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Calculation of Harish-Chandra homomorphism for
certain non-central elements in the enveloping
algebras of classical Lie algebras

f#HE E (Hiroshi ODA) *
SRR « T8 (Faculty of Engineering, Takushoku University)

1 Introduction

Eij % gly = End CN Of75|8AI & LT Ej = %(Eg,’ —EN+1_J',N+1_,') EThHE ’ F,'j X
CHE/E LT gly DED LieBg = oy 25ES. U(g) 2FRE LT3 N REHTTI
Fu=(F;) e M(N;U(g)) 2% 2%. U(g) D& Z(g) T 5 L, ERD ¢(z) € Clz]
IZDWT Traceq(Fp) € Z(g) TH B D, GHARMAREDT SR, BINEO—HOMT
Trace q(F,) @ Harish-Chandra F% v IZ X 28 TH 5

(1) ~(Trace q(F',,u)) DEE

BERIZENTVEHPEICONTOD e-mail IZLZEHmBH ok, Zhid Gould DFER
[Gol] DFBIREDTH B L BH > TN (ZFOMICH (1) KNTHNBNB7RHE
RhHHILE LEOBRPIIED o), ZOME([Gol) ZRELTHRELE IS, HH
WRIEIZ&E W=, #hiZ, o (ald g D Cartan HAH) LOBSRABKE AL &
@ y(Trace g(Fp)) € S(a) & XH 5 ——H& Verma INEE Mo(A) DRAH S —/85 A =5 A
BMED o D7 7 4 VERHERICHIBT 5 L, Gould DARRDORIE - KRR FHIEEEA
2% 2 )V LR RERM{LE N AR (“Gould DARDBILIR) 5842 D Gould O
ARLRAULFEICLDBOND, LWSDTH B (§4).

—%, Me(N) DBR/MNEER g a0 (2) DWW T OHFEAER ([Os], [00s]) 2 KL

3579
(3) 1ER®D g(z) € Clz] TN LT (Qi;) = ¢(Fp) & LT & EDE v(Q;;) DEH,
(4) BT, q(@) = gm o) (@) D & EDE 7(Qy;) DETHA,
BBERRATERED, BILIZR > T &> < Harish-Chandra @% D small READ
—t ([O]) ZIALT, (3) (>T (4)) 2oL d S(a) ATRALEETERSZ
BT &= (§3).

--UNE2!=F-" Gni Mo(1)(Z) € Clz] iZ z I Fpy ZRA LTz & EDEFS D Ann Mp(A) I

B3 2L RBENBOE=Y IVBERTHD, [Os)| CHAZTNE. gn men (z) DIE
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T q(z) & Mo(A) DI85 A—8 MZH LT U(g) DRI 57 )b L (\) HRERICEE
b, AnnM(he) C Iey(3) € Ann M(M) BHD 5. 2T M(Ae) i Mo()) %M
BLLUTHED Verma I TH 5. [Os] Tl

(5) generic TR AMZXS U T gt pro 00 (2) I—BT B 2, A DBIER go(g; 2, )),

(6) Mo(X) = M(Mo)/Lon(gwn) (N M (Do) PSR D DI D A D+535fe,
DBEZ BN, (6) IMARAE~DRAYH HEETH S ([Os], [00s] BH). SH
NS EBDEUTHBLNE !

(5%) BAIIKNT B g pe(n) (z) DEHRAR,

(6%) Me(X) = M(Xe) Moy gy @ N M (Ne) DD ILD/=DD A DRBE+554
(IO TIK§2 DERETRER/BRELR RS, ERTIKIEHO—LEE VDS,
IhiZ BJ] DERZEICAVWSH DT, AHODIEEST —< TH 5 Harish-Chandra ¥

FEOHBELEZHE DBERIKRVWISTH S, (6%) ik Lemma 5.112& D S(a) DEA
F7NV

7(Iq*q’Me(’\)(z) ) Z S@v(Qs)+ ). S@(D-vD)r+p)

DeS(a)W
(22T (Qu) = dut por)(Fr)

DBRORET B LIRBET S, BidQu (1< Y) IKNT2 3) ORRIZZDEET
T ETCIOMBICHES T LIRTERVOED, 1) 2RDE

(47) 4(2) = gu e (2) DL EDE Y(Qi) mod Y S(a)(D - v(D)(A+ p))
DeS(a)W

2i=j < YOBABKIELHETZI LN TE (Proposition 5.3), 2T LED
BRPEEICADPS. (47) X “Gould DARDB(LH B EEOTBEBR ML (3) 2
HEoTEHAEIND. 20K, W OPrORERMOEX (5.11), (5.12), (5.22), (5.23),
(5.24) LIz 2D, ThLDERIZVW TN EZRID Zariski dense RIBAEESDE
MTevaluate THZ LICKDEPDEND. FHERICH T B Zariski dense REHHES
EREROICZOERXDPRLTELTEDRLIATHEN, 12D glintT2REHR
EITRRL, BYORRS Lie RORFMIMBATNE L ZAICEB LTIFLL.

CCETg=0oyUTERY, CCTRREZLIIMMOTHBEER Le BICD
BTIRES. gl, XT3 (5%), (67) IZTTIZ[Os] TRLATWADT, AHTI
9 = O2n+1,5P,,, 02n BERNRETS.

2 Generalized Verma modules and minimal poly-
nomials

Let g be a complex reductive Lie algebra, a a fixed Cartan subalgebra of g, £(g)
the root system for (a, g), and X(g)* a fixed positive system of X(g). Let n and f be
the nilpotent Lie subalgebras of g corresponding to X(g)*t and —X(g)*, respectively.
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We thus have the triangular decomposition g = fi + a +n. Let ¥(g) be the basis of
Y(g)* (the set of simple roots). As usual, p is the half sum of positive roots and if [
is a Lie algebra, U([) (resp. S()) denotes the universal enveloping algebra (resp. the

symmetric algebra) of [. Associated to a subset © of ¥(g), define the following Lie
subalgebras of g:

ag = {H € a; a(H) = 0 for a € O},
go={X €g; [H,X]=0for H € ag},
me = [ge, g0,

Pe =ge + 1,

ne = the nilpotent radical of pg,

fie = the nilpotent radical of gg + f.

Moreover, if A € ag then the character \g of pe is defined by pe = ae & (me +
projection A
ng) — ag — C. Put

Jo(N) = Y U(g)(X - re(X)),

Xepe
Mo () = U(g)/Je().

The left U(g)-module Mg () is called a scalar generalized Verma module. If © = §,
we also use the simple symbols J(\) and M(X) for Js()) and My()). Note that in this
case, M()) is a Verma module with highest weight \ € a*.

Suppose (7,V) is a faithful finite-dimensional representation of g such that the
symmetric bilinear form (-,-) on EndV x End V defined by (X,Y) = Trace (XY) is
non-degenerate on 7(g) X m(g). Then (-,-) defines a natural projection p : EndV —
m(g). Via the natural identifications 7(g) ~ g C U(g) and (End V)* ~ End V*, we
identify p with an element F, € U(g) @ End V*. Note that U(g) ® End V* has the same
algebra structure with the algebra M(dim V;U(g)) of U(g)-coefficient square matrices

~ of size dim V. The following notion of minimal polynomials is defined in [Os] (see also
[OO0s]).

Definition 2.1 (minimal polynomial). Let © C ¥(g) and A € a§. The minimal poly-
nomial g, re(z)(z) € Clz] for the pair (7, Mg()\)) is defined to be a monic polynomial
satisfying g me(r)(Fr) € (Ann Mg(A)) ® End V* with the minimal degree.

The existence and the uniqueness of gx pq(x)(z) are assured in [Os]. As stated in §1,
if g is a classical Lie algebra and r is its natural representation, the explicit formula of
gn,Me(»)(Z) for a generic A is obtained in [Os]. We shall now give a precise description
of it together with some related results by [OOs].

