 0(6%).

Then, tedious calculations would yield the results. O

(B.21)

Proof of Theorem 5. In Theorem 4, when one solves simultaneously o; + 3; = 0 to find
a;, i =1,...,4, the solutions turn out to be a; = a;(p), ¢ = 1,...,4, as stated. O

Proof of Theorem 6. From Theorem 5, we estimate

2

a1(p) = —302072 — k7'Qy by 61 =a1(p) = —1025;2 - k71Q;
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where 52, is the pooled sample variance based on the pilot observations from all k channels.
From the proofs of Lemmas 4 and 5, recall that we wrote Y = x2/v — 1. Then, we can
rewrite
a1 =—3p1(1+Y) ' —k71Q,, with p=0%/02.
Let us plug
A= pn~Hay + agon! + agp’n? + a40°n %) + o(n7?) (B.23)

in (B.5) and (B.16) and follow along the line of proof of Theorem 4. Now, for the average
of both the upper and lower bounds given by Theorem 4, we can conclude:

P+ i Hos+ B)n~ = P+ T, }@ + Bon~ +0(8®) ss 60,  (B24)

where (&, ,3,—), i = 2,3,4, are the modified coefficients in this case.
Now, by solving &y + G2 = 0 for a;, we have a modification of the optimal design
constant as follows: '

aa(p) = —k71Q2 + 2k72Q2 — 1k72Q3 — $k72Q3 + k72Q2Q5
—1k72Q4 — p7%Qs,

where p? = (02/02)%. So, we estimate d2(p) by G2 = dz(p) which is found by replacing
the last term in (B.25) with —30%5,°Q;. Next, we plug

(B.25)

A=pn7 4y + dapn™ + azp’n"? + agp®n?) + o(n™?) (B.26)

and follow the same routine as described above. Now, for the average of both the upper
and lower bounds given by Theorem 4, we can conclude:

P+, Hai+Bi)n™ =P+ s 1(a; + Bi)nt +0(68) as & — 0,

where (6, 5,-), i = 3,4, are updated modified-coefficients.
Now, by solving a3 + 33 = 0 for a3, we have an updated modification of the optimal
design constant as follows:

&S(P) = “'k—lQ'z + 4]0—2@% —_ k‘ng - 5k—-3Qg + 3k_3Qg _ %k_an
370, + 030,00 + 210000 - $1-0010, + J-rel
+47908 — K9QaQ8 — K7PQu = 267°Qu + R QaQu ®.27)
~K~Q8Qu + P~QsQu — $K7Qs + §K~QaQs — $°Qu
+p2 (—3571QF — 1 1QE + 1571Q2Qs — §E7Q).

Hence, we estimate @3(p) by a3 = @3(p) by replacing the last term in (B.27) with
0484 (—3k71Q3 — 3571Q% + 1K71Q2Q3 — 3K71Q4).
Next, we define

A= pn~ Gy + dgpnt + dzp®n 2 4+ agp®n3) + o(n™Y), (B.28)
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and follow the same routine. Now, for the average of both the upper and lower bounds
given by Theorem 4, we can conclude:

P* + i 3(ci+ Bi)n~ = P+ }(Ga + B)n~* +o(6°) 85 6 -0,

where (G4, 3,) are updated ‘modified-coefficients.

Again, by solving &4 + 84 = 0 for a4, we have an updated modification of the optimal
design constant as follows:

aq(p)

= —k71Q2 + 6k72Q7 — 3k72Q3 — 15k73Q.° + 9k 3Q% + 14k4Q4
~$k3Q8 — 14k~4Q3 + 5k~4Q8 — §kQ} — 4k7°Qs + 3k72Q2Qs
+20k~3Q2Qs — 22k73Q3Qs — 28k*Q3Qs + 5k °Q3Qs + 42k4Q3Qs
—2E4Q30Qs + BEQ3Q5 + 4573Q% + £k Q] — 3k3Q203
—10kQ.Q5 + Pk 4Q3Q% — Yk 1Q3Q% — $EQF + Q203
—3k72Q, — 6k73Q4 + 13k73Q2Q4 + 12674Q2Q4 — 3k °Q3Qs
— Bk Q304 + 12k7°Q3Qs — BE4Q3Qu + 3k73Q3Qu + Tk Q3Qy
—BE74Q2Q3Q4 + B 1Q2Q3Q4 — 15k7Q2Q4 + 3K 74Q5 — 2K71Q2Q3 (B.29)
—4k72Qs — 2k4Q5 + 3k73Q2Qs + 3h71Q20Q5 — k4Q2Q3Q5
—6k™4Q3Qs + %k_‘ngQs +2k™4Q3Q5 + %k_4Q4Q5 - %k_3Q6
—BE4Qe + 8k 1Q2Qs — Sk Q3Q6 + 1k Q3Q6 — 2Kk71Qy
+5k Q207 — £k 'Qs+07% (3h72Q — 3710 7'Q5 — 1KT1Q3)
(34703 - Q) - 1103 — B Q31004 — $k-7Q)
+ (57 2Q2Qs + 1571Q2Q5+35672Q2Qs + 16 2Q3Qs+ 3k 2Q3Qs)
+ (§E72Q3 - 2k72Q2Q3 — 35207 %Qu — §K71Qu — 15K72Q2Q4)
+(~3k72Q2Q4 + 2572Q3Q4 — 3572Qs + 2K72Q2Q5 — 5k7%Q6) }-

Hence, we estimate d4(p) by G4 = @4(p), that is, by replacing p? = (0%/02)? with

S4 0% throughout the last term in (B.29). Note that @, is a consistent estimator of ds(p).
The result follows after much tedious simplifications. O
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