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ON THE PROOF OF THE CAPELLI IDENTITIES

T6ru UMEDA

Department of Mathematics,
Faculty of Science, Kyoto University

ABSTRACT. Using exterior calculus, we present detailed proofs of the classical Capelli
identities in a purely computational manner. The proof of the fact that the Capelli
elements are central is also given in a similar way. In the course of proofs of these two
facts, one can easily see the mechanism of the multiplication formula of determinant with
non-commutative entries. Simple treatments of the related facts from the Appendix of
[HU] are also given. :

Introduction: The celebrated Capelli identities [Cal-3] played important roles in
classical invariant theory (see e.g. [My], [Wy]), and have been generalized in several
directions. This makes it desirable to have simple proofs of them available. In this
article, we give an exposition of the complete set of proofs for the classical Capelli
identities utilizing exterior calculus. This approach is based on ideas in [NUW], which
proves a quantum group version of the Capelli identity. (Similar treatments are also
found in the papers [Kz], [Na].) However, a separate treatment, as it does not require
any knowledge of R-matrix for this case, provides more direct access to the proof, and,
indeed, yields a short, simple, computaional proof. In the same spirit, we also present
a reason why the Capelli elements are central elements of the enveloping algebra of gl,,.
In the proof of this fact as well as in the proof of Capelli identity, one can recognize the
multiplication formula for determinant. As our framework gives a clear view point for
the proofs given in the Appendix of [HU}, we discuss centrality also.

In this paper, we work over C for simplicity, though this restriction is not needed in
any crucial points.

1. Capelli identity as the multiplication formula for determinant: Consider
the space Mat(m,n) of m x n matrices, on which the two general linear groups GLn,
and GL, acts respectively from the left and the right. Then the space P(Mat(m,n)) of
polynomial functions on Mat(m,n) is naturally endowed with the structures of a right
GL,,-module and a left GL,-module. We denote these two actions by A and p, and use
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T. UMEDA

the same notation for the infinitesimal actions of the Lie algebras gl,,, and gl, and for
the extensions of these actions to the universal enveloping algebras U(gl,,,) and U(gl,).
For the matrix space Mat(m,n) or the Lie algebras gl,,, and gl,,, the matrix units, which
form the standard basis, are denoted by E;;. The coordinate functions of Mat(m,n)
with respect to E;; is denoted by t;; and the partial differential operator % is often
abbreviated as 0;;. It is easy to check that for E;; € gl,, or gl,,, its image under A and
p are respectively expressed as

(1.1) p(Eij) = Ztaiaaja ME;i;) = thﬁaiﬁ~
B=1

a=1

Introducing the four matrices

T = (tij)i<ism,1<j<n, D = (0i5)1<i<m,1<j<ns
II = (p(Eij)i<ij<ns  1T° = (MEij))1<i,j<m

we can write the relations above in matrix form
(1.2) o=*rp, ‘m°=T'D.

Here ! stands for the transpose of a matrix. Roughly speaking, the Capelli identities
are the multiplication formulas (or more generally the Binet-Cauchy theorem in the
rectangular case) of the determinant of these matrices.

In this paper we understand the determinant det(a) of an n x n matrix a = (a4;)7 =1,
whose entries are in a (possibly non-commutative) algebra A, as the alternating sum

det(a) = Z sign(0) ae(1)180(2)2 * * * Go(n)n-
c€ES,

The exterior calculus is useful for manipulating the determinant of this type even with
non-commutative entries. The exterior algebra A, is an associative algebra gener-
ated by the n eclements e;, ez, - ,e, subject to the relations e;e; + eje; = 0. We
work in an extended algebra A, ® A, in which the two subalgebras A, and A com-
mute. The determinant det(a) then comes in the following way: forming the elements
n; from the columns of a by 7; = Y »_, €40q; and multiplying them, we find that
erez -+ -epdet(a) = mmne -+ - Ny, as in the commutative case. In fact,

mmnz - Mn = S €a1€as " €a,00;10032 " ' Ga,n
1<a;,02, - ,an<n

= Z €5(1)€0(2) " * €a(n)A0(1)1%5(2)2 * ° * Qa(n)n
g€,

= Y e1e2 € sign(0)ao(1)100(2)2 *** Ga(nyn
cE€ES,
=ejez- - e, det(a).
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CAPELLI IDENTITIES