Suppose £ = 1,2,... and V; is an {-dimensional vector space with basis {vy,...,v.}.
Let {v,...,v;} be the dual basis of {vy,...,v} and put E;; = v; ® v; € EndV}. The
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classical Lie algebras are by definition

gl, = End V},

oy = C-span of {E;; — Ep11_j441-s € EndVy} (£> 1),
sp, = C-span of

{Eij —sgn((i—£-3)(G—-£- 3)) Baer1-j2041-i € End Vi),

(Throughout the paper we use such realizations.) If g = gl,, we always assume a,n,
and 7 are the Lie subalgebras spanned by {E;}, {Ey; ¢ < j}, and {Eij; i > j},
respectively. If g = o, or sp,, we assume a,n, and f are the intersections of those for
gl, or gly, with g. The natural representation 7" of g = gl,, 0, or sp, is by definition the
representation on V; or Vo, coming from the inclusion map gl, = End V;, 0, < End V},

or sp, = End Vi In 7% each v; is a weight vector. Let e; denote the weight of v;.
Thus forn=1,2,...,

(2.1)

(An-1)  ¥(gl) ={e1—e,...,en1 —e€n},
(2 2) (B‘n) ‘I’(°2n+1) = {61 —€2,...,Ep_1 — €Ep, e’n})
. (Cn) \Il(spn) = {61 —€2y...,6pn=1 — €, 2611},

(Dn) ‘I’(Ozn) = {61 —€2,...,6n—1 —En,Epn_1 + Bn}-

For an increasing sequence of integers
(2.3) Ming=0<n; < <np=n,

we define

L
(24) (")1'] = U U {ei - ei+1} C ‘I’(Bln), \I'(°2n+1),‘ll(5pn)’or ‘I’(OZH)a

k=1 ng_1<i<ng

and if g = ogn41,5p, (n = 1), or 09, (n > 2), we also define
(25)  ©n = Op U {the n-th simple root of (2.2)} C ¥(0gn+1), ¥(sp,.), or ¥(02y,). |

An element A € ag_ is identified with (A1,...,Az) € C* by the relation \g | =
Sro M (Enk_l <i<ny e,-). The similar identification a* ~ C™ is also used. In this
paper, whenever we work with Oy for 05,, we assume e,_, — e, € Oy, or equivalently
nr-1 < n — 1. This assumption is justifiable because if 7 is an outer automorphism
of 05, corresponding to the transposition of e,_, — e, and e,_; + e, in the Dynkin
diagram then (Tomio7™1, V3,) =~ (74, V3,). Accordingly, in all cases an element A € 05,

is identified with (A1,...,Az—1) € CE-1 by Mg |o = S5 Ay (=

g1 <i<ny ei) .
Definition 2.2. Define the following polynomials in z with parameter \ € dg, OF
ax

On

L

gon(glai 2, A) = H(m + Ak — nk_l),

k=1

72



05, (02n11;7,A) = (T — nL“l) (1:-|— % _ nl;—l)(w_ Ae 2n—-nk),

donlepiz ) = [[(a+ 28 - Pt (g - 2 n et dy,

Go (#n; 2, X) = (2= "L‘l)ﬁ(ﬂﬁ_ 1) (o - %_ 2n—;zk+1),

don(omi ) = [[ (a4 22 - 1) (p 2 Zmmmecly

k=1 2 2 2 2
L-1
o= e 25+ 3 - 252 - - e,
k=1

Theorem 2.3 ([Os]). Suppose g = gl,,. Then the minimal polynomial g me_(2)(2)
equals goy,(gl,; 2, A) for any X € ag_.

Theorem 2.4 ([Os], [0Os]). Suppose g = 0n41,89,, Or 02,, and © = Oy or Op.
(If g = 03, and © = Op, we assume np_; < n — 1.) Then the minimal polynomial
Ont, Mo(n) (Z) divides go(g; x,A) for any X € af. Moreover, if each root of ge(g; z, ) €
Clz] is simple, then the two polynomials coincide.

Theorem 2.5 ([Os], [OOs]). Suppose g = 02, €n1 — € & On and A € ag_ is of
the form (Ay,...,AL—1,0). Then np_; = n —1 and gey(02n;, \) has the double root
n—1

z = 552, In this case, q,,a,Men(,\)(z) divides z—_—}‘—;rqen (0gn; 2, A). Also, if each root of
2
—4=r0en (02n; 7, A) € Clz] is simple, then
2

. 1
(2.6) Gt Moq () (¥) = ——5=740n (02n; 7, A)-
2
Compared with Theorem 2.4 or Theorem 2.5, Theorem 2.3 is strong since it deter-
mines the minimal polynomials for all parameters. As a matter of fact, it is not so
difficult to strengthen part of Theorem 2.4 and Theorem 2.5 at this level.

Theorem 2.6. (i) Suppose g = 03041, and © = Op or On. Then gum pgn(z) =
go(02n41;Z, A) for any A € ag,. .

(ii) Suppose g = sp,,. Then q,,u,Men(A)(a:) = Qo (89 T, A) for any A € ag .

(iil) Suppose g = 04y, and © = Oy or Op. (If© = Oy, we assumeny_; < n—1.) Then
deg, gm Mo (v (®) = 2L — 1. Therefore, Gnt Mg () (z) = ¢5,(02n; T, A) for any A € O,
Furthermore, in Theorem 2.5, the equality (2.6) holds even when z—_—-‘;_f_rqen(o%; z,)) €
Clz] has a double root.
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Proof. Regard U(g) as a filtered algebra by the standard filtration {Uys(g)} and Jo())
as a filtered U(g)-module by the filtration {Jo(A) N Us(g)}. Then gr Jo()) = S(g)pe
where gr Jo() is the graded S(g)-module associated to Jg()). Denote the symmetric
bilinear form (7%(-),7%(-)) on g x g simply by (-,-) and identify g with g* through
it. Since (-,-) has ad(g)-invariance, it is easy to see (X,Y) = 0 for X € ne and
Y € po. For D € Uy(g) (d=0,1,2,...), let 04(D) be its image under the composition
map Uy(g) — Ua(9)/Ua-1(g) = S(g). Since Ann Mg(A) C Jo(N), 04(D)(X) = 0 for
D € Ann Mg(X) N Us(g) and X € ng. We first show that if d = deg, G Mo (1) (T)
then 79(X)? = 0 for any X € ng. For this purpose, suppose d = deg, gri me(n) (T)
and take an arbitrary X € ng. Let Vi be the representation space of 7% Since
Fo =3, ;p(Eij) ® (v ® v;), the image of @mi, Mo (M) (Fmt) under the composition map

03®1gnavs (evaluation at X)®1g, 4 vy
N

Ux(g) ® End Vi ———, S(g) @ End V%, » End V,

. . d . d d
s (o (0(B), X) ® (0 ®07))” = (Tis(Bs, (X)) @ (0 ©7))” = (24(X))” where
78(X) € End V3 is the transposed map of m(X) € End Vy. But since gu ago(x)(Frt) €
Ann Me(A) ® End Vf}, we get (*n%(X ))d = 0, which shows our claim.

Next, we examine each case separately using the matrix expression for End Vi with
respect to the basis {v;}. Put nj =ng —mp_, (k=1,...,L) and

« t -
+(1 1 1
1= ¢ ! 1 1 (s,t=1,2,...).
di\1. 1 .- 1
(i) Case g = 0gn1 With © = Oy. Take
n o ny 1 ny nj n
m ( 0 l'n’l'n,’2 O \
o 0
ny O i'n'Ll
X= 1 0 _iln'L € Neg
n O
" ' 0 ~Luy

Then m4(X)?L # 0. Hence deg, @t Moy, () (%) 2 2L + 1 = deg, goy (02n41; %, A) for any
AEag, .



