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In the one dimensional case we shall show that the Green functions of elliptic operators
with periodic coefficients are written as a product of an exponential function and a periodic
function, and that the limiting absorption principle holds for all A in the interior of the
spectrum. We shall also calculate the resolvent kernel for all A € R in the resolvent set.
The results are joint work with M. Murata, Tokyo Institute of Technology.

Let p

d
L= —EE(G(Q;‘)I’B‘) + C(IL'),

where a(z) and c(z) are real-valued periodic functions with period 1. Assume that a €
L*(R)and 0 < p < a(z) < p~! for some constant y, and that ¢ € L, (R). Corresponding
to this operator, we consider the equation

4 (n@)) _ 0 a(@)™) (ulz) (1)
da \ y2(z) cx)-z 0 y2(z)
for z € C. By the standard iteration method of ordinary differential equations, we can find
unique solutions to (1), (c;(z, 2), c2(z, 2)) and (s1(z, 2), s2(z, z)) with the initial conditions

C](O,Z) _ 1 31(0’ Z) — 0
(C2(o, z)) = (o and { 0,2)) T \1)
respectively, in the space of C2-valued absolutely continuous functions AC(R)?. We can

also see that ¢;(z, 2) and s;(z, z) are C([—R, R])-valued entire functions of z for any R.
For each ¢ € C, the eigenvalue problem

ye Hl]bc(R)
Ly =zy (2)
y(z+ 1) = e¥y(z) (¢-periodicity)

is equivalent to

{ (¥1,92) € AC(R)? |
| (y1,y2) satisfies (1) and y; satisfies the {-periodicity

under the relation y; = y, y2 = ay’. Writing a solution to (2) as y(z) = aje(z, z) +
az81(x, 2), |ou|? + |og|? # 0, by the (-periodicity we have (M(z) — e**I)a = 0, where

— (a(lz) s1(1,2) _ [
M(z) := (Cz(l,z) s2(1,2) )’ *= as )’
We see that det(M(z) — e¥I) = 0 if and only if

D(2) = € +e7%, 3)



where D(z) := ¢1(1,2) + s2(1, 2) is the discriminant, which is an entire function. Hence
the existence of non-trivial solution of (2) is equivalent to (3).

A function y is an eigenfunction of (2) if and only if u(z) = e~**$y(z) is an eigenfunction
of L(¢) with the same eigenvalue. Here L(¢) = e~**¢Le®*¢ is an operator on L?(T) with
compact resolvent with the domain D(L(¢)) = {u € H(T); L({)u € L*(T)}. Regarding L
as the selfadjoint operator on L?(R) with the domain D(L) = {u € H*(R); Lu € L*(R)},
we have the direct integral decomposition ULU~1 = fle_awm) L(€)d¢, where U is a unitary

operator (cf. [RS]).

We denote the eigenvalues of L(£) by A1(§) < Aa(€) < -+ for £ € R counted with
multiplicities. Each A,(€) is known to be continuous on R. We summarize several facts,
which can be proved in ways similar to those in [E}, [Ku], [Ma}, and [RS]. Each A, (€) is real

“analytic on (0,7), and for £ € (0,7), A\n(€) is a nondegenerate eigenvalue of L(£). There
exists a sequence of real numbers :

—o <y << <uSu<vy<---

such that it tends to infinity and has the following properties:

(i) The spectrum o(L) of L is U3, ([t2n—1,Van—1] U [V2n, u2n]); and |D(A)| < 2, A € R,
if and only if A € o(L).

(ii) D(A) =2 only at A = p;, and D(X) = —2 only at A = v;.

(iii) D'(A) < 0 on (—o0,v1) and (p2n—1,V2n—1), and D'(A) > 0 on (van, pion)-

(iv) A5,_1(€) > 0 and Ay, (€) < 0 on (0, 7); in the interval [0, 7], Agn—1(€) increases from
Man—1 tO Van—1, and Ag,(€) decreases from gy, t0 van; Ap(km + &) = Ap(km — &) for any
integer k and real &.