For our Capelli identities, we use this framework with A = End(P(Mat(m,n))).
According to the multiplication of matrices IT = 'T'D, we form the following two sets
of elements in A, ® A:

m
(1.3) §i=) eatia (1Si<m), (=) &8; (1<j<n)
i i=1
Then from the relation (1.1), we see

(1.4) G = eap(Eaj)-
a=1

Noting that the variables {t;;} commutate with each other, we see easily that the
commutation relations among ; are &;§; + £;€; = 0. For the computation of a product
like (1(2 - - Gn, we need to know the commutation relations between §; and Op,q.

Lemma 1. The following commutation relations hold:

(1) [apqvéi] = eq0pi,
(2) Cobi + &iCq = ieq-

Proof : The assertion (1) is easy to see by a direct computation.

[Opg; &) = Z €a[Opg; tia] = E €a0pibga = €q0pi-
o3

a

For (2), multiply &, from the left on both sides of (1) and sum up with respect to p.
Then noting that &, and §; anti-commute, we come to the assertion. &

Suggested by the formula (2) in Lemma 1, we introduce the elements ¢;(u) with
parameter u as

(1.5) G(w) = (i +uej =) eap(Baj + udag)-

a=1

Then we see from Lemma 1 (2)

(1.6) Cq(u + 1)&; + &iq(u) = 0,

because §; and e, anti-commute.

To describe submatrices made from a given matrix, we introduce some notation here.
For subsets I C M = {1,--- ,m} and J C N = {1,--- ,n}, making their arrangements
under the natural order, we denote by ar; the submatrices of a matrix a = (a;;) formed
from those a;; such that i € I and j € J. Also as we will soon see below, we need
some shift in the diagonal of IT for the Capelli identity. For this shift, we introduce the
following convention: for any matrix a of size k, we put a? = a+diag(k—1,k-2,---,0).

The following is the Capelli identity for rectangular matrices, which can be regarded
as a non-commutative version of the Binet-Cauchy theorem.
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Theorem 2. (Capelli identity for rectangular matrices) : The following equality holds:

det(H}VN) = Z det(tTNI) det(D;N).
tI=n

When m < n, we understand that the empty sum in the right-hand side represents 0.

Corollary 3. (Capelli identity for square matrices) : For the case m = n, we have the
following equality: ‘
det(IT%) = det(*T) det(D).

Proof of Theorem 2: We compute the product (;(n — 1)(2(n — 2)---{,(0) in two
ways. Using the definition (1.5), we see on the one hand

C1(n = 1)¢2(n = 2) -+ (a(0) = ere2- - - en det(p(Eij + (n — 1)d45).

On the other hand, by the relation (1.6) we have

=G =2)-a(0) = 37 Gln=1)Galn = 2)- a1 (DékaBkan

1<k, <m

=" Y & li(n—2)Ce(n—3) -+ Cna1(0)Bkan

1<k, <m

=" ) GGln- Q)CZ(TL —38)Cn-2(1)€kn_1Okn—1n—10k,n

lskﬂ—lskﬂ Sm

== N &k, G(n = 3)G(n—4) - 6a-2(0)k, - yn-10k,n

1<kn_1,kn<m

=(-)"nh Y €16z €k Ok110k52 * * Ok

1Skl :k27"' ,k‘nsm

Z §io Sioa) " Ciom Dio 102+ Oigmyn

I={i1 < <in}
oceS(I)

= Z sign()&i, &, - §in0i,1)10i,y2 iy nyn
I={i1<<in}
oceB(I)

= ) &ubyo-&,det(Dry) |

I={i1<"'<in}

=ej1€3°:€n Z | det(‘TNI) det(DIN).