Case g = 09,41 With © = Op;. Take

/ ! ’ ’ ! !
m ny nr-1 2n7+1 "1 ny ™

~

n (0 Loty \
n 0 - O

3
™

L

o
t-n

1,21:.L+l
X = 241 0

h‘

_.-I-2n’L+1,'n’L_1

, -~
ny ]-nz'n1

+ \0 0 /

€ ng,. Then 7%(X)?~2 # 0. Hence deg, g, Mg W () 2 2L—1 = deg, g5, (0204+1; 7, A)
for any A € a— .

(ii) Case g = 5p,, w1th © = Oy. Take

n ny n nL n_y n
'
n 0 I anl
(U g 0 \
n ]
L-1 1"L—1"L
, -
X = "z O )
= O . € Ngy.
, .
n -—1 ]
L L AL M)
n -‘. —~ I ol
; 0 Lo
/
™ \ . O )

Then 7%(X)2L~1 # 0. Hence deg, i, Mo ()(%) 2 2L = deg, gon(8Pn; 7, A) for any
AEag. .



(iii) Case g = 09, with © = Oy or Op. Take

! i ' ’ '
n) ny L 2ny ny_y ny ny

n (O Lning ) O \

ny_y O 1”’14—1'2"’1,
= ! O -1
X = | PO

!
g 2] O

Y O - ln’zn'

~ \0 0

€ ney or ng,. Then 73(X)2~2 #£ 0. Hence deg, gn me()(2) > 2L — 1 for any
e as, O

The remaining cases where the minimal polynomials are not completely determined
by Theorem 2.6 are the case g = sp,, with © = O and the case g = 0., with © = Oy;.
For the former case, we can prove the following theorem (the proof will be given in a
subsequent paper).

Theorem 2.7. Suppose g = 6p,,. Then g, Mg () (z) = g5, (8p,; 2, ) for any A € a5, -

For the latter case, Theorem 2.5 shows ge,(02q; 2, A) is not minimal for some A €
dg,- The complete result is given as follows:

Theorem 2.8. Suppose g = 03, and A = (A1,...,AL) € ag_.
(i) If there exists some k = 1,...,L for which both ng —ng_1 =1 and A\y = np — n

hold, then gey(02n; ,A) has the double root z = 25 and

1
(2.7) 9nt, Mo (V) (7) = ——5=1%0n(02n; 7, A).
2
(ii) Conversely, if for each k =1,...,L at least either ng, — ng—1 > 1 or Ay £ — n

holds, then q,,n,Men(A)(CL‘) = gon (02} T, A).

Here, we prove only (i) by using Theorem 2.31 of [OOs]. The proof of (ii) will be
given in a subsequent paper.

Proof of (i). Suppose first n = 1. Then 0 = a = C(Ey; — Ey), L = 1, O =

@, and M()) is one-dimensional space on which o, acts by A. Furthermore F, =
Ey1—FE»9 0

8 Bar B ) € M(2;U(02)) ~ U(o2) ® End V. Since the assumption of (i) is
P

equivalent to the condition A = 0, the theorem (including (ii)) is immediate.
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Secondly suppose n > 2 and the assumption of (i) is satisﬁed. Since —3k + Tl =
2e +2”—"§k‘—1 221 goy(02n; z, A) has the double root z = n=L. The totality of weights
of( R Van) is {:l:el,...:i: en}:

—€] = —€g —F - — —€np_1 > —€n
4 4
€p —F Ep_] > — €3 > €3

(In the above weight diagram, an arrow is written if the difference of the weights at
both ends equals some simple root.) Let (7%|gq_, Vanlge ) be the restriction of the
natural representation (7%, V4,) of g = 04y, to the Lie subalgebra gon- Then the set
Wey (%) of the lowest weights of (n lsey > Vanlge, ) 18

{=€not1y- s =yl ooy =€y +1,€npy - €nyy ey lny }

where a lowest weight vector is a weight vector for a which is annihilated by goy NT.
Let Wp, be the Weyl group for (a, g). Since

Aeglatp=M+n—1,...,\1+n—ny,...
n
A1+ =gy, 0, A+ —ne—1,. ..

SAL+n—=—ng—1,..., AL +n—ng),

one can easily see that for a generic (A, ..., Adk—1, Aet1, ..., AL) € CE71 each of { ey |o+
p—w; w € We, ()} is in a distinct an-orbit Hence it follows from Theorem 2.31
of [OOs] that for such (Ay, ..., Ak—1, Aeg1, - -, Az) € CE~L, all the roots of g, Mo (3 (%)

are simple and in particular g, Me o () d1v1des ———;—_—rqen(ozn,x A). Let us show it

is true for any (Aq, ..., Ak—1, Aks1,-- ., Az) € CL-1. Write z—_—i—%rqen(o%,z, /\)LHF €
U(g) ® End V,, as
ZQ,, ® (v} @ v;) with Qij € U(8) ® Clhy,- . Moty Moy - -, A
1,J
Note that the canonical surjection U(g) — Me,()\) induces an isomorphism v :
U(fey) = Mey(X). Thus for each Q;; and any u € Mo, ()\),
v HQiu) € Uflog) ® CAyy ., Akt Akt - - AL

Hence we have

Qi; € Ann Mg () for a generic (A1,..., Ak—1, Aks1y . -5 AL)
& v (Qsju) = 0 for any u € Mey()) and a generic (Aq, ..., Ae—1, Aes1, - - - » AL)
< v~ Y(Qiju) = 0 for any u € Me, () and any (A1, ..., k1, Akdy - -« s AL)
€ Qij € Ann Mg (A) for any (Ai, ..., Ae—1, Aoty -+ - ML)

Thus gm a6 (1) (2) always divides —..—_rqen(ozn, z,A). But in view of Theorem 2.6 (iii)
the two polynomlals coincide. O



3 Degenerate affine Hecke algebras

Let g be an arbitrary complex reductive Lie algebra.

Definition 3.1 (Harish-Chandra homomorphism). The Harish-Chandra homomor-
phism vy is the map of U(g) into S(a) defined as follows: If D € U(g) there exists a
unique D € U(a) such that D — D € &U (8) + U(g)n; Consider D as a polynomial
function on a* by the identification U(a) ~ S(a) and then put y(D)(\) = D\ - p)
for A € a*.

Let W be the Weyl group for (a,g), Z(g) the center of U(g), and S(a)¥ the W-
invariant subalgebra of S(a). It is well known that + gives an algebra isomorphism
Z(g) ~ S(a)V (the Harish-Chandra isomorphism). This isomorphism is generalized
by [O] using the degenerate affine Hecke algebra. The generalized results applies to
some calculations in this paper.

Definition 3.2 (degenerate affine Hecke algebra). There exists uniquely (up to equiv-
alence) an algebra H over C with the following properties:

(i) H =~ S(a) ® C[W] as a C-linear space.

(ii) The maps S(a) —» H,f — f® 1 and C[W] - H,w — 1 ® w are algebra
homomorphisms. '

(ii) (f®1)-1®@w)=fQwfor any f € S(a) and w € W.

(iv) (1®54): (£®1) = 54(£) ® 50+ a(€) for any a € ¥(g) and £ € a. Here s, € W
is the reflection corresponding to a.

We call H the degenerate affine Hecke algebra associated to the data (a, ¥(g)).

Remark 3.3. (i) A usual ‘degenerate affine Hecke algebra’ has a deformation parameter,
called the multiplicity function, while in our definition this parameter is fixed to a
special one. Except for this point, the definition above is due to [Lu].

