oooooooogon
1506 O 2006 O 177-196

The Coin Algebra for Conditional Independence!
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1 Introduction

In this paper we introduce a universal algebraic structure termed the coin. The coin algebra is
intended for formal manipulation of the conditional independence relation intrinsically associated
with random variables. In the coin algebra, conditional independence is defined as a special coin
equation. The major advantage of the universal algebraic definition of the coin algebra is that
all properties on conditional independence can be derived by transforming one coin equation to
another coin equation. Secondly, but equally importantly, the axioms of the coin algebra are de-
veloped from the basic properties of probability density functions. This is in contrast with other
well-known axiomatic systems for conditional independence, which typically focus on a few “prin-
cipal” properties of conditional independence widely useful for “probabilistic reasoning™ involving
the concept of irrelevance probabilistic or not. It is therefore not surprising that the properties on
conditional indepdence derivable from the coin algebra proposed in this paper include, but not
limited to, the axioms of a strong separoid of Dawid (2001), the graphoid of Pearl and Paz (1987)
being a special but particularly important example.

2 The Coin

2.1 Definition

Let D = {D|D C D} be the power set of D, which include the empty set §. Let D ® D be the
exclusive direct product of D and D, that is

D®D={(R,L)|R.LeDand RNL = 0}
Note that (R, L) are (L, R) are regarded as different if R # L. Note also that (§,0) € D ® D.

DEFINITION 2.1 (COIN OPERATOR). The coin? operator, denoted by T, is a binary operator de-
fined on the exclusive direct product space D ® D to the posive real line, T : D @ D — R*. For
(R,L) € D® D, we shall write TF (reads as coin-R-L1) instead cf T(R, L) to denote the image
¢f(R,L) by T.

!Partially supported by Grand-in-Aid 15500179 of the Japanese Ministry of Education, Science, Sports and Cul-
ture. The author thanks Professor A.P. Dawid for pointing out the work of Dawid (2001), and Professor M. Akahira
for discussions on conditional independece and statistical sufficiency.

2Coin stands for conditional independence.
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The coin operator T satisfies the following axioms.

Normalization Axiom: Tl'g =1 Q.1
Coditionality Axiom: TE=TRIT, R#0 .2)
Inversion Axiom: T T: =1 2.3)

where T = T8 and T, = T and RL = RU L.

Note that by (2.1), we have ™= To=1.

DEFINITION 2.2 (ATOM COINS). Forany (R, L) € D®D, we shall call TF (reads as coin-R-L)
the atom coin with raising index R and lowering index L.

Note that when R; = R,,L; = L, we have Trﬁ1 = Trﬁ’. But the reverse, that is, 'ﬂ'f; = Tl'f:
implying R, = Ry, L1 = Ly, can not be derived from the definition above.

DEFINITION 2.3 (RAISING, LOWERING, MIXED COINS). We classify the atom coins into three
types.
(i) Raising coin: T is called a raising coin with raising index R.
(ii) Lowering coin: T, is called a lowering coin with lowering index L.

(iii) Mixed coin: T is called a mixed coin with raising index R and lowering index L.

In Definition 2.1 for the coin operator T, multiplications of the coins appear both in (2.2) and
in (2.3). We have implicitely assumed that these products are carried out with respect to the usual
multiplication of real numbers. This shall be assumed throughout the paper.

We know that joint probability density functions and conditional density functions can be mul-
tiplied to give other joint (conditional) density functions. For instance, the Bayes theorem states
that

flwplwr) = f(wilwgr)f(wr)f ™ (wi)

This can be translated in terms of coins as follows

THEOREM 2.1 (BAYES THEOREM). if R#0,L # 0and RN L = {, then

™ = TETRT, 2.4)

Raising and lowering the indices of the mixed coin T% on r.h.s. of (2.4) using the raising coin
TR and the lowering coin T, the r.h.s. can be ‘transformed’ to the Lh.s. as follows.

TETRT, = (TETR) 1y = TRAT, = ™

This ‘proves’ the Bayes theorem. A formal proof using the axioms of coins goes as follows.
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Procf. Repeatedly applying (2.2) to appropriate mixed coins we have

TRTRT, = (TRETR) (TRTL)
= TRL(TRTR) T,
= TR,
= T

The first equality uses the C-Axiom to T} and the last equality uses the C-Axiom to T¥. This
completes the proof. a

For probability density functions, when wg and w, are independent, the product of the density
functions f(wa)f(wg) = f(waug) gives the joint density function of w 4,5. When this assump-
tion is not available, that is when w4 and wpg are correlated, there may exist no subsets C,D C D
so that f(wclwp) = f(wa)f(ws). The same is true for atom coins. In general, the product of two
atom coins is not necessarily an atom coin. That is, the set of all atom coins is not closed under the
usual multiplication.