I={i1<-<in}
Thus by comparing these two calculations, we obtain our formula. &

We can extend Theorem 2 slightly, as follows. Starting from the n X n square matrix
space, we choose k columns according to a subset J = {Jj1,J2, - ,jk} € N. Then we
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have the relations 1775 = *T;nDys as a subset of the relations II = *T'D. Applying
Theorem 2 to this new n x k rectangular matrix with the replacement (m,n) — (n, k),
we see

(1.7) det(IT%;) = Y det(*T;r)det(Dry).

1=k
We will use this form of Theorem 2 for the proof of the lower order Capelli identities in
the next section.

Remark: We have similar formula for the left action A as follows.

Theorem 2'. (Capelli identity for rectangular matrices ) We have the following equal-
ity: ' :
det(ITg5p) = Y, det(Thes) det(*Dyng).
fJ=m
When n < m, we understand that the empty sum in the right-hand side represents 0.

2. The lower order Capelli identities: In the above, we have proved the Capelli
identity as a multiplication formula of non-commutaive determinant. The formula itself
seems very nice. However, from the representation-theoretic point of view, the signif-
icance of the Capelli identity lies in the fact that it presents an equality between the
two invariant differential operators on the space Mat(m,n) (see [H], [HU], [U1]). In this
sense, what we proved under the name of “the Capelli identity for rectangular matrices”
is not the real Capelli identity except for m = n. Let us explain what should be done
to get the real Capelli identities. First, if m = n, it is easy to see that the right-hand
side of Corollary 3 is invariant under the actions of GL, both from the right and the
left. Admitting that the representations p and A of U(gl,) are faithful in this case, we
see that the element C = det(E;; + (n — i)d;;) is in the center of U(gl,). Then noting
the operator (det T)?p(C)(det T)~* = det(p(Esj + (n — i — 2)d;;)) is also invariant, we
can conclude that the element C(z) = det(E;; + (n — i — 2)d;;) is central for any z. As
this C(z2) is polynomial in z of degree n, we will get n central elements from C(z) as
the coefficients once we develope it in z in some way. To be more specific, we expand
C(z) in a form

C(z) = 3 (5P Co
k=0

with 28 = 2(2 = 1)..-(z = k + 1), and call Ci the kth Capelli element. The explicit
form of these Cj in terms of minor determinants will be given in Proposition 4 below.
According to the transition from the ring of differential operators on P(Mat(m,n))
to U(gl,), we introduce an n x n matrix E = (Eij)1<i,j<n, s0 that we have C(z) =
det(E" — 2) by definition. As the preimage in A, ® U(gl,) of ¢; and ¢;(u) defined by
(1.4) and (1.5), we put
n n
(2.1) wj = Z eaFaj; wji(u) =w; +ue; = Z ea(Eqj + udqj).
a=1 a=1

Then we see clearly wi(n — 1 — 2)wa(n — 2 — 2) -+ -wn(—2) = e1ez - - €,C(2)-
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Proposition 4. The kth Capelli element is expressed as the sum of k X k minor deter-

minants:
Ce=)_ det(EY,).
§J=k

Proof : Let us denote by A the difference operator defined by Ap(z) = p(z+1)—p(2).
Note that Az(F) = kz(*~1), Then r applications of A to the expansion for C(z) yields

A"C(z) = zn: (—)k(:f)r! 2510, i,

k=0

so that
A’"C’(z)|z=0 = (=)"r!Cpp.