) (v) If Agn—1(m) = A2n (), then Agn_1(m — 0) # 0; if A2n(0) = A2pn41(0), then Agn41(0 +
0)#0

(vi) If vopn—1 # von, then D'(van_1) # 0 and D'(v2,) # 0, and von—; and vo, are
nondegenerate eigenvalues of L(7); if pon # pon+1, then D/ (ug,) # 0 and D' (ugni1) # 0
and pon, and pan4; are nondegenerate eigenvalues of L(0); if von—1 = vap, OF fion = Hon+1,
then D' = 0 at these points, and these are doubly degenerate eigenvalues of L(m) or L(0),
respectively; if D(X) > 2 (< —2) and D’(\) = 0, then D"”()\) < 0 (> 0).

We denote by G,(z,y) the integral kernel of the resolvent R(z) := (L — 2z)~1 for z in
the resolvent set. We use the notations (u,v) = fol u(z)v(z) dz and ||ul? = (u,u).

First, let A be in the interior of o(L). Then the only one of the following four cases
holds:

(I) A= )\2n-1(§) € (/‘2n—1; Van-1) for some £ € (0, 7"):

(ID) X = A2n(€) € (van, p2n) for some £ € (—,0),

(III) A= /\2n—1(7r) = A211,(7") = Van—1 = Von,

(IV) A= A2n(0) = A2n+1(0) = pizn = pont1.

Theorem 1. Assume that X is in the interior of o(L). There exists the limit

h?ol (%)mR(A + i) f(z) in L, (R) for m > 0 and f € L?(R) with compact support, and
-3

the convergence is locally uniform in the interior of o(L). The integral kernels Gxtio(z,y)

(m) ; : . d\m : S : .
and Gy io(z,y) of ls%lR(/\ + i€) and le%l (d/\) R(\ +ie), m > 1, admit the following

ETPTESSIONS:
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Case (I).

_ i€V ug(z)ue(y)
- Aon-1(8) flugl?

Ga+i0(Z,y) = Gatio(y, T) y <z,

Giio(@9) = G (v, @)
= ()" e pree S 4y oo -y ), y<a

Here ug is an eigenfunction corresponding to the eigenvalue A2n—1(8).

Case (II). Gryio(z,y) and G&'_?_Zo(m,y) admit the same expressions as in (I) with

Aon—1(€) replaced by X;, (€), and with ue being an eigenfunction corresponding to the eigen-
value Agn (£).

Case (III). With ug being a C(T)-valued holomorphic function in a neighborhood of w
such that [ugll # 0, (L(§) — Azn-1(€))ue = 0 for € < 7w, and (L(€) — Azn(€))ue = O for
T <€,

i@y (2)ug(y)

Gati = 0\Y, = ) <z,
wrio(2,¥) = Gasio(y, ) X =0 Jud? y<z
Cltio(@ ) = G\ (y,2)
— 3 m+1 m z'(:r—-y)wu?f(x)u‘”(y) -1
= z —y)™e UnZVent¥) (1 + O(|z — L y<u
()‘IZn-—l(ﬂ- _ 0)) ( y) HUWHZ ( (I yl ))

Case (1V). With u¢ being a C(T)-valued holomorphic function in a neighborhood of 0
such that llugl] # 0, (L(€) = Aan+1(€))ug = 0 for 0 < &, and (L(€) — An(€))ug = 0 for
£ <0, '

‘ 1 uo(x)uo(y)
G)x o\, Y) = G o\Y,T) = ) y S z,
0B8] = Orriow®) = 0T 0 uol?

G (,y) = G, (y, 2)

_ ¢ mt+1, o m U0 (T)uo(y) -
"'( §n+1(0+0)) (z—y) TNE (1+O0(lz -yl 1))’ y<z

Proof. (I) Since D’(M\) < 0 on (p2n-1,v2n—1), there exists a holomorphic inverse function

D! of D on an open set containing (—2,2). Put A(¢) := D~1(i¢ +e~%) for ¢ in an open
set containing (0, 7). We have A(€) = Ao,_1(€) for € € (0, 7). Let

a(¢) = (e (), 22(C)) = (=s1(1, A(0)), ex (1, A(C)) — €¥).