DEFINITION 2.4 (COIN). A coin, T, is a product cf an arbitrary finite sequence cf the atom coins.
That is, there exist (R;,L;) e D®D,i = 1,--- ,r such that

T=TF TI' Mo _ (2.5)
The set cf all coins will be denoted by IL(D) or simply by T when D is clear from the context.

We have used the same symbol T to denote both the coin operator and a general coin. At
present there is no ambiguity anticipated with this abuse of notation. We shall also use the genetlc
symbols T, T, T, etc., to denote arbitrary coins in IL

Note that since the C-Axiom postulates that TH = TRET, it is then evident that the set of all
coins I is generated by all raising and lowering coins.

EXAMPLE 2.1. Let D = {1,2}. Let I be the set cf all coins. Let T = T® be a raising coin. if n
is a positive integer then we denote by ()" the product cf n copies cf . if n is a negative integer
then we denote by (T)" the product cf |n| copies cf Tr. Whenn = 0, we let T = 1. Then I can
be written as

‘ I= {(W‘)"‘(Trz)"’(Trm)"s | Ny, Ny, N3 = 0, :i:l, i2, v }

- THEOREM 2.2 (COIN GROUP). The set cf all coins I forms a commutative (Abelian) group with
respect to the usual multiplication cf real numbers. We call I the coin group.

NOTATION 2.1. Since the inverse cf any element cf a group is unique we shall use the symbol
(T)~* or simply T~! to denote the inverses cf T.

2.2 The raising-up and lowering-down laws

Now we justify the terminologies that T7 are raising coins and T, are lowering coins.



THEOREM 2.3 (RAISING-UP LAW). (i) For any (R, L) € D ® D, we have
TR =TFT" (R#0) (2.6)

(ii) if A, B, C are mutually exclusive then we have

TE? =TgeT? & THO=TETC  (A#0) @7

The atom coin TP on the left hand side of (2.6) is obtained by raising the subscript L of the
mixed coin T7 by the atom coin T~. Similarly, the atom coin TA? on the left hand side of (2.7)
is obtained by detaching the subscript B from BC of the mixed coin T4, and raising B by the
atom coin T2, To validate the detachment of B from BC, we need the condition T2C = TBTC, a
condition, we shall see later, says that ‘B is independent of C’. Note that for any L C I we have
T = w47 = 7. That is, L is independent of @. It follows that (2.6) may be regarded as a
special case of (2.7). :

We shall refer to the relations (2.6 ) and (2.7 ) as the Raising-up Law, or the R-Law for short.
THEOREM 2.4 (LOWERING-DOWN LAW). (i) For any (R, L) € D ® D, we have

TE=1RT, (R#0) (2.8)

(ii) if A, B, C are mutually exclusive then we have

Thc = TABTy & T8 = 187 (A+#0) (2.9)

The mixed coin T7 on the left hand side of (2.8) is obtained by lowering the subscript L of the
raising coin T*£ by the coin T;. Similarly, the mixed coin T4 on the left hand side of (2.9) is
obtained by lowering the subscript B of the mixed coin T52 by the atom coin T3, and emerging
B with the already-existing subscript C. To ensure the validity of emerging of B with C, we need
the condition T2¢ = TBTC, Again since T5% = TZT?, it follows that (2.9) reduces to (2.8) by
letting C = 0 in (2.9).

We shall refer to both (2.8) and (2.9) as the Lowering-down Law, or the L-Law for short. Both
the R-Law and the L-Law can be very convenient for combining or decomposing various coins
without referring to the formal properties of coins. We shall see later that these laws can be so
powerful that they can even be helpful for ‘discovering’ necessary and sufficient conditions for
independence and conditional indpendence relations among a set of variables.

The following Lemma is useful for transforming a given coin equation to another coin equation.
For instance, it can be used to show the chaining rule (Lauritzen, 1982) of conditional indepen-
dence.

LEMMA 2.1. Let A, B, C, D be mutually disjoint subsets cf D, then
T5C = TEPTD] <= T4° = TAPTD) (2.10)

where T|D) is an arbitrary coin.
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2.3 Canonical expressions and the null model

Let T € IL be an arbitrary coin. By definition there exists (4;, B;) € D® D,i =1,--- ,r so that
T=Tg X x Tg 2.11)
When T is written in (2.11), we call the right hand side of (2.11) an expression of T with length r.

However, given any prob T, there are infinitely many expressions which are equal to one an-
other. To see this, we note that for any A C I and any integer n, we have 1 = (TA)" ()"
It follows then T = T {(T#)" (T,)"}. For less trivial examples, suppose that D = A; U A, =

B; U B, U Bs. Then we can write T2 in many different ways such as
™ = TATE =T4T)
B1 B2 -B By BB
™ = TOTRTE,, = TETRTE,,
These different expressions may be useful from an irferential viewpoint, but they are equivalent in
the sense that they impose no additional restriction, whatever on the the coin group IL.