Our task is thus now to compute the difference of the determinant C(z) = det(E" — 2).
For this we recall the formula A(p(2)¥(2)) = Ap(2) - ¥(2) + p(z + 1) - Ay(z) for the
difference of a product of functions. Note that this is valid even for the case where ¢(z)
and 1 (z) do not necessarily commute. We apply this formula k times in succession on
the left-hand side of wi(n — 1 — 2)wa(n — 2 — 2) - - - wp(—2) = e1e2- - - e,C(z). Then we
get
ATC(z) = (=) Y det(EY. . — 2)
fI=r

Here I°¢ stands for the complement of the r-set I = {i1,42, -+ ,ir} in N = {1,--- ,n}.
The factor r! for the term det(EE-c 7 — ) can be counted as follows. Under an operation
of the difference operator A on a product made from w;(e — z)’s with e a suitable
constant, it will get replacements w;(e — z) — —e; from the product formula above.
Thus the term det(E%.;, — ) will be produced from det(E" — z) under the successive
r operations of A as many times as the number of the processes that I appears in the
end, each of which process can be identified with the numbering of I by {1,2,---,r}.
The number 7! of permutations of the r-set I hence comes as the factor. Putting z =0

in this formula and comparing it with the other formula above, we see our assertion
with k=n—r. ¢

Remark: If we introduce a U(gl, )-valued polynomial Cx(w) by the formula

Clz+w) = 32 (459 Coalw),
k=0

then we have similarly its expression as

Chrl(w) = det(E, — w).
I=k

=

It is also easy to see that ACk(w) = —(n — k + 1)Ci—1(w).
With Proposition 4 in hand, we can now show the kth Capelli identity.



CAPELLI IDENTITIES

Theorem 5. (The kth Capelli identity) : The image of the kth Capelli element under
p is expressed as:

p(Ck) = Z det(tTJI) det(Dyy).
$I=k, §J=k

Proof : For each k-set J C N, we have the relation (1.7) deduced from Theorem 2:

det(IT5,) = > det(*Tyr) det(Dry).
$I=k

Summing up over k-set J, we get the proof of our assertion, because the resulting
left-hand side is just p(Ck) by Propositon 4. O

3. Centrality of the Capelli elements: In the previous section, we stressed the
fact that C(z) is central, and gave an explanation for it from the representation-theoretic
point of view, especially by the Capelli identity itself. It should be natural, however,
that this can be proved independently of the Capelh identity, and we shall do so here.

We observe the following basic fact.

Lemma 6. The commutation relations for wi(u) are given by
wi(u + Nwj(u) +w;j(u+ )w;(u) = 0.

In particular, we have v
wi(u -+ 1)w¢(u) = 0.

Proof. This can be shown by an easy calculation:

wi(u)wj( ) + wj(v)wi(u) = E eats[Eqi + udai, Egj + vdg;]

a,f=1
n
= > eaep(Eajbis — Epidja)
,,6'_1
a=1
= _81w] il erz.

From this, we see that w;(u+1)w;(v) +w;(v+1)w;(u) = ew;(v)+ejwi(u) —ew; —ejw; =
(v —1)e;e; + (u — 1)eje;. Put here u = v. Then the last term vanishes and we come to
the conclusion. o

Recall that GL,, acts on gl,, by the adjoint action, so that it acts on the enveloping
algebra U(gl,,) as an automorphism group. We will first show that the element C(2) is
invariant under this action. This statement can be paraphrased as follows. Take any
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g = (9i;) € GLy, and write its inverse as g=! = h = (hy;). From E = (E;;), we form
9Eg~" = E” = (E};), so that

n
Ej; = Z ik Eehe;.
k=1

Under the algebra automorphism of U(gl,,) extending this E — E*, the polynomial
C(z) = det(E" — 2) is transformed to C*(2) = det(E™® — z). The invariancy of C(z)
then amounts to the equality C(z) = C*(z), which is what we will prove below.

Theorem 7 The Capelli elements are invariant under the adjoint action of GLy, i.e.,
C(z) € U(gl,)%E~. In particular, C(z) is central in U(gl,).