Since a(€) # 0 for £ € (0,7), a(¢) is an eigenvector of M(A(¢)) corresponding to the
eigenvalue €’ for ¢ in an open set containing (0,7). Thus ye(z) == a1(C)er(z, A(C)) +
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a2(¢)s1(z, A(¢)) satisfies (2) with z replaced by A(¢). So uc(z) := e %%y.(z) is a C(T)-
valued holomorphic eigenfunction of L({) corresponding to the eigenvalue A(¢). Since
Ayp—1(€) > 0on (0, 7), the inverse function theorem implies that there exists a holomorphic
function ¢((z) on an open set containing (uan-1,V2n—1) such that A({(z)) = z. For each
A € (M2n—1,V2n-1), if € > 0 is small enough, y¢(r4ic)(x) is a solution to the equation
Ly = (X + ie)y. Taking the complex conjugate of this equation and replacing ¢ by —e,
we obtain that yc(x_s)(z) is also a solution. Since ¢’(A) > 0, we obtain the linearly
independent solutions to Ly = (A + i¢)y:

Yertiey (T) = €Oy iy (x) = exp[(iC(A) — ¢/ (A) + O(e?))zlugrpic) (@),
Ye(rmie)(T) = e—iC('\_iE)muc(A—ie)(fv) = exp[(—i¢(A) + €¢'(A) + O(e®))z|uc (r—ie) (T)-

Let [y, 9](z) := a(z)(y(z)¥ (z) — ¥'(2)§(z)) be the Wronskian of two solutions y and .
Then

yC(f\_+ie)(fB)y<(,\—is)(y)/[yc()\+is),yg(A—ie)](O), - y<uz
Yetie) WU r—ie) (T)/ [Yeatie) Termi))(0),  z <y,

Gatie(z,y) = {

(cf. §5.3 in [E]). Since [yc(A+is),yc(A—is)](x) is a constant independent of z and {(A+i¢) =
¢(\ — ig), it follows that

[yc(A+is) ,yc(,\—z‘e)](o)

1 — ‘
= /0 ([UC(A+is), Uc()\—ie)](x) — 2iC(A + ":E)a(x)u((/\ﬁ-ie)(z)uC(A—ie)(a"))dz'

On the other hand, we have

! d d _
| @) + 50+ ieDucinn @) ~ KO+ i€k ®
+ e(@)u¢(rtie) ()¢ (A-ie) (B)]dT = (A + i€) (Ug(atie), Ug(r—ie))-

Differentiating both sides of this equation with respect to A, we have

1 ————
i¢'(A + ie) /; (e (rtie) Termie)) () — 26C(A + d€)a(@)ug(rrie) (T) e (r—ie) (T)) dx
= (U¢(rtie)> UC(A—ic))-

Thus
i¢" (A + 5€) [Yertie)s Termie) (0) = (Ug(rtie) Ug(r—ie))-

Therefore we have

G/\+z'e(-75a y) - G,\+ie(y,$) — iC'()\ + iE)eiC(A+ie)(a:—y)UC(AHs)(m)uC(z\—is)(y)’ y<z.
(Uc(,\-z-u)e UC(A—is))
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Taking the limit £ | 0, we have the existence of the limit liﬁ)l R(\ £ ie)f(x) and
3

. €' @V e (z)ue (y)
Gasio(2,9) = lim G vie(z,) = e(z)ug y<u,

T N1 (8)  Jluell?
where £ = (()), i.e., Aop_1(€) = A. Furthermore, we can see that for any integer m > 1,

o dm : :
the limit 1511101 (;ﬁ) R(X £ 1ig) f(z) exists and

, o d
Giio(@9) = im () "Crie(2,)

e y)ma(f—wfﬂ%i—@(l +0(z-y"Y), yse

1
B (A/Zn—l(g))

We have thus proved the case (I). The case (II) is proved in the same way as (I).

(IIT) Assume that Aop—1(7) = Agn () = Van—1 = Van. Since vy, is a doubly degenerate
eigenvalue and L(€) is selfadjoint for £ real, Theorem XI1.13 in [RS] implies that there exist
holomorphic eigenvalues F;(¢) and E»(¢) of L(¢) near { = 7 such that E;(r) = Ex(m) =
Van. If § € R, each of Ayp_1(€) and A, (€) must be equal to one of E;(£), j = 1,2. Since
D(E;(€)) = 2cos& near £ = 7, we have

D" (E;(€)E;(€)* + D'(E5(€))Ef (§) = —2cos¢.