The fact that any positive integer n can be uniquely written as n = p}* - - - pf~ where n,, - -+ ,n,
are positive integers and py, - - -, p, are prime numbers plays an important role in number theory.
It will be conveninent to do the same for coins.

DEFINITION 2.5 (MUTUALLY PRIME COINS). Two raising coins T4 and T2 with A £ 0,B # 0
are said to be mutually prime, if A # B.

EXAMPLE 2.2. Let D = AU B U C and none ¢f A, B, C is empty. Then
™, T4, 48, 7€, T4C

are mutually prime coins.

THEOREM 2.5. Let 1 # T € I be an arbitrary coin. Then there exists nonzero integers ny,- -+ ,n,
and mutually prime coins T4 i = 1,--- ,r such that the Jollowing holds
T= (-“-A1)n1 X eeo X (“‘Ar)nr (2.12)

DEFINITION 2.6 (PRIME COIN). A raising coin T4 is called a prime coin if there does not exist an
expression
T = (TA)™ x ... x (TA")™

so that each A;,i = 1,--- ,r is a proper subset cf A.

DEFINITION 2.7 (NULL MODEL). A coin group I = I(DD) is called a null model if every raising
coin T4 is a prime coin.

In a null model I(ID) (a coin group), there are no additional assumptions on relations among
coins of I, other than those stated in the definition of coins. This corresponds to the situation that
the joint probability density function f(w ) cannot not be decomposed by using marginal density
functions or conditional density functions for any A C D.
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THEOREM 2.6. Every coin T € I has a unique expression

TI- = ("-Al)nl X e X (TAF)nr (2‘13)
where ny, - - - , n, are nonzero integers and
(i) T4 ... T4 are prime coins; and
(ii) WA, ... T4 are mutually prime.

DEFINITION 2.8 (CANONICAL EXPRESSION). The unique expression cf a coin T given by (2.12)
is called a canonical expression ¢f T. And we call

(i) r the order ¢f T, and write |T| = r; and
(ii) A= A;U---U A, the index set, or simply the index, c¢f T, and write J(T) = A.

THEOREM 2.7. The index J(-) has the following properties.
(i) 3(T) = J(T1); ,
(ii) sub-additivity: J(TT) c JI(T) U I(T).

3 Coin Integration

3.1 The Integrands

It is useful to introduce the following notations to distinguish three different types of coins.
NOTATION 3.1. Let A be a subset cfD.

(i) T4 denotes the raising coin in T with raising index A.
(ii) W[A] denotes an arbitrary coin restricted to T, the coin group with respect to A.

(iii) T{A} denotes an arbitrary coin in I, with index J(T{A}) equal to A.
Note that J(T4) = J(T{A}) = A and I(T[A]) C A.

DEFINITION 3.1 (INTEGRAND). Let D be the power set ¢fD. Let A € D. We denote by I(A) the
set cf all coins T{B} ¢f IL such that A is a subset cf B, that is

I(A) = {T{B}|A C B € D}

We shall call any T{B} € I(A) an integrand with respect to A, or simply an A-integrand. The
set ¢f coins TL(A) will be referred to as the A-integrand set.
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Note that the (-integrand set contains the unit coin 1 only. On the other hand, the D-integrand
set consists of all coins with the index set I, the largest possible set. We also note that if T € T(A)
then T~! € I(A). To see this suppose that T has the following unique canonical expression

T = (TA)™ x ... x (T4)™

then T~! is given by
T = (TA4)™™ x oo x (T4r) ™™

which is also canonical. Hence
JTH=U_A=3T)DA
showing that T~! € T(A).
However, when T, Te I(A) it is not true that TT € I(A). For instance, if A = A; U Ay, T =
T4 T4 T = T4, T42 then TT = (T42)2 ¢ I(A). So I(A) is not closed under mutiplication. In
other words, I[(A) does not form a subgroup.

3.2 Definition and Properties

Now we are in a position to define the integration cf coins.

DEFINITION 3.2 (INTEGRATION). Let A € D and I(A) be the A-integrand set. We define the
A-integration, or simply integration, as a function, denoted by [ pfrom I(A) into IL,

/ . T(A) — T
A
so that for any A-integrand T{B} € I(A), there is a unique coin T{B \ A} € I such that
/ (T{B}) = T{B\ 4} 3.1)
M :
The following properties hold for the integration.
(i) if the raising coin W2 is an A-integrand then we have

/ (TB) = T\ (3.2)
A

(ii) Let A = Ay U Aj. Let T{B} = T{B;}T{B,} be an A-integrand, where T{B,} is an A;-
integrand and T{B,} is an A,-integrand. Further assume that A, N B, = A; N B, = 0.