(ii) The center of H equals S(a)" ([Lu, Theorem 6.5))

(iii) We identify S(a) and C[W] with subalgebras of H. Then the relation in Defini-
tion 3.2 (iv) is simply written as

(3.1) Sa-E=8a(f) Sat+a(f) Vae¥(g)VEea.
Define the left H-module

Su(@=H/ Y Hw-1).
weW\{1}
Note that the inclusion map S(a) <+ H induces the isomorphism S(a) ~ Sy (a) of left
S(a)-modules, through which we identify Si(a) with S(a). As a result, W acts on
S(a) in two different ways. If w € W and f € S(a), we use the notation wf for the
usual action and let wf denote the result of the left multiplication of f € Sy(a) by
w € H.
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Lemma 3.4. (i) Suppose o € ¥(g) and put a(e) = {H € a; o(H) = 0}. Then
S(a) = S(a()) - Cl(a")’] & S{a(a)) - C[(«")*](a¥ - 1)

is the decomposition of S(a) into the eigenspaces of 5, with eigenvalues 1,—1. Here
@’ € a is the coroot corresponding to a. V

(ii) S(a)V = S(a)W.

(iii) For o € ¥(g) and f € S(a),

(32) §af = saf+ f - Saf'

aV

Proof. From (3.1) we get the following relations in H:

sal@’ —=1)=—(a'-1) mod Y H(w-1),
weW\{1}
sa(a¥)’ = (")’ 5,
Sa€=E€-34 for €€ a(a).
From these (i) follows immediately. Next, (i) implies S(a)®* = S(a)* for any o € U(g),
proving (ii). Finally take any o € ¥(g) and f € S(a). Since
f= (f+5af+f—saf) +f_3af(av_1)

2 2aY 2aV

corresponds to the decomposition of (i),

f—58af
2aV

Thus we get (iii). O

f—saf'

oV

gaf=f_2'

(@¥ —1) = s.f +

Proposition 3.5. Let V be a finite-dimensional ad(g)-subspace of U(g) and V* the
subspace of V consisting of the 0-weight vectors. Note that W naturally acts on V*.
Put

E = {a € ¥(g); 20 is not a weight of V}.
Then
Y(8aD) = 34y(D) for any D € V*® and o € E.

Before proving the proposition we introduce some maps which should be considered
as partial versions of the Harish-Chandra homomorphism.

Definition 3.6. Let = C ¥(g) and put

1

R(g=)" =2ZENE(9)*, p==3 Y. a, PP=p-p=
a€X(ge)t



Define the map v=: U(g) — U(g=) by the projection

U(g) = (n=U(g) + U(g)ns) @ U(g=) — U(ge)
followed by the translation

Ulgs) =~ U(mz) ® S(a 9ZD ® fi(A

ZD;' ® fi(A ~ p°es) € Ulmz) ® S(az) = U(gs).
Furthermore define the map += : U(gs) — S(a) by the projection

U(gz) = (s=n1)U(g=) + U(gs)(g=N 1)) © U(a) - U(a)
followed by the translation

Ula) > S(a) 3 f(A) = F(A - p=) € S(a).
Note that vz is nothing but the ordinary Harish-Chandra homomorphism for g=.
One can easily observe v& and = have the following properties:

Lemma 3.7. (i) 7? = ~.

(i) :20 7" = 1.

(iii) Let U(g)*® = {D € U(g); [H,D] = 0 VH € ag}. For any D, € U(g)*™= and
D, € U(g) we have ¥*(D1D;) = ¥*(D1)7%(Dz) and v*(D2Dy) = v=(Dy)vE(Dy).

(iv) 7 is an ad(gz)-homomorphism. In addition, if & € Z and D € U(g)® then
7%(saD) = 8a7*(D).

Proof of Proposition 3.5. Let = be as in the proposition. We may assume = # 0
because the proposition is trivial if £ = . Take an arbitrary D € V*® and o € E.
Thanks to Lemma 3.7 (iv), ¥*(V) is an ad(gz)-subspace and y=(s,D) = s4v=(D).
Also, it follows from the definition of 2 that if we consider ¥5(V) as an mz-module
then each constituent of y(V) is small in the sense of [Br]. Hence by Theorem 5.9 (iii)
of [O] we have y=(sa7"(D)) = 847z(7*(D)). Finally by Lemma 3.7 (ii), we conclude
Y(saD) = v2(v3(saD)) = 3a72(¥*(D)) = 3a7(D). O

Hereafter in this section, we assume g = 0n11,5p,,, Or 0a, and (7, V) = (7%, Vy)
(N = dim7® = 2n + 1 or 2n). Recall the notation in §2. For i,j = 1,...,N put
Fij = p(Eij) andfori = 1,..., N put H; = Fy;. Thus we have Fry = Y, . F}; ® (v ®v;)
and H; = —Hpyy—;. Note that {Hy,...,H,} isabasisofa. Fori=1,...,n—1 let
8i € W be the reflection corresponding to e; — €;4; € ¥(g).

Lemma 3.8. Suppose p(z) € Clz]. Then fori=1,...

‘ Hj-H +
(14 81+ 8ody + -+ BisBing -+ §1) @(H:) = }: o(Hj) H ;
1<k<‘t

Here the right-hand side is the formula in the field of fractions of S(a).



Proof. Denote the field of fractions of S(a) by K (a). We assert the action of W on S (a)
can be extended to K'(a) by (3.2). In fact, if 5484/ - So = 1 with @, @ ..., o € U(g),
then

(3.3) Safa - Farf=f

for any f € S(a). But if we define the actions of 34, 3w, ..., 3o on K(a) by (3.2), then
each f € K(a) satisfies (3.3) since f = f1/f, for some f; € S(a) and f, € S(a)¥. It
proves our assertion.

Now, clearly the lemma follows if we show fori =1,...,n,

. = H;, — H +
8i-18i2--- 81 p(Hy) = ¢(H;) H :

1<k<i—1 CHi-He
(3.4) 4 'z_l: ¢(Hj) I H; — Hi + %.
< 2H; - H) ) H;—Hy

1<k<i-1

Suppose (3.4) is valid for i (< n). Since the coroot corresponding to e; — e;y is
(ei - €i+1)v = 2(Hi - Hi+1),

1 H Hz+1

Gf= e fF 2
f 2(Hi - Hi+1) f H H1,+1

s, f for f € K(a).
Hence applying 3; on both sides of (3.4), we have

§i8i1-+ 51 o(Hy)

(,O(H H H Hk + 3
2(H; — Hi) 1<k<i1 CHi-He
i+l Hk + 1
+ ¢(Hi1) = 2
ll-[Kt H1.+1 - Hk ;
+Z 1 +Hi—Hi+1"% H H]—Hk"i‘%
2(H H,+1) 2(;—H)  Hj-H1 | ;. Hj-H
1<k<i-1
Hipy— He+ 3 : (H;) Hj—Hq+3
= ¢(Hi11) 2 4+ :
+ 1_<EISz' Hi+1 - Hk .72:; 2(HJ - Hi+1) ij Hj - Hk
1<k<i
Since (3.4) is trivial for ¢ = 1, we inductively get (3.4) for all i. O

The next theorem determines the image of each ‘matrix coefficient’ of ¢(F,) under
7 for any ¢(z) € C[z].

Theorem 3.9. Recall N = dim7® = 2n + 1 or 2n. Suppose q(z) € Clz] and define
Qi; €U(g) (4,5 =1,...,N) so that g(F) = ¥, ; Qi ® (v} ® v)).
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(1) Ifi 76_] then "}’(QU) = (.
(ii) Put a(g) = p(H;), that is,

a(°2n+1) =
Then fori=1,...,n,

: : Hj~Hy+1
’Y(E :QN+1~J',N+1-—.1') = E , Q(a(ﬂ) - Hj) H '—“—*“"‘”JH ’;I 2.
j=1 3T Mk

i=1 ki

1
s a‘(spn) =3 a(°2n) = -7—27: - ‘2'

FNy—

2

(iil) Define (F7,):; € U(g) (t— 0,1,...and4,j =1,...,N) so that Ffy = Y, .(F4);; ®

4

(v} ® v;) and put CO =N (F h)“ (t=0,1,...). Moreover put

€ = {1 if g = O2n41 OT 024,

-1 if g =sp,.
Then fori=1,...,n,
i i 1
7(ZQH) = Z{Q(HJ +a(g) + 'é')
j= j=1
_1q(y) —g(H; +alg) +3) }
— H. - -1
Y= Hi=al8) =3 | srow)—date-sye
H H H; +1 A —Heg 135
H; — H;
1<kJ<z

where the substitutions for * in the right-hand side stand for the linear map Cly, H;] —
S(a) defined by y*HY — (y(C™) - e(a(g) — H;)*)HY .