So, since D'(v2,) = 0 and D" (vsy,) > 0, we obtain that E%(m) # 0 (which implies the fact
(v) stated before Theorem 1). Since

{ ,2n—1(§)>0, §<7T', and { ,2n—1(§)<0’ _7l'<§,
2n(€) >0, m<§, 2n(€) <0, §<m,

we conclude that there exist holomorphic functions E;(¢) and E3(¢) on an open set con-
taining (0, 27) such that

Am-1(§), 0<E<m,

GRS Ey(6) =

{ /\2n(§)a 0 S 6 S ,
/\2n(£), ™ S 5 S 2777

Aon—1(£), m<E<L 2m

Since Ej(§) > 0 on (0,2), the inverse function theorem implies that there exists a holo-
morphic function {(z) on an open set containing (H2n-1, p2n) such that Ey(((2)) = z.
Let p(£) be the eigenprojection for the eigenvalue e of M(E;(£)) for ¢ € (0, 1)U (w, 27):

p(€) = (~2mi)~? f' o ME©) - )
- 1 (Sz(laEl(ﬁ))—e"é —s1(1, E1(€)) )
Tet—emit | —c(lLE1(€)) (L, Er(€)) — €% )’
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where § > 0 is taken so that e is the only eigenvalue of M(E;(€)) inside the circle
|z — e%| = 8. Since sz(1,v2n) + 1 =c1(1,v2,) + 1 = 51(1,v2n) = c2(1,v2n) = 0 (cf. [E, p.7
and p.29]), £ = 7 is a removable singularity of p(§). We have (p(€))11 # 0 on (0, 27), since
(p(m))11 = (20) ' Bg(s2(1, E1(€)) — €*)|e=r = (20) " (8:52(1, v2n) E1 (7) +1) # 0.
Thus p(§) is a real analytic rank one matrix on (0,27). Note that the holomorphically
extended p(¢) to an open set containing (0,27) is the eigenprojection for the eigenvalue
e’ of M(E;(¢)). Thus the function y¢(z) := (p(¢))u1c1(z, E1(€)) + (#(¢))2181 (2, Ex(¢)) is
a solution to (2) with z replaced by E1({); and so u¢(z) = e %y.(z) is a C(T)-valued
holomorphic eigenfunction of L({) corresponding to £y ({) on an open set containing (0, 27).
Thus as in the case (I), since {'(A) > 0 for A € (u2n-1, 42n), yC(A+,E)(:c) and Ye(r—ie)(T)
are linearly mdependent solutions to Ly = (A +i¢)y. Hence, as in the proof of (I) we have

€Ty (2)ux(y)
GVzn-}-‘iO(-’L'sy) = lslﬁ)lGuzn+i€($a y) | E/( ) “u ”2 y Y < T,

‘and for any integer m > 1,

d
Gl(:::)-f-'lf)(x y) - hm (d)\) GV2n+is(x)y)

= (g e re A o, vse

Note that E] () = A}, _;(7—0). We have thus proved (III). (IV) is proved similarly. From
the proof above it follows that the covergence liﬁ} (;-)—\)mR()\ +i¢) f(z) is locally uniform
[
with respect to A. O
The following is a direct consequence of Theorem 1.

d )" R(A£140), m > 0, is bounded

Corollary 2. Let A be in the interior of o(L). Then (— )

from By i, to Bl im
Proof. Let f € C§°(R). Since Theorem 1 yields that

d :

()" RO+ 0)£(@)] < Cnlt +[aD™ [ 1+ 5™ @)1dy < Comla + [ ..,

it follows that
1(5) RO+ 05 @)lay, . < Cnll(1+ a5y, 1fll3,,., < Cnlflsy,..

a

Next we study the case that the parameter A € R is in the resolvent set of L. This case is
equivalent to |[D(A)| > 2. D(A) > 2ifand only if A € A} := (—o00, u1) U[USL, (L2n, on+1)];
and D(A) < —2if and only if A € A_ := U3 ;(Van-1,v2n). Consider a function e” + e~ "
on (0, 00), and solve the equation

e’ + e = D(N)

with respect to n, where A € A.. By the implicit function theorem, we have a unique
solution n(A) which is real analytic on A;. Similarly, define n()\) on A by e”7 + e~ =
—D()). Note that dim Ker (L(xin(A\))—A) = 1for A € A, and dimKer (L(rxin(\))—A) =
1for e A_ (cf. [E, p.6)).
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Theorem 3. (i) Let \ € A,. Let uy and vy be real-valued eigenfunctions of L(in())) and
L(—in(X\)) corresponding to the eigenvalue A, respectively.
Suppose D'(A) # 0. Then (ux,vy) # 0 and