Then we have
[ iy
A

GG
= [ @y [ @ig 63
A Az



(iii) Finally, for any coin T € IL we have

/0 (M=T (3.4)

REMARK 3.1. Note that for any coin T € IL if B is the index set cf T, then we can integrate T by
applying {, for any A C B. That is, [,(T) is well defined for any A C B.

NOTATION 3.2. To mimic the conventional notation for integration, we shall use the following

notation for coin integration
/ (M) = / TdA
A

Using this notation, the defining properties cf the coin integration (3.2)-(3.4) can be reexpressed
as

/ TBdA = wB\ (3.5)
[amyrEy anu = v [risa, (36)
/ Tdd = T , 3.7

Note that (3.5) corresponds to the definition of marginal probability density functions. Note
also that if we let A = @ in (3.5) then we have [ T2 dff = T2, which is a special case of (3.7). The
requirment (3.6) corresponds to the following basic property of the usual integration

[ fa,9w,2)dody = [ @204 [ otw,2)dy

The requirment (3.7) is used to show (3.8), a property corresponds to the following basic property
of the usual integration

[etenyds=c [ 1@y)as

where c is a constant functionally independent of both z and y.

Now we discuss consequences of the definiton of the integration. Using (3.6) and (3.7) we get
the following property for the coin integration.

THEOREM 3.1. Let T{B} be an A-integrand. Suppose that AN C = (. The we have
/ T[C]T{B} dA = T(C] / T{B}dA 3.8)

The following two theorems are anologies of the facts that both the probability density func-
tions and the conditional probability density functions are normed positive functions. They form
the basis for the normalization laws for coin identities to be studied shortly.
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THEOREM 3.2. For any R C D we have

/ TRdR =1 (3.9)
THEOREM 3.3. Forany (R,L) € D ® D with R # 0 we have
/ TRdR=1 (R#0) (3.10)

Note that Theorem 3.2 is a special case of Theorem 3.3. Putting L = § into (3.10) we get (3.9).
We state both results as separate theorems due to their importance.

The results contained in the following theorem will be frequently used in the sequel.
THEOREM 34. if A, B, C, D are exclusive subsets cf D, then we have

/ T[A]TEdB = T[A] (3.11)

/ TA]TECdC = T[A]T® (3.12)
/ T[AD) T8¢ dC = TW[AD]TA8 (3.13)
| / T&BdB = 156  (A#0) (3.14)

3.3 The N-Law and the M-Law

Now we prove two important laws concerning certian types of coin itentities. These laws allow
formal logic deduction from one coin equation (an equation relating various coins) to another
coin equation. Since indepednece and conditional independence will be defined in terms of coin
equations, these laws are thus of fundamental interest for formal reasoning about conditional inde-
pendence.

THEOREM 3.5 (LAW OF NORMALIZATION). (i) Let (A, B) € D@D with A# 0. Let B=D\B
be the complementary set cf B. Denote by T|B] € L an arbitrary coin free cf B, then we have

TE=TB]=>Tg=T* (A#0) (3.15)

(ii) Suppose that A # 0, and A, B, C are mutually exclusive. Let T|C] € ILs be an arbitrary
coin free cf CB. Then we have

Te = TC] = Tho =Ta (A#0) (3.16)

(iii) Suppose that A, B, C are mutually exclusive then we have
| T48C = T[B|T[A] = TAE = TATE (3.17)
In particular when C = Q in (3.17) we get
T8 = T(B|T[A] = T8 = 1475
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For convenience, we shall refer to the Law ¢f Normalization as the N-Law. Using the N-Law
we can pass from an ‘ambiguous’ coin equation to an ‘exact’ coin equation. This is useful, for
instance, when a lot of atom coins are entering into a coin equation but we are only interested in
relations concerning coins with indices being small subsets of . Those nuisance coins can be
treated in a similar way as a proportionality ot normalizing constant in operations with integrating
probability density functions.

The next Law cf Marginalization, or the M-Law, is useful, in a systematical manner, to deduce
sets of marginal coin relations from a larger coin identity.

THEOREM 3.6 (LAW OF MARGINALIZATION). if A, B, C are exclusive subsets cf D. Then we
have '

TP =TETg = TE =TeTe, VaC AVbC B (3.18)

In particular, we have
™8 =TT = ™ =1°T, VacCc AWCB (3.19)
TEP =TETg = T4 =TuT,, Vi€AVjeB (3.20)

The following result will also be very useful in manipulating the relations on conditional inde-
pendence involving a set of random variables.