Proof. Clearly it suffices to prove the theorem only for the cases where ¢(z) = z*
(t=0,1,...). Let (F%,)i; and C® be as in (iii). Regard U(g) ® End V3 as a g-module
by the adjoint action and denote the g-invariant subalgebra of U(g) ® End Vy by

(U(g) ® End V})®. As stated in Remark 2.2 of [OOs], Fy € (U(g) ® End V3)®. Hence
for each ¢, F%, € (U(g) ® End Vy})? and it holds that

(3.5) [H, (FL)i] = (ei(H) — e;(H))(Fl)i; for Heaandi,j=1,...,n

Since v : U(g) — S(a) is an ad(a)-homomorphism, v((F%)i;) = 0 if ¢ # j. Thus we
get (i).

Also, we see the linear map p; : End Vy — U(g) defined by p(E;;) = (FY)i; is a
g-homomorphism. Therefore C® = p;(1y, ) € Z(g) and for t = 1,...,n,

i
Z( N4 N+~ = Y P(EN41-5,N41-5)

i=1
= pt((l + 81+ 8281+ ¢+ 8i—18i-2° - 81)ENN)
= (L1481 + 8281+ + 8182 - 81) (FL) NN,
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Z Zpt i) 1 + 81+ 8281+ -+ Si—18i-0 51)E11)

J:

= (1 + 81+ 8981 + v+ 8i_18i—2 - 81) (Fla)n

Now observe that 2(e; — e;41) is not a weight of the g-module End Vy = Vy ® Vy for
j =1,...,n— 1. Hence by use of Proposition 3.5 with V = p;(End Vy), we get

(3.6) ’Y(Z( i N+1—J,N+1—J) = (L4581 +58+ -+ 8182 51)v((Fa)ww),

i=1

(3.7) Y (i(Ffrb)jj) =(1+8 + &5+ +8i-18ia - 5)Y((Fa)n)-
i=1
Let us show the following two equalities:
(3.8) Y((Fh)nn) = (a(g) - Hl)t,
Y((Fa)u) = (H1 +a(g) + %)t
1y = (Hi+a(e) +3)
"2 y-Hi—a(g) -1

(3.9)

y*-y(C(*))—e(a(g)—Hy)*
Then (3.6), (3.8) and Lemma 3.8 imply (ii). Also, since v(C™) € S(a)" (u=0,1,...),
(3.7), (3.9), Remark 3.3 (i) and Lemma 3.8 imply (iii). By virtue of (3.5) Fn; =
(FM)njedU(g) (j=1,...,N —1). Hence we get (3.8) by
N
(Fa)vn =) Fni(Fi)in = Fyn(F')vn - (mod 2U(g))

= (P )wn(=Hy) == (<H) (mod aU(g)).
On the other hand, for j =1,..., N,

[Elj’ FJI} = 2

_Bu-E; 5 Eu—Eny
2 INTTTg

E EJI sgn(n+ % — j) ;EENyN'f'l—.’ijl
13,

and hence

[(Fa)1is Fn] = [pe(Brz), Fi] =Pt([E1171’31])

_ (Fau = (Fh)ss (Fi)u = (Fh)ww

= - 55 .
2 2

Therefore, since Fj; € nU(g) for j = 2,..., N, we have for t=1,2,...,

(Fa)u1 = Z(Ft"

j=1
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N
= (F;h‘l)nFu + Z[(F;u_l)lj, Fj1] (mod #U(g))

N —e¢

N
_ 1 _ €, 4
= (F,:hl)ll(Hl‘f‘ ) —EZ(Fihl)ﬁ_*_’i(F;hl)NN
j=1

N —¢€ 1 €
— (pt-1 _ o1 o &gyl
= (Fi (B + =5—) = 5040+ 2(-H)
(mod aU(g)).
It inductively leads to
N — e\t
t —
(Fai = (H1 + 5 )

1 ik G _ ; N — €\ t-1-J -
-5 (C9 — e(-HyY) (H1 + = ) (mod U(g))
Jj=0
fort=0,1,.... Now (3.9) is immediate. O

Remark 3.10. In Theorem 3.9, each v(Q;;) is expressed in terms of Hy's and v(C®)’s.
But each v(C™) can be also expressed in terms of Hy’s by Gould’s result [Gol]. In
§4 the explicit form of v(C™) will be studied in detail.

4 A variant of Gould’s result

Let (m, V) be an irreducible, faithful, finite-dimensional representation of a complex
reductive Lie algebra g. Then the bilinear form (X,Y) := Trace (XY) on EndV x
EndV is non-degenerate on m(g) X m(g) and we can use the setting and notation
in the preceding sections. Let (U(g) ® End V*)® denote the subalgebra of g-fixed
elements in U(g) ® End V* with respect to the adjoint action of g. For any ¢(z) € Clz]
one has g(Fx) € (U(g) ® EndV*)® and hence ¢(F;) is identified with an element
Pq(z) € Homg(End V,U(g)) (cf. the proof of Theorem 3.9). Hence

(4.1) Pa=)(1v) = (Lu(g) @ Trace)(q(Fy)) € U(g)

is a central element. This type of central elements are introduced by [Ge] and Gould
calculates the image of (4.1) under the Harish-Chandra homomorphism v in [Gol].
Suppose © C ¥(g). We consider ag — a* by A — Aol (Hereafter Aol will be
briefly denoted by Ae.) Then af + p is an affine subspace of a*. Gould’s formula for
Y(pqz)(1v)) is simplified if we restrict it to a§ + p. Denote the symmetric bilinear
form on a* x a* induced from the (7 (-),n(-)) also by (-, ).

Theorem 4.1. Let (7|34, V|se) be the restriction of the representation (m,V') of g to
go. Let {w,...,@wa} be the totality of the lowest weights of (|ge,V|se) counting their
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multiplicities. Here a lowest weight vector is a weight vector for a which is annihilated
by ge Nfi. Then for q(z) € C[z] and ) € a

(P (1v) )Xo + p)
< (7,7 = 2p) — (wk, wk) | d(Ne — wx)
(42) —;Q( Wk,/\6+p>+ D) ) (/\6)
with d(p H(y+p,a)foruea

act(g)*

Here 7t is the lowest weight of (m,V).

Before proving the theorem we first recall a key fact used in [OOs] which is originally
due to [Gol]. Let {X;} and {X}} be two bases of g such that (m(X3), 7(X3)) = 6y
and define the Casimir element A, = 3, X; X} € U(g).

Lemma 4.2. Suppose M is a highest weight module of g with highest weight u € a*.
Then we have

(i) Ax acts on M by the scalar {u, u + 2p).