Gr(ay) = Caly,2) =~ e DAy (@)
(ur,va)
Suppose D'(\) = 0. Then there exists a solution 1, € H(T) of the equation (L(—in()))—
AW = vy such that (ux, vy, ) #0, and

174 .
Gr(@,9) = Ga(y, 2) = = LX) gmne-n 2@W) - 5)
2 (u)\a UA)
(it) Let A € A_. Let uy and vy be eigenfunctions of L(w + in(\)) and L(w — in(X))
corresponding to the eigenvalue A, respectively.
Suppose D'(X) # 0. Then (uy,vy) # 0 and

Ga(0,3) = Galyy2) = —rf (Ner1NE BB
(ukvv)\)
Suppose D'(X) = 0. Then there ezists a solution 1, € H'(T) of the equation
(L(m = in(X)) — A)Y = vy such that (ux, ¥y, ) # 0, and

G)\(xay) = G)‘(y,CU) = é/\) (im—n(X) (== y)y’%%g)ﬁ Yy <z

Proof. Let A € A,. Since ¢;(1,)) — e and s3(1,)) — 1) = ¢F1N — ¢;(1,})
do not vanish simultaneously on a neighborhood of each A € A, there exist nonzero real
analytic eigenvectors a4 (A) = (ax,1()\), ax 2(A)) of M(A) corresponding to the eigenval-
ues "™ and e~ respectively. Then yx(z) := a_i1(N\)ei(z, ) + a— 2(N)s1(z, A) and
za(z) := ar1(N)er(z, A) + ay 2(A\)si(z, A) are solutions to (2) with ¢ replaced by in(A)
and —in(A). Thus uy(z) := ey, (z) and vy(z) := e" "Nz, (z) are C(T)-valued real
analytic eigenfunctions on A, of L(in())) and L(in(A))* = L(—in(A)) corresponding to
the eigenvalue ), respectively. Hence y(z) = e~ N%uy(z) and 2z)(z) = e"™*vy(z) are
linearly independent solutions, and so

[ (@) ®)/lyr, 22](0), y <=,
Grlony) = { W@ i nl0), <y

Since [y, z»](z) is a constant independent of z, it follows that

[yn, 23)(0) = / ([ux, 92)() + 21N a(@)ur (@)v2 (2))da.

On the other hand, we have

/ 8(2) (g ~ s @) (o + 1A (@) + c(@)ua(e)or @]z = Mu, va):
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Differentiating both sides of this equation with respect to A, we have

—4%(A)J£ ([ux, 23)(2) + 20(Na(@)us(@)vr(@))dz = (us, v3).

Hence
=7’ (M)ya, 22)(0) = (ua, v2). (6)
Suppose D’(A) # 0. Then /(A) = D'(\)/(€™) — e~} # 0 and

Gi(@,9) = 1/ (Ve "™E Dy (2)or (9)/(un, va), ¥ < .

Suppose D’()\) = 0. Then 7/(A\) = 0 and 7”/(\) = D"(\)/(e"™ — e~"M) < 0. Differenti-
ating (6), we have

1" (Mya, 22](0) = —(ux,va)" (7)
Therefore
Gi(z,y) = —n"(N)e " NEVy, (z)uy (y)/(ur, v2), y < .

By (6), (ux,v») = 0. Moreover, since 7/(\) = 0,
(L(in(N)) — Nxux = ux and (L(—in(A)) — A)Bxrva = va. 8)
Put 1y, = Oxvx. Then 1y, is a solution of (L(=in(A)) — A\ = va. By (8), we have
(Ot va) = Brun, (L(=in(N) = NBxva) = (L(in(N)) — A)Baux, Oava) = (us, Orva)-

Thus (ux,vr)’ = 2(uy, ¥y, ), which together with (7) implies that (uyx,vy,) # 0. Therefore
we have (5). The assertion (ii) is proved similarly. 0O '

We have seen that in the formula (4) and (5) the different factor u_)i(ai)_&\_()y_) or
Ux, Ux

u_,\(aiv_,\iz_/_)_ appears according to whether D’(A) does not vanish or not. This is related to