THEOREM 3.7. if A, B, C are mutually exclusive, and T|C) denote a coin independent cf C, then
T45¢ = T[C|TB¢ = T8 = T(C]T? (3.21)

4 Independénce

4.1 Coin Equivalence

We first give a formal definition for coins restricted to a subset A C D.
DEFINITION 4.1 (MARGINAL COINS). We call T} a marginal atom coin ¢f Aif R C A, L C A.

A coin T is said a marginal coin ¢f A if T is the product cf some finite sequence cf marginal
atom coins cf A. The set cf all marginal coins cf A is denoted by T,4.

THEOREM 4.1 (MARGINAL COIN GROUP). Let A C . Then IL, is a subgroup cf I. We shall
refer to 14 as the marginal group cf A.

REMARK 4.1. Note that Ty = {1} is also a subgroup cf IL.
The marginal group IL4 € I introduces a natural equivalence relation in IL.

DEFINITION 4.2 (EQUIVALENT COINS). Let T4 be the marginal coin group cf A. Two coins
T, T € I are said to be equivalent with respect to A, written as T 2 T, f TT " € Ts. That is

TATeTi ' eI, @.1)



If we let T[A] to denote an appropriate marginal coin in IL4, then (4.1) can be written alterna-
tively as

TAT o T=TAT 4.2)

The set of all coins equivalent to T with respect to A is called, using standard group terminology,

the coset of T with respect to IL4. Thus, using (4.2), the coset of equivalent coins of Tis given

by TIL4 = {T[A]T|T[4] € I4}. The coset TIL, is also sometimes referred to as the orbit of T

caused by group IL,. Note that since (T[A])~! € IL4, the condition in (4.2) can be equivalently
written as T = T[A]T.

4.2 Independence

THEOREM4.2. if ANB=0and A+#0,B + 0, then A

TAE = TATE & 4B L 7B 43)
& TABR T4 (4.9)
Note that the right hand side of (4.3) corresponds to the condition f(w4,wp) = f(wa)f(ws),
a condition saying that w 4 is independent of w . Thus it is natural to make the following definition.
DEFINITION 4.3 (INDEPENDENCE). Let ANB = Band A # 0,B # 0. We say that T is

independent cf T8 if and only if TAB 4 T8, or TAB B TA. That is, using Dawid’s notation
TALTE o TABATB 4.5)
& TR T 4.6)
Definition 4.3 says that T is independent of T? if T2 s in the orbit of the marginal coin T4
caused by the marginal group Ig, or if T42 is in the orbit of T2 caused by IL4. It is convenient

to use Definition 4.3 to investigate algebraic structures brought about by various independence
relations among raising coins of IL.

Operationally, however, the results of Theorem 4.2 are of direct use. We thus give an alternative
definition of independence using these results.

DEFINITION 4.4 (INDEPENDENCE) Let ANB =Qand A # 0,B # 0. We say that T is
independent cf T2 if and only if TAZ = TAT2, that is

TAL T8 & T4B = TATE 4.7
4.3 Properties of independence

THEOREM 4.3. Let R and L be exclusive nonempty subsets cf D. The following equations are
equivalent to one another.

TRL = yRYL | 4.3)
™ = 7R 4.9

TS = Tt (4.10)
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Since (4.8) is the condition for independence T2 1L T~, we thus may use any one of the equa-
tions (4.8)-(4.10) to check if T*1L TX. By the N-Law, T% = T[R] implies T% = TZ. Similarly,
T% = T[L] implies T% = TX. Thus, the sufficient and necessary conditions (4.9) and (4.10) for
T2 1L T2 can be weakened as follows.

THEOREM 4.4. Let R and L be exclusive nonempty subsets cfD. Then
LTl © T8 =T[R] _ @4.11)
& Th=T[L] (4.12)
where TR} € I g and T[L] € I, denote some coins depending only on R and L respectively.
Note that multiplying both sides of Tf = T[R] by TZ, we get T?X = TLT{R)], showing that

TRL & 7L, So T2 T*. From this ‘new’ proof we can see that the definition for independence
given in Definition 4.3 is more flexible than the definition given in Definition 4.4.

As a direct consequence of the M-Law, we obtain the following important result on indepen-
dence.

THEOREM 4.5 (MARGINALIZATION). if AN B = {, then
TALTE = T4 4 T8 (VA, C A,VB, C B) 4.13)

In particular,
TLTE= TULT (Vac AVbe B) 4.14)

Theorem 4.5 says that join independence implies marginal independence. The reverse of this
theorem is however not true. That is, the conditions T4 Il T2 for any subsets A, C A and
B; C B do not imply the join independence T4 1L T5.