(ii) The natural action of Fy € U(g) ® End V* on M ® V* coincides with the action of

1
5 ({1 +20) + (7,7 = 2p) — Ar) € U(g)
on a g-module M ® V*. Here 7 denotes the lowest weight of (m,V).
Proof. By [OOs, Lemma 2.19 ii)] and [ibid., Lemma 2.26]. O

Proof of Theorem 4.1. The proof is just a simple modification of Gould’s one. For a
dominant and algebraically integral weight 4 € a*, let (7, V,,) be the irreducible finite-
dimensional representation of g with highest weight u. Suppose A € a} satisfies (i)
Ae is dominant and algebraically integral, and also (ii) for each k = 1,...,d, Ao — @&
is dominant and algebraically integral. (Such \’s constitute a Zariski dense subset of
ag.) Then Proposition 2.27 of [OOs] gives the irreducible decomposition

d
(WAQ ® 7T*, V)\e ® V*) = @(Wke—wk) Vke—wk)-

k=1

It, combined with Lemma 4.2, leads to

(Tre @ LEnavs X Fr

i

)
% ((O\e, Ao +2p) + (7,7 — 2p)) Ly, jov+ — (Mrg ® T°) (A“))

d
T, 7T — 2p) — (Wk, ™ '
@(wk,)\e‘*‘l’ +< p>2 < u k>)1V)\9-—wk'
k=1




Now

1
’)’(pq(x)(lv)) (/\@ + p) = Fm vV, Trace OTxg (pq(a:)(IV))
(-]

= 5o 7. Trace o (Txg ® lgaav-)(q(Fx))

= dim 7 Trace ¢((7rg ® 1Enav+)(Fx))

dim Vyo—w, (7,7 —2p) —
= Z dim Vi ((wk, Ao + p) + 2

(w, wk)) _

Hence by Weyl’s dimension formula, (4.2) holds. Since the left-hand side of (4.2) is
a polynomial function on ag, so is the right-hand side and the equality holds for any
A€ ag. O

In the rest of this section, we assume g = 0an41, 89, OF 02, and (7, V) = (7%, V)
(N = dim7® = 2n 4+ 1 or 2n) and © = Oy defined by (2.4). Here II is as in (2.3).
In these cases p+(1v,) (t = 0,1,...) equals C® in Theorem 3.9 (iii). We shall now
calculate the explicit forms of (4.2), which will be used later. Note that

1
(e,-,ej) = 55,;]' for Z,] = 1, N (B

Lemma 4.3. Suppose ¢(z) € C[z] and py, ..., ux,x are K +1 indeterminates. Then

-t Br+ pe — X
S e(m) [ =————= € Clu,..., ux, X.
1<e<k  PE T He
Uk

Proof. Using the difference product

D= H (k — pe)
1<k<t<K
in py,..., uK, we can express
X _
pet pe — x _ (=1)F
E o(ue) I1 () (Dl yrx-sm.) -
1%z<x He = He R e

Since Y, @(tik) (Dluemsx—me) 18 alternating with respect to p,. .., px, it is divisible
by D. a

Example 4.4 (B,). Suppose g = 03,41. Then p = (n — ,n —2,...,1) and the
totality of weights of (7%, Van41) is {0, ey, ..., xe,}:
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(In the above weight diagram, an arrow is written if the difference of the weights
at both ends equals some simple root.) The set Wg_(7%) of the lowest weights of
(7h|gen’ V2n+1lsen) is given by

Weor (™) = {—€ngs1, -+, —eny_141,0,€n, .. €n, }

Suppose A = (Ay,...,AL) € a5 and put

A e A, 2n—my
(4'3) Bk = 2 + 2 k= 2 2

for k =1,..., L. Then we have for ¢(z) € C|z]
(4.4)
7(pq(z)(1Vzn+1)) ()‘en + P)

= S a(-H0ntn=ma =} + 1 D)
k=1
. (P F €ny_y+1) Eny 141 — eﬂk-1+2) Tt (P + €ny_ 1415 Eny_y 41 enh)
<p’ Cnp_141 — em—1+2) v (p, Cnpoy+1 — e’"-k)
. H {(Aon + P+ eny_i+1s Eny_y+1 ~ €n,_y+1) *** (Aog + P+ Eny_ 1415 Eny_y 41 = Eny)

1<e<L (’\911 + P ln_ 41— em-1+1) e (’\en + P en 141 eﬂz)
T#k

L
. H <’\9n + P+ En_1+1,6n, 141+ Enp_141) (Ao + P+ €ny_ 141, €ny_y+1 T €n,)

=1 <’\9n +P€ny_y 41+ eﬂt-—1+l> T (’\en +pen_141+ enz)

+q(0+2

L
+ 3 a3u+n-m+ ) 3~ )
k=1 .
. <P T Cnus Enpatl T eﬂh> e <P — €nyy ny—-1 — em)
<p’ €np_1+1l — enk) e (P’ €np—1 — eru)
. H <’\9n +p—€ny,En, — em—1+l) te (Aen + P €EnyyCny — eﬂl)
<’\9n +p €, — en171+1> T <’\9n + Py €n, — em)

1<<L
T#k

L
] H (’\en + P = €nyyEn, + em_1+1) ttt <A9n + P = €nyy€ny + e“z)

<Aeﬂ t+ P en, + eﬂ£—1+1) T <)‘9n +pyen, + em>

£=1

+ _
=a(3) -2 3 aw)(m-n-3) J] BIET
ke{£1,...+£L} ze{il};k.,ﬂ.} e = He

Using the relation

1 L
(4.5) n=r1 > (et ),

2 k=1

we can eliminate n from the final form of (4.4) and the result is a symmetric polynomial

in the 2L variables y; by Lemma 4.3. Since a5, + P C a5, +p (4.4) applies to
8y TPE c%n + p by letting Ay, = 0 in (4.3).
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Example 4.5 (C,,D,). Suppose g = sp,, or 03, and put
_ 1 if g = Ozn,
-1 if g =sp,,.

Suppose A = (Ay,..., L) € ag_ and put

)\k kl _/\k 2n—nk-—e
(4.6) Hok==—g = M=yt —p—

for k=1,...,L. Then for ¢g(x) € C[z] a similar calculation to (4.4) implies
7(pq(z) (1V2n)) ()‘en + P)

(4.7) = -2 E q(ur)(2ur —n+€) H He+ Be = n+2
ke{il, ,:EL} ee{ig;k,:t[’} He = l‘l’t

Since

L Le
1 ﬂk+“k ’
TI- 52k=1 20— 1

(4.8)

we can eliminate n from the right-hand side of (4.7) and the result is a symmetric
polynomial in the 2L variables y; by Lemma 4.3. Since a— +p C ag, + p, (4.7)
applies to A\ +p € w— + p by letting Ay =0 in (4.6).

Remark 4.6. If g = o5, then (', V3) is reducible and we cannot apply Theorem 4.1 to
deduce Example 4.5. Nevertheless, it can be directly checked that Example 4.5 is also
valid for g = o,.

5 Two-sided ideals

Retain the settings for the classical cases. Namely, g = 02011, 8p,,, OF 02p, (T,V) =
(7%, Vn), © = ©p or Oy, and so forth. For u € a* put

I(w) = ) UE)A-7A)r+p).
A€Z(g)
Then one has Ann M(u) = I(1) and
(5.1) YIW)= 3 S@(f - flu+p).
fes(aw

In addition, for ¢(z) € C[z] and A € a} define Q;; € U(g) (3,5 = 1,...,N) so that
q(F) = 3, ; Qis ® (v} ® v;) and put

Io(@) (A Z U(9)Qi; + I(Xe)-
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From Lemma 2.1 of [OOs] one has I(,)(}) is a two-sided ideal in U(g) and

(5.2) Yoy (V) = Z S(a)1(Qi) +v(I(V).

If g(x) is a multiple of the minimal polynomial nh Mg (x) () then clearly

(5.3) Ann M()) C Iq(z)()\) c (z)(/\) C Ann Mg ().

b, Mg (2)

Let Jo()) and J()e) be as in §2. In [Os] and [OQs] it is shown that the equalities

(5.4) quu’Me(A)(z)()\) = Ann Mg()\)
(5.5) Jo(A) = (A) + J(Xe)

%t Mo (1) (%)

hold for a generic A € ag. In this section we give the key result to determine exactly
for which A € af (5.5) holds.

Lemma 5.1. The equality (5.5) holds if and only if Ae + p — « is not a common zero
of v(I, G2 (A)(-“)( )) for each o € ©.

Proof. By Lemma 3.4 of [OOs]. O
Lemma 5.2. )\e + p is a common zero of v(Ann Me(N)).
Proof. For any D € U(g),
D=~(D)(A+p) mod #lU(g) + J(Xe).
On the other hand,

Jo(A) = U(g)me + J(Xe) = U(fe)U(me)U(as + no)me + J(Ae)
= U(fle)U(me)me + J(Ao) C fU(g) + J (Do)

Since Ann Mg(A) C Jo()), we have the lemma. 0

Proposition 5.3. Define Qi; € U(g) (4,5 = 1,...,N) so that gu ag (,\)(F-nh) _
225 Qi ® (v} ®vj). Let k= (- 1)dlmq"" Mo (), Then fori=1,.