Proof : As remarked above, it suffices to prove the equality C(z) = C*(z). For this
calculation, let us introduce some more suitably transformed elements corresponding to
w;(u) and e;:

n

n
Wi (u) = Zea(E;,+u5aJ Z €afoir Wi(u) =Y € (Eqj + ua;).

a=1 a=1

Then we have

Wj(u) =) ea(Baj+uba;) = Y ea(gakErehe; + ugakdkehe;)
o a,k,l

= Y eafok(Ere + ubke)he;
a,k,l

= Z ek Ekg + udke) hej = Zwe hgj
k£

Note that Lemma 6 above is also valid for w}(u), because €] is just transformed linearly
from e; with scalar coefficients. Put u; = n — 14—z for brev1ty Then we see from the
relation above and Lemma 6

eiez - enC*(2) = wi(ur)ws (u2) -+ - wi(un)

= ) wp(w)wp, (u2) - wp, (Un)hetheye e Begn
1S£17£2a"' )ensn

= Z Wé(l)(ul)wfy(z)(uz) " 'W;(n) (un)ho)1ho@)2 * * * Pom)n
geS,

= sign(o)w] (ur)wh(uz) - - wh (Un)horho@)2 ** Ro(mn

eSS,
= wy (u1)ws(uz) - - - wy,(un) det(h)
= ejey - e}, det(E" — z) det(g)™*
= e1€p - e det(g)C(2) det(g) ™! = erez - enC(2)

133



CAPELLI IDENTITIES
Thus verified our assertion. ’ O

In the mechanism of the proof above, we can easily recognize the (two) multiplication
formulas of determinant as in the classical counterpart det(gag™!) = deta. We can of
course prove that the Capelli elements are central in U(gl,,) within the framework of
the Lie algebra, not using the group GL,,. For this we first prepare a lemma, which is
more fundamental than Lemma 6. Let us write Epq(u) = Epq + udp, for short.

Lemma 8. The commutation relation for Epq and w;(u) is given by

[Epgswj(u)] = eqEpj{u) — pjwq(u).

Proof : This is shown also by an easy calculation:

[Epg,wj(u)] = Z €a[Epg; Eaj + uba;] = Z €a(Epjbqa — Eaqglp;)

24 a

= eqEpj — Opjwyg = eqEpj(u) — dpjwq(u). ¢

Remark: As an easy variant on the proof of Lemma 8, we can obtaine a more general
formula as follows: for any u, v, w, we have

[Epg(u),w;(v)] = eqEpj(w) — pjwq(w).
Multiplying e, from the left on both sides of this with v = v = w, we will get Lemma 6
again.
The following is essentially the same as the proof in the Appendix A of [HU].

Theorem 9. The Capelli elements are invariant under the adjoint action of gl,,. In
other words, C(z) is in the center of U(gl,).

Proof : We will show that [E,g, C(z)] = 0 for any 1 < p,q < n. From the expression
erez -+ enC(2) = wi(u1)wa(uz) - - - wn(un) with u; = n— j+ 2, using Lemma 8, we have
€1€2- 'en[qua C(z)]
" :
=Y wi(wr) - wjm1 (1) (€ Bips (u5) — Gpjeg(7))wsys (Usig1) - - wn (tin)
i=1

n J

=Y wi(u1) -+ wj-1(t-1)eq Fp; (5 )wis1 (Ujs1) - -+ wn (Un)
j=1
p

— w1 (1) -+ Wp—1 (tp1)wq (Up)uip41 (tip1) - i (th).

Here the second term can be calculated by Lemma 6 as

{ 0 (forp # q),
erez - e,C(z) (forp=yq).

p

wi(u1) ++ - wp—1(Up—1)wq(Up)wWp+1(Up+1) - - - Wi (up) =
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To calculate the first term, we introduce w(Q)( ) = wj(u) — eqEq;(u) by omitting the
gth component of w;(u). Then we have

(@ (u1) + eqBp1 (u1)) (W5 (u2) + eq Bpa (1)) -+ - (Wi (un) + eqEpn(un))
n j
=ZW§Q)(U1) ;q)l(uj 1)qupJ(u]) _g(—lf-)l(uj‘Fl)“'w'r(LQ)(u")
j=1
J
=Y wi(ur) - wjo1(uj-1)eqBps (ug)wjs1(uj41) - - wnlun),
Jj=1 .