(u)\a w'v;‘)

the Laurent expansion of (L(in(\)) — z)~! with respect to z around .
Proposition 4. Let A € A,. If D'(\) # 0, the eigenvalue X of L(in(\)) is nondegenerate

ux(z)ua(y) o .
=== and if D'(\) = 0, the eigen-
(ux,vr) f D) 9

value A of L(in(X)) is degenerate and its eigennilpotent has the integral kernel
Similar statement holds for A\ € A_.

and its eigenprojection has the integral kernel

ux(z)va(y)
(UA5 1/’«;,\) '

Proof. We shall represent the integral kernel R((,z;z,y) of the resolvent R((,z) :=
(L(¢) — 2)~1, by using c;(z,2) and s;(z,2). Let (¢,2) € T := {(¢,2) € C%z ¢ o(L({))}.
Put

C1 (IIJ, Z)sl(yv Z), y < r,
k(z;z,y) :=
( 2 { si(z,z)e1(y, 2), z<y.



For f € C§°(0,1), put
Kof(@)= [ Mz )y

Since (L — 2) K, f(x) = f(z) and (L — 2)e**SR((, 2)e~**¢ f(z) = f(z) on (0,1),
e R((, 2)e~**¢ f(z) — K. f(z) is a solution to Ly = zy. Thus :

¢ R(C, 2)e™ ™ f(2) - K. f(z) = acr(z, 2) + Bs1(z, 2) (9)
for some a and 8. Since R((, z)e™**¢ f(z) € D(L(¢)) has the periodicity, we get
K, f(x) + acy(z, z) + Bsy(x,2) = e (K, f(z + 1) + aci(z + 1,2) + Bs1(z + 1,2)), (10)

so putting z = 0, we have
1

o =e¥[ey(1,7) fo s1(y,2)f(8)dy + acs (1, 2) + Bsx (1, 2)]. (11)

Differentiating both sides of (10) with respect to z and putting z = 0, we have

1 - 1
/; cl(y,z)f(y)dy +:3 = e‘ic[CZ(l’ Z)A 31(y7 z)f(y)dy + an(l, Z) + ﬂ82(1, Z)] (12)

Note that (¢, 2) € T if and only if 6(, 2) := D(z) — € — ™% # 0. Solving (11) and (12)
with respect to (a, §), we have

(g) =6(¢2)™ /; [(eicsi(clz;é)’ z)) c1(y, 2) + (e—iic:(il,(j)’ z)) s1(y, 2)] f(y)dy.

Combining this with (9), we obtain that

eiC(y_z)S(Q ZZ, y)
Do) — et — ek’

R(¢, z3,y) = €02 k(2 2,y) +
where

(¢, zy2,y) :=[s1(1, 2)ea (g, 2) + (€% — c1(1, 2))s1(z, 2)]ea (v, 2)
+[(e7 — c1(1, 2))ea(z, 2) — c2(1, 2)s1(x, 2)]s51(y, 2)-

Suppose D'(A) # 0. For z near A, we have D(2) — €"® — e7"} = (z — X)F)(z) for
some F(z) such that Fy()\) = D'()\) # 0. Thus R(in()\), z; z,y) has a pole X of order one
with the residue

ri(Aiz,y) := D'(N) eV s(in(X), Az, y).

This implies that the eigenvalue X of L(in())) is nondegenerate and its eigenprojection has
the integral kernel —r;(); z,y). On the other hand, the eigenprojection and its adjoint are
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projections onto the spaces Ker (L(in(A)) — A) and Ker (L(—in()\)) — )), respectively, so the

ua(z)ua(y) ux(z)ua(y)

—————=~. Therefore —————= = —ri(\;z,y).

(ux, va) " Tun, o) 1 2.9)
Let Ao € R satisfy D'(Xo) = 0. For z near ), we have D(z) — e?*) — g=1(%0) =

(z~Xo)2H(z) for some H(z) such that H(\g) = D"()g)/2 # 0. Thus R(in(Xo), z; z,y) has

a pole g of order two:

R(in(ro), 2:2,y) = r2(z,y)(z = Ao) ™2 + O((z = X)),

eigenprojection has the integral kernel

where
ra(z,y) = 2D" (Xo) "L e@¥0)s(in(Xo), Ao; x, ).