(5.6) 7(Qi) = Y(Qn+1-i,841-5) mod v(I(Xe)).

Proof. We first assert it suffices to show (5.6) for i = 1. In fact, owing to (5.1) and

Lemma 3.4 (i), y(I(A )) is W-stable. On the other hand, it follows from Proposi-
tion 3.5 that for i = 1,..

> Qi) = &3 Y Qns1-jn41-3)
j=1 j=1

= (1 + 81+ 85 +---+ 8i—18i—9- " 51)(’7(@11) - K"'Y(QNN))



(cf. the proof of Theorem 3.9). Hence if (5.6) is valid for ¢ = 1 then we inductively
have

Y Qi) = 83 Y @ns1-jnai-s) € Y1)
i=1 j=l1

foreach i =1,...,n, which proves our assertion. In what follows we give two separate
arguments according to whether g = 0,,,..; or not.
Case g = 09p41. Define the linear map

Tp:Clz,popy ooy ety i1y e ey o] = Cl2, gy ooy gy iy - - vy i)
by

_1lg(y,p) — q(f — z, )
Y

6.7 alzp) = afi—z,p) -3 —haz

y"l—)é(“) —pu

with
(58) p= (/“—La"-au—l?ulv'-"ﬂfa):
‘ . 1
(5.9) f=7—7 >
2 ke{+1,..,xL}

~ N u . + g — 7

(510)  CY=(§)"-2 3 (wrm-n-}) J] BE=T
ke{l,...£L} le{:{:tl;z.k.,:l:L} He = e

(u=0,1,...).

Here the substitutions for y* in the right-hand side of (5.7) stand for the linear map
Cly, z,p] = Clz, p] defined by y¥z* u* s C®z¥ " — g»+ yv"  Since C™ € Cly]
by Lemma 4.3, the map T, is well-defined. Also, clearly T; maps a symmetric function
in p to a function of the same kind. Put

qo(z, p) = (.’17 - f;_l) H (z — pe),

ke{1,...,:L}

Qo(z,p) = I1 (z — p)

k€{=Ly=1,1,..,L—1}

and let us prove

(5.11) (Tr0)(z, 8) = —qo(z, ),
(Tido) (z, p) = —Go(z, 1)
(5.12) mod Clz, 4] (2(L -Dm- Y uk).
ke{-L,...,-1,1,...,.L-1}

For this purpose define

SL:{(Xla"'a:\L)ﬁl)“-aﬁL)ECLXZL; ﬁo I=O<ﬁ1<"'<ﬁL},
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my : SL — C2L;

(:\1,...,5\[,,’&1, ﬁL)F—)ﬂz(ﬂ L;- -,ﬁ—l;ﬂl’“',ﬁ’[;)

/\k nk 1 )\k: 2fLL - ’flk
ith -_+ 4+
W1l /1 k= ) ) and /Lk 2 )

§L={(Al,...,/\L_l,ﬁl,...,ﬁL)ECL"IXZL; ﬁ02=0<'ﬁ1<"'<ﬁL},

(ﬁo = 0),

P, = M E< CQL; 2(L - Vpug = Z Hi ¢
ke{~L,..,—1,1,.,L—1}

my : _S—L ——)_p[,;

()\17"'a)‘L—17ﬁ11'--1ﬁL) '_>ﬂ'= (ﬂ—-L""aﬂ—l,ﬂl,"',ﬂL)

Suppose (;\1, DYR ,fr) € Sy and fp = mL(S\l,...,:\L,ﬁl,...,ﬁL). Then
do(z, i3) equals the m1n1ma1 polynomial “g, o (,\)( z)” for the natural representation

“rt of 024,+1 and the generalized Verma module “Meﬁ()\) of 024,41 corresponding
tofl:fg <y <+ <fgand A= (A1,---,AL). Let Qi; and p be “Qi;” and “p” for

this setting. In view of the definition of TL, Theorem 3.9 (iii), (4.4) and Lemma 5.2,
we have

Y(@u)(Rey + 5) = (Trg0) (-1, i) = 0.
But since mL(SL) is a Zariski dense subset of C2£,
(Trg0)(1—1,) = O for any p € C?~.
It shows (Tqo)(x,p) is divisible by z — p_;. Moreover, since (Trqo)(, p) is symmetric

in p, (Tpqo)(x, p) is divisible by each £ — py (k= ~L,...,~1,1,...,L). On the other
hand,

(TLqO)(%,p) — qo(%,”) _ _1_¢Io(ya#) - 40(3,#)

2 Y- % yu,..,é(u)_(%)u
=—3 (y—uk) i
z;c{iill:,l,ﬂ} yrC - (%)
=t I mml, g td T (G-m)
k€{1,...,.+L} L ke{+1,....+L}
=3 TI G-mw+3 II G-w) GvG10)
kE{£1,..,+L} ke{£1,..,.+L}

!
e
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Thus (T1g0)(z,p) is divisible also by z — 2. Since it is immediate from (5.7) that
deg,(Trqo)(z,p) = 2L + 1 and the coefficient of 22+ of (Tygo)(z, ) is —1, we get
(5.11).

Likewise, suppose (5\1, S VR T ,Ar) € Sz and i = I—n'L(;\l, . ,S\L_l,le, e
ﬁL). Then Gy(z, f2) equals the minimal polynomial “qwh,Mgﬁ(;\) (z)” for the natural

~

representation “r%" of 094,4; and the generalized Verma module “Mgﬁ (A)” of 024, 11
corresponding to i g <My <--+ < Ay and A= (5\1, .. .,5\1,-1). Hence by the same
reason as above we have (Tdo)(fi-1, ) = 0. Since ‘rﬁL(gL) is a Zariski dense subset

of Py, (Trdo)(p—1, 1) = 0 for any p € Py. It implies
(5.13) (Trdo)(ux, ) = 0 for any p € Pp and k € {-L,...,~1,1,...,L —1}

because (T1.go)(x, ) and the definition of P, are symmetric in p_yz,...,p_1, p,...,
pr-1. Since deg;(Tido)(z,p) = 2L — 1 and the coefficient of 22L-1 of (T1qy)(z, ) is
—1, (5.13) proves (5.12).

Now consider the case where © = O and )\ € ag,- Let po= myg(Ay,... AL
n,...,ng). Then go(z,p) = G, Mo, (N) (z) and it follows from Theorem 3.9 (ii) that

)

(5.14) 1@uw) =ao(5 - 3~ Hu k).

Also, it follows from the definition of Ty, Theorem 3.9 (iii) and (4.4) that

n 1

(5.15) ¥(Qu1) = (Trgo) (-5 abin Hl,iz) mod (I (Aey)).