3

because e2 = 0 and w(uy) - wi? (un) = 0. Thus the first term is expressed as the

product of the elements w(‘” (uJ) + eqEp;(u;). Note that w(q) (uj) + eqEpj(u;) is gotten
by the replacement E; (u]) > Epj(u;) in w;(u;). Then the product of these elements

vanishes if p # ¢, because it gives a determinant with two identical rows. For p = g, .

since w(q) (u;) + eEpj(u;) = w;j(u;), their product is nothing but erez---€,C(2). In
any case, the first term is cancelled by the second, so that [Epq, C(2)] = 0 as des1red &

Remark: Comparing the proof here and that given in [HU], although they are es-
sentially the same, we will get different impressions from them, especially of the length
of the treatments of the ‘first’ and ‘second’ terms. The introduction of the elements

)(u) = w;(u) — eqEq;(u) to treat ‘first’ term corresponds to the simple trick (A.1. 3)
1n [HU]. Also we should compare the proofs of Theorems 7 and 9. We notice that the
‘first’ and the ‘second’ terms above correspond respectively to the determinants det(g)
from the right and det(g) ! from the left in the proof of Theorem 7.

Appendix

Some central elements in U(o,): Here, in analogy with Theorem 9, we will
translate the proof of A.2 in [HU]. First we take a realization of the orthogonal Lie
algebra o, as

o, ={X egl,; X +X =0},

and accordingly consider the standard elements A;; = E;; — Ej; € 0,. Parallel to the
preceeding sections, we introduce

A= (Aij)1_<_i,j_<_n, Az’j(u) = Aij + uéij’
n n
a=1 a=1
Our objective is the determinant det(A%—z), which is to be shown central in the universal

enveloping algebra U(o,). We know ejey - - en det(A% — 2) = 11 (u1)2(u2) -+ - Yn(un)
with u; = n — j — z. Let us compute the basic commutation relations.
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Lemma Al. We have the following:

(1 [Aij, Ake) = Aseldjk — Aikbje — Ajebix + Ajkbic,
(2) [qu(u)a (2 (v)] = qupj (z) - 5pj7abq(5c) + 5qj¢p(y) - epqu (v),
(3) Yi(u + Dj(u) + 95 (u + 1)i(u) = =045 92,

where 2 =31 <o s<n €alhap = — 2, €aa = — 3, €ala(u). Note that in (2), the
parameters u,v,Z,y are independent.

Proof: The assertion (1) is immediate from the definition. For (2), we compute:

[Apg(u), ¥ (v)] = Z ea[Apg(u); Aoj(v)] = Z ea[Apgs Aaj]

a [}

= z €a(Apjbqa — Apabej — Agjdpa + Agalp;)
o

= €qAp; — 84 Y €a Apa — €pAgi + 8p; D € Aga
a (o4

= eqgApj + 0gj¥p — €pAgj — Opj¥q
= eqApj (T) + 0gi%p(y) — epAgj(y) — dps¥q().
For (3), multiply e, from the left on both sides of (2) and sum up over p. Then we have
Yg(w)¥; (v) + U5 (W)g (w) = —eqth;(x) — e5%4(x) + 85 D eptp(v),
’ p

so that foru=v ==z
Vg (u + 1)1 (u) + 5(u + 1)ipg(u) = =642,

the conclusion. o
Theorem A. The determinant det(A% — 2) is central in U(o,).