S5 Conditional independence

5.1 Definition

DEFINITION 5.1 (CONDITIONAL INDEPENDENCE). Let A, B, C be mutually disjoint subsets cf
D. Let A, B be nonempty. Then T is said conditionally independent ¢f T2 given TC .f and only
if W48 is equivalent to T2 with respect to Lac, that is

TAL T2|TC < TAB 4C 72 | .1)

By the N-Law we immediately have

THEOREM 5.1. Let A, B, C be mutually disjoint nonempty subsets cf D. Let A, B be nonempty.
Then
AL TB|TC & 148 % 14 (5.2)
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We have defined the concept of conditional independece using the concept of coin equiva-
lence. For three mutually disjoint and nonempty subsets A, B, C of D, both I4c and Ipc de-
fine a marginal subgroup in I. These subgroups introduce different orbits in I. We have that
TA 1L 78| if and only if the mixed coin TA? is in the orbit of the mixed coin T2 caused by Tc,
or TA® is in the orbit of T4 caused by Izc.

Note that in both (5.1) and (5.2) we allow the possibility that C = (. When C = () the necessary
and sufficient conditions for conditional independece reduce to the corresponding conditions for
independence. An obvious advantage of the coin algebra introduced in this paper is that we can
study both concepts in the same framework. To emphasize this viewpoint we give a new definition
for the coin independence.

DEFINITION 5.2 (INDEPENDENCE). Let A, B be mutually disjoint nonempty subsets cfD. Then
T4 is said to be independent cf T2, written as TA1L T2, if and only if T4 is conditionally indepen-
dent cf T2 given T = 1. That is,

TAL T8 o 11 T8 7 (5.3)

5.2 Properties

Now we give operationally convenient conditions for conditional independence. All these condi-
tions may be regarded as coin equations. One condition, namely coin equation, can be transformed
to another condition in a relatively mechnical way by using the properties of the coins, such as the
R-Law, the L-Law, the N-Law, the M-Law, and so on. Theorem 5.2 gives equivalent necessary and
sufficient conditions for T4 1 T2|T°,

THEOREM 5.2. Let A, B, C be disjoint subsets cf D. Then the following coin equations are equiv-
alent to one another.

TP = TWETE (54)
TABC — yACTE (5.5)
TEC = 1B} (5.6)
Toe = Ta (5.7
™, = 18 ‘ (5.8)

From (5.4)-(5.8) we can also derive other equivalent conditions. For instance, multiplying both
sides of (5.5) by T results in T4 = TA°TETp, and so on. However, the expressions (5.4)-
(5.8) are the most frequently used ones. From the above proof we can also see that if we have the
condition (5.4) then all other conditions can be derived in a straightforward manner using algebraic
properties of the coins.

The following theorem gives a seemingly weaker condition for conditional independence.
THEOREM 5.3 (FACTORIZATION). Let A # 0, B # 0, C be disjoint subsets cf D, then
TAL TB|TC & TA2 = T[B]T[A] | (59
TAL T8|TC & T48C = T[B|T[4] (5.10)
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where T|B] € Iz, T[A] € T4

The condition (5.10) says that T41L T2|T° holds if and only if the coin TABC admit expres-
sions which can factorize into two subexpressions, one being in IL4¢ and the other in Ig¢. In other
words, any atom coin T in I4p¢ simultaneously invloving a subset of A and a subset of B cannot
be a prime coin. More formally, we have the following theorem, which is an extension of Thorem
4.5 on independence.

THEOREM 5.4 (MARGINALIZATION). Let A # 0, B # 0, C be disjoint subset cf D, then

TAL T8|TC = T L TB TS (VA; C A,VB; C B) (5.11)

By the marginalization theorem we know that joint independence T4 1L T5€ implies marginal
independence T4 1L T2 and T IL TC. The reverse is not true. The following Theorem says that
pair-wise conditional independence implies joint independence and vise versa. In a sense this
theorem complements the Simpson’s Paradox.

THEOREM 5.5 (INTERSECTION). if A, B, C, D are exclusive, then we have

TAL TB | TP

AL 7O | 75D } & TALTEC | TP (5.12)

COROLLARY 5.1. if A, B, C are mutually exclusive and nonempty, then we have

TALTB | T°

The following theorem gives seemingly weaker sufficient and necessary conditions of the joint
conditional independence T4 Il T2C| . This theorem is sometimes referred to as the contraction
property of conditional independence (Pear (2000), p.11).