Thanks to (5.11), (5.14), and (5.15), we get (5.6) for i = 1.
Next, consider the case where © = Oy and \ € ap . Let ji = (A, ., Ano,

ny,...,ng). Then go(z, ) = Gt Mg (%) (z) and as in the previous paragraph,
_/m 1 .
(5.16) 1@uww) = 0o(5 - 7 — Huib),
_fn 1 .
(5.17) Y(Qu) = (TLQO)(§ —1” th‘) mod 7(I(Xg,))-

In this case (5.12), (5.16), and (5.17) lead to (5.6) for i = 1.
Case g = sp,,, Or 03,. Because the outline is the same as in the case g = 05,41, we shall
omit the detailed explanation. Put

1 if g = 02n,
€=
-1 if g=sp,

and define the linear map

TL:C[xa#—L,'"1/‘—17“1,'-',/»1'141 —)C[x,ﬂ-—La'--’/‘lf—-lsul,"-aﬂL]
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by
N . Lg(y,p) —q(R—z — &, p)
Y C () —egu
with
(5.19) B= (M—L,---,M—l,ﬂl,---aﬂL)v
- 1 Le
(5.20) A= > M+ e

T2 pefdl,..,xL)

= u " P+ e — L+ 3
(321)  C®=-2 Y (m)Cu-i+e [] —2
ke{£1,..,£L} ee{:tl;#,ﬂ,} He = He

(vu=0,1,...).
Moreover, put

w@ze)= [ @-m),

ke{+1,..,+L}

Do(z,p) = H (z — px),

k€{~L,...~1,1,..,L-1}
5L={(5\1,---,5\L,ﬁ1,---,ﬁL) €ECExZl fg:=0<Ry <--- <sz},
my : SL —_— CZL;

(5\1,---,;\L,ﬁ1,---,ﬁL) = (f_p,..., -1, 01, .., 0L)
Mo | fkog e | 20y — Py —

€ .
with iy = =5 + 2L and fu = 2+ TEZ B E (.2 ),

— . . A X fig :=0< iy <--- < fig_q,
SL = (Al)"'a)‘L—l’nla"'an) € CL_l X ZL) R 1+e ’
np-1+ 5 <ng

7L={p€C2L; (L—l)(zu[,+§)= Z He ?

k€{~L,....—L,1,...,L—1}
my : §L — FL;
(ilv--',:\L—lyﬁla'-wﬁL) Hij: (ﬂ—L?"‘aﬂ—l,ﬁli"'sﬁL)
Me | e Me | 20— —€ < .
with i_, = --2—k'. + nL2l_ and [ = —2-’5 + ___.I.’.___z._k_.._ (AL =0, := 0)

and let us prove
(6.22)  (Tigo)(z, ) = qo(z, ),
(Toq0)(z, B) = ~Go(z, )

modC{x,u](<L—1)(2uL+;)— > uk).

k€{=Ly,—1,1,..,.L—1}

(5.23)
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Suppose (5\1, .. S\L,ﬁl, ..,hr) € Sy and i = mL(j\l, :\L, g, .. nL) Then
go(z, ) equals the polynomlal dog (§;z, ) in Definition 2.2 correspondlng to § = 024,
or sp;,, I : 7 <Ay <--- < i, and A= ()\1, .. )\L) In view of the definition of T,
Theorem 3.9 (iii), (4.7) and Lemma 5.2, we have

(Trgo)(f-1,2) = 0.

Since mL(SL) is a Zariski dense subset of C?%,

(Tig0)(u—1,) = 0 for any p € C?L.

It shows (Tqo)(x, p) is divisible by & — p_;. Because of the symmetry of (Tgo)(z, 4)
in p, (Tgo)(z, p) is divisible by each z — py (k = £1,...,+L). Thus we get (5.22).
Likewise, suppose (/\1, o AL-1,,...,RL) € 5L andp mL(Al, DR
ﬁL). Then Go(z, 3) equals the polynomial %5, (g; z, A) in Definition 2.2 correspondmg
to § = 024, OT Spj_, i fig < Ay < -+~ < Ag, and \ = (Al, AL 1). By the same
reason as above, (T1go)(Z-1,4) = 0. Since mL<S L) is a Zariski dense subset of Py,

(Tpqo) (i1, ) = O for any u € Py. It implies
(T1@o)(uk, ) =0 for any p € Ppand k € {-L,...,-1,1,...,L -1}

because (T1do)(z, ) and the definition of Py are symmetric in p_y,..., 41, p1,...,
pr—-1. Thus we get (5.23).
If e =1 (namely g = 02,) then for i = 1,..., L we also put

( (3 3 3 38 o o . L1 L-1
(/\1,---,/\5—1,/\i+1,---)\L,nh---,ns_l,ni+1,---,nL)EC X L™

s® = fig =0 < iy <-ov <y, ,

{ 'ﬁ.-:='ﬁi_1+1<ﬁi+1<"'<ﬁ1,
)

i 3
PP ={ pecC¥ (L*"z')(#~i+ﬂz —Z ST NTFEJTH
1<k<L
). 50 Y.
vy - )\:—1,/\1'+1,-~-;\L,ﬁla---aﬁi—laﬁi+1w--,'ﬁL)
'-—)i:‘=(["—L,-")ﬂ—l)ﬁh“')ﬂL)
o1 n A A j\k 20y — i — 1
with f_, = —2—+ 5 and [ = Y + 5

(g := 0,7 1= Ay + 1, i := iy — Ay + 1),

)= { f(z,m) € Cla, ) f(z,B) =0 for any o€ PP},
oz, ) = ( i ; 1) H (@ - M-k)(m — ) (7 is defined by (5.20))

1<k<L
k#T
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and try to prove

(5.24) (Tea”) (@, ) = ~g§(w, ) mod IY.

Suppose
1=1,...,L,
(Ary ooy dicn, Xy Apy Ay oy By, R, - i) €S9,
p=mP (A, A Ny A By B, Ba, o B,

Then it follows from Theorem 2.8 that q( )(m, fs) coincides with the minimal polyno-
mial “g,, Mo () (z)” for the natural representation “7" of 055, and the generalized

Verma module “Me (A )” of 094, correspondmg to 1 : g < My < ++» < Ay and
= (Al, /\L) (fig := 0, Ay := Ry + 1, A = fi_q — A + 1). By the same reason as
above , (TLq 2)(fiz1, &) = 0. Since m{’ (S(')) is a Zariski dense subset of P",

(5.25) | (Teal”) (g1, ) € I,
Observe that u_; — 21 € Iy (). Hence (5.25) for ¢ = 1 implies
(5.26) (Tea") (35, m) € 1.

Thus, if L = 1 then (5.26) shows (5.24). Suppose L > 1. Applying the permutation
of the variable u_; ¢ p_s, iy > pa to (5.25) for i = 2, we get

(5.27) (Teas?) (uap) € IO,
But since (TLq((,l))(a:, @) is symmetric in p_g, ..., g_a, to, ..., 4L,
(5.28) (Tegd") (e, ) € IV for any k = £2, ..., +L.

Thus (5.26) and (5.28) imply (5.24) for i = 1. Finally (5.24) for an arbitrary i is
obtained by applying the permutatlon of the variable iy < p_;, u1 ¢ u; to (5.24)
fori=1.

Now consider the case where © = O and )\ € 05, Let g = mp(Ay,..., AL,
N1,...,nr). It follows from Theorem 2.6 and Theorem 2.8 that

tinne (@) = { 0@ ife=—Torj¢ U, P,
Mo (N aNz,p) ife=1and jpeP®
Therefore by Theorem 3.9 (ii)

n 1 € Y : Y L (%)
e e Hy,p) fe=-lorp¢lU, P,
(5.29) Y(QwnN) = { o(3 - § 46 ' ) ) . (:')1 £
% (5-3—-5—H,p) ife=landpe P



Also, it follows from the definition of Ty,, Theorem 3.9 (iii) and (4.7) that

(5.30)

Q1) = {(TLQO) (% - i —i- Hl,[t) ife=—lorp¢ Uf:l PIEi),
(TLq(()’))(% b Sk Hl,il) ife=1and i€ PS)-

mod 7(I(Aey))

Thanks to (5.22), (5.24), (5.29), and (5.30), we get (5.6) for i = 1.

Next, consider the case where ® = Oy and \ € ag . Let jo = mp(Ay,..., A1,
ny,...,nr). Then §o(z, ) = Gt Mg_ () (z) and as in the previous paragraph,
, _(n 1 €
(5.31) Y(Qnn) QO(E aiaie thl),
_/n 1 ¢ ..
(5.32) 1Qu) = (T1@) (5 -7 - 5 - Hy,i) mod v(I(Xs,)).
2 4 4 ,
In this case (5.23), (5.31), and (5.32) lead to (5.6) for i = 1. O
SE
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