Proof: Using the relation ejes - - - e, det(AY —2) = by (u1)2(u2) - - - Yn(up) With u; =
n — j — z, we show [Apq, det(Af — 2)] = 0 for p < g. By the formula (2) in Lemma A1l
with u = 0,v =z = y = u;, we see ”

€16z -+ - en|Epq, det(A% — 2)]

J

Y1(ur) - Yj-1(uj—1)[Apg, Jj (ui)541(j41) - - Pn(un)

I

<.
Il
Py

J

Y1(uy)-- '¢j—1(uj—1)qu1:;(uj)¢j+1(uj+1) o Yn(Un)

I
.M=

o,
I
%

n :
= > %r(w) -1 (uj-1)epAgi (w5 )41 (ush1) - - Y (un)
Jj=1

p

— 1 (uy) - wp—l(up—l)wq(up)¢p+l(up+1) ++ Y (un)

q
+t1(u1) - Yg-1(ug—1)¥p(ug)Vg+1(ug+1) - - - Yn(un)-
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Then the first and the second terms both vanish by the same reasoning as in the proof
of Theorem 9, because each of those sums gives a determinant with two identical rows.
The products in the third and the fourth terms actually amount to be the same, so that
they are cancelled with the opposite signatures. In fact, both of them are calculated by
the formula (3) in Lemma A1l as

p q

~1(uy) - '/’p—l(“p—l) K ¢p+1(up) . 'wq—l(uq—z) K ¢q+1(uq—1) o (Un—2)82/2,

because 1, (u + 1)¥hp(u) = Yq(u + 1)3py(u) = —§2/2. Thus proved our assertion. &

REFERENCES

[Cal] A. Capelli, Uber die Zurickfihrung der Cayley’schen Operation Q auf gewdhnliche Polar-
Operationen, Math. Ann. 29 (1887), 331-338.

[Ca2] » Ricerca delle operazioni invariantive fra piu serie di variabili permutabili con ogni
altra operazione invariantiva fra le stesse serie, Atti delle Scinze Fis. e Mat. di Napoli (2) I
(1888), 1-17.

[Ca3] y Sur les opérations dans la théorie des formes algébriques, Math. Ann. 37 (1890), 1-37.

[H] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539
570Erratum, Trans. Amer. Math. Soc. 318 (1990), 823.

[HU] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multipli-
city-free actions, Math. Ann. 290 (1991), 565-619.

Kz] J-L. Koszul, Les algébre de Lie graduée de type sl(n, 1) et l’opérateur de A. Capelli, C.R. Acad.
Sc. Paris 292 (1981), 139-141.

[My]  F. Meyer, Bericht iber den gegenwdirtingen Stand der Invariantentheorie, Jber. d. Dt. Math.-
Verein 1 (1892), 79-292.

[MNO] A. Molev, M. Nazarov and G. Olshanskii, Yangians and classical Lie algebras, Russian Math.
Surveys 51 (1996), 205-282.

[Na] M. Nazarov, Quantum Berezinian and the classical Capelli identity, Lett. Math. Phys. 21
(1991), 123-131.

[NUW] M. Noumi, T. Umeda and M. Wakayama, A quantum analogue of the Capelli identity and an
elementary differential calculas on GLq¢(n), Duke Math. J. 76 (1994), 567-594.

[Ul]  T. Umeda, The Capelli identities, a century after, Sugaku 46 (1994), 206-227; (in Japanese);
English transl. in “Selected Papers on Harmonic Analysis, Groups, and Invariants”, AMS
Translations, Series 2, vol. 183 (1998), pp. 51-78, ed. by K. Nomizu

[U2] » Newton’s formula for gl,,, Proc. Amer. Math. Soc. 126 (1998), 3169-3175.

[Wy]  H. Weyl, The Classical Groups, their Invariants and Representations, Princeton Univ. Press,
1946.

2] D.P. Zelobenko, Compact Lie Groups and their Representations, Transl. Math. Monographs
40 (Amer. Math. Soc.), 1973.

137