THEOREM 5.6 (CONTRACTION). if A, B,C, D are mutually exclusive and nonempty, then we

have
T44 T8 | TP Ay BC | D
S TILT|T 5.14
TALTC | TP | (5.14)
COROLLARY 5.2. if A, B, C are mutually exclusive and nonempty, then we have
TALTE | T Ay 1BC
ST 5.15
TAL T 1 (5.13)

THEOREM 5.7 (WEAK UNION). if A, B, C, D are mutually exclusive, then

TALTBC TP = wAL TB|TCP (5.16)
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THEOREM 5.8 (MIXING). if A, B, C, D are mutually exclusive, then

TAY TBD | 7€ AD « B
TAP ) T8 | ¢ 5.17
{ TRLTP [1¢ L] G

The property of mixing rule was given by Dawid (1979). Examing the proof of Theorem 5.8
we immediately have

THEOREM 5.9 (STRONG-MIXING). if A, B, C, D are mutually exclusive, then

TAL TED | 1¢ TP TB | T (5.18)
TBL 7P| ¢ TAL TP | T° )
The following property is known as the chaining rule (Lauritzen, 1982).
THEOREM 5.10 (CHAINING RULE). if A, B, C, D are mutually exclusive, then
TALTB | TC Ay —D
= TAL TP | ¢ 5.19
{ H’ACJL “—D ' -ﬂ—B | ( )

Repeated use of the intersection theorem 5.5 gives the following result, which is of particulaly
use in graphical modelling.

THEOREM 5.11 (SEPERATION THEOREM). if A, B, C, D, S are mutually exclusive, then we have
TAL 7€ | TBDS
T8 7 | T4DS
'"'B-u_ TI-D ' -"-ACS

o T8 T°P | s ' (5.20)

Using the M-Law and the seperation theorem we have the following resuit.
COROLLARY 5.3. Suppose that A, B,C, D, S are exclusive, and the following hold
TALL T | TBDS
TrA _u- TrD | -"-BCS
T2U 7O | TADS
Then for any subsets E C AU B, F C C U D, we have
i il (5.22)

(5.21)

In particular, we have
TALWC | TS
TAL TP | T8
L A
Ll

(5.23)
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DEFINITION 5.3 (MUTUAL INDEPENDENCE). Let Ay, , A, be mutually exclusive nonempty
subsets cf D. Then coins T, .. | T4 are said mutually independent cf each other, written as
TALY o I T, f

TAr-dn — A, s (5.24)

The following theorem gives sufficient and necessary conditions for mutual independence.
Although it is stated in terms of three subsets, we can treat any number of subsets by recursively
using it.

THEOREM 5.12. if A, B, C are mutually exclusive nonempty subsetd cf D, then
TEL O | T4
TLTELT & TALTO | TB (5.25)
TAL 7B | T¢
DEFINITION 5.4 (INDEPENDENT MODEL). Let D = {1,2,--- ,d}. The coin group T(D) is called

an independent model if
TiZed = riy2.. (5.26)

The following theorem gives an important characterization of the independent model.

THEOREM 5.13 (CHARACTERIZATION OF INDEPENDENT MODEL). A coin group T is an inde-
pendent model if and only if there exists no prime coin.

A model is a characterized coin group. Since in a null model every raising coin is a prime coin,
we see that the null model and the independent model consist of two extremes in the model space.
The properties of the model space will be formally studied in later papers.

6 Separoid

In this section we show that the coin algebra satisfies the defining axioms of a separoid of Dawid
(2001). The separoid includes several axiomatic systems, such as the orthgoids and graphoid,
relevent for formal reasoning essentially involving the concept of irrelevence of information.

The following definition was invented by Dawid (2001).

DEFINITION 6.1 (SEPAROID). Let (S, <) be a join-semilattice. Let - L - |- be a ternary relation on
S. Then (S, <, 1) is a separoid if

Pl: zly|z

P2: zly|z = ylz|z

P3: zly|z&w<y = zlw|z

P4: zly|z&w<y = zly|(zVw)

P5: zly|lz&zlw|(yVvz) = zl(yVw)|z
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REMARK 6.1. The above definition is slightly stronger than that given by Dawid (2001), who did
not require the partial order cf the semilattice to be anti-symmetric. Such an order is called a
quasiorder, and when the anti-symmetry does hold for x and y we say that T and y are equivalent
(instead cf equal).

REMARK 6.2. None cf the axioms P1-P5 in Definition 6.1 is equational, thus the description cf a
separoid (S, <, Il ) as given in Definition 6.1 does not constitute a universal algebra. It is possible
to use the language cf coins to redefine the separoid as a universal algebra so that every axiom is
in equational form(conjecture).

DEFINITION 6.2 (STRONG SEPAROID). A separoid (S, <, 1L ) is said to be a strong separoid if
(S, <) is a lattice and the following additional property holds

P6: If 2<y& w < ythen
sly|z&zly|lw = zly|(zAw)

Now we show that the relation of conditional independence derived from the coin algebra
satisfies the axioms of a strong separoid. Let D = 2P be the power set of ID. Let < be the usual set
inclusion C. Then (D, <) froms a Boolean lattice. Before stating the theorem, we first note that
the C-Axiom of the binary coin operation

TF =R, (R#0)

is well defined for any R and L in D which may not be exclusive. For instance, since AA = A, we
thus have

T =TTy =1 6.27)
When R < L, we have
=TT, =TT, =1 (6.28)
And, when L < R, we have
T = TRLT, = TRT, (6.29)

With this broader interpretatioh of the coin operation we now show that

THEOREM 6.1. Let (D, <) be the Boolean lattice. Define the (partial) ternary relation z1 y|z in

D if the coin equation T;¥ = T>TY holds, where x Ay = (. Then (D, <, 1L) is a strong separoid,
that is, P1-P6 hold.

Procf. For P1, we want to show that

zlylz
or, in terms of coins .
T = TETY (6.30)
Since TZ¥ = T, = TY = T¥T, = TY by (6.29), and T7 = 1 by (6.27), So ‘
T =Ty =TTy
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proving (6.30)

For P2, we want to show that
zlylz = ylz|z

or, in terms of coins
T =TTy = TV =TT, (6.31)

Since MY = T¥*, 50 (6.31) follows from the commutativity of coin multiplication.
For P3, we want to show that '

zlylz,w <y = zlw|z

where z Ay = z Ny = 0. Since w < y, there exists a unique 0 so that y = w V @ = ww, where
W =y \ w. So what we need to show is that

rl wblz = zl wjz

or, in terms of coins

TE =TI = T =TT (632)
Since zww = @ so we have
N
= [mrrao
- [rrde
T

proving (6.32).

For P4, we want to show that

zlylz,w <y = zly|(zVw)

wherezAy=zNy=0. Sincew < yiffy = wV @ = wi, and z V w = zw, what we want to
- show is that
cll wb|z => zl wi|(wz)

or, in terms of coins

T =TI = T = T, (639

wz " wz

Now assume that T7** = W7 T2 hold. Since z Ay = @, in proving P3 we have had T2* = T°T¥,
which is equivalent to T;,, = T; by acting on T*T,, (that is, multiplying both sides of T2* =
;T by the coin T*T,,,)



On the other hand, T;*” = T7 T can be equivalently transformed as follows

&, qoves _ qeques
Leg yov _ qeye,
= T=T2 T

Since we have
Tuzy = T, = T*T,, = Tg,
and similarly TZ%? = T22, so T2¥? = T2 _T? holds, proving (6.33).

wz w2

For P5, we want to show that
rlylz,zlw|(yVz) = zl(yVw)
or, in terms od coin indeities

T2V = TETY, 2% = T2, T2, = oW = T (6.34)

z yz

Acting T¥ on T = T3, T, gives T*“¥* = T, 7%, and acting T*T,, on T;¥ = T;TY gives

yz " yz

T,z = T;. So we have T¥* = T7T“¥*, which when acted on by T, gives T2V* = TZT¥,
proving (6.34).

P6 is a generalization of the Intersection Axiom of the graphoids. We give a detailed proof here
using the coin axioms. The essential property used is the N-Law. What we want to prove is that

zlylz, 2<y

=zl A
sy, w<y = ° yl(z A w)

Note that since z < y and w < y so z A w < y. The first step is to uniquely decompose y as
follows
Yy=qzncwy =qVzVeVu

where
g=y\(zVw),c=2A,z1=2\c,uy =w\c

So doing, what we want to prove is that
zll gzicws|zic & zl gzicwjwie =zl gzicwc
or, in terms of coin identities

-“-zqzlcwl — Tr.t -quzlcuu

z1c z1c ' z1¢ = qzicw) __ Zycwy
Trc};zlcwx — -“-:tl “-qlzlcwl -nﬂc: - “-:Trg R (6'35)
wic wyc " wie

To show (6.35), by the absorption law,
TV =TY

z
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we only need to show

quwy w1
Elqu - ﬁ“nﬂzﬁ = T = T (6.36)
wie wic ' unce

3 Z1¢ qwi _ w1 1c qzy _ Z1 o3
Acting T*“ on T3 = T3, T3¢ and T“'° on T let = Ty T2, gives
2c 21cC Ziw — -n-q
“—a:qwj 1 -"-1 Trqtl)]_ 1 , -n-aq twic -“-a: Zjwic

ze wie
Comparing the two equations we must have
Toie = Tue
implying that 7 _ is a coin free of both 2; and w;. So we may write
Taie = Tune = Tz A (6.37)
where 7, = D\ 2; and w; = D \ w;. Applying the N-Law to (6.37), we have
Toe = Te

which implies that
-Ira:q'wl 2ic — Trﬁ -n-qw1z1c

Acting T upon this identity then gives the r.h.s. of (6.36), proving P6. O
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