Hence the eigenvalue Ao of L(in(Ag)) is degenerate and its eigennilpotent has the integral

kernel —r2(z,y). We shall show that u(z)nv)

—=2 = —ro(z,y) at A = Ag. Since
(,\,%,\) 2( y) o

B,er(z, 2) = /0 “(e1(@, 2)51(t, 2) — 81(z 2)en (8, 2))en (t, 2) s
8,52z, 2) = /0 (cala, 2)81(t, 2) = sa(z, 2)es (8 2))sa (8, 2) dt
(cf. [E]), we have for A € A,
D'(A) = Brer(L, A) + Basa(l, A)

/ [c2(1, N)s1(z, A)2 + (e1(1,A) — s2(1, A))er (z, N)si(z, A) — s1(1, A)es (z, A)%]dz

= —/ s(in(A), A; z, z)dx.
0

As eigenfunctions of L(in(\)) and L(—in())) for A € A4 near Ao, we can choose uy and
v as follows: (i) when c1(1, Ao) — e~"(%) £ 0,

ux(z) := e”()‘)z[~sl(1, Aer(z, A) + (ea(1,A) — e“"(A))sl(:c,)\)],
va(z) 1= e7"2[(c1(1,A) — ™)y (x, A) + e2(1, A)s1 (2, A)];

(i) when c; (1, Ao) — €"(0) #£ 0,

ux(z) 1= e"%[(cy (1, \) — e"™)ey(z, A) + c2(1, A)s1(z, V)],
oa(z) 1= e "M% [—51 (1, Ner (2, A) + (e1(1,2) — €™ sy (z, A)].
Let us treat the former case. (The latter is done similarly.) We have

31(1”\)62(1’A) = Cl(la A)32(]-a>‘) -1
=c1(1, A)(eﬂ()\)x + e 1Nz _ ci(L,LA)—1= (efl(z\):c — e (1L, A)(er(1,A) = e-—n(/\)z)’
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Thus
ux(z)va(y) = —e™EW (e (1, A) — e s(in(\), X; z,y),
(ux,va) = (e1(1,A) — e ") D/(N).

So (ux,va) = (c1(1,A) — e="M)D”(A) at A = Ag. Therefore

@) _ m@n) Vs, Nz _ o
(@n¥n) (ua,oa) D"(%) o

at A = Ag. We have thus shown the proposition. [J

Finally, we give an asymptotic expansion of the Green function G,(z,y) as the spectral
parameter z approaches one of edges of the spectrum of L. We show it in a direct and ele-
' mentary way, although the expansion of resolvents for Schrédinger operators with periodic
potentials is given by [G, Corollary 4.2]. Let A, := C\ [0, 00). We denote by z% a branch
of the square root of z € A, such that 2% = \/re®®/2 for z = re®, 0 < § < 27, r > 0. Note
that ) is an edge of the spectrum of L if and only if |[D()\)| = 2 and D'(X) # 0. If D()) = 2
and D’()) # 0, there exist real-valued linearly independent solutions u and ¢ of Ly = Ay
such that u is a real-valued periodic function with period 1 and ¥(z) = zu(z) + v(z) for
some real-valued periodic function v with period 1; if D(A) = —2 and D’() # 0, there exist
real-valued linearly independent solutions u and v of Ly = Ay such that u is a real-valued
semi-periodic function with semi-period 1, i.e., u(z +1) = —u(z), and ¥(z) = zu(z)+v(x)
for some real-valued semi-periodic function v with semi-period 1 (cf. [E, p.7 and p.29]).

Theorem 5. Assume that pon—; is an edge of the spectrum of L. Then for any integer
m 2> —1 one has the expansion for small z — usn—1 € A4+

m .
GZ(IB, y) = E : (z - #Zn-—l)%Qj(x;y) + Tm(z§x7y)a
j=-1

where rm(2; z,y) satisfies the estimate: for any 0 < 6 <1
[7m (2 2,y)| < Cimlz = pan—1 92 (|2 — y| + 1) 10
Furthermore, g;(x,y) is of the form
Jj+1

g(z,y) = ¢;(v,7) = ) _(z —v)’gxlz,y), y<a,
k=0

for some g;x(z,y) € C(T x T). In particular,
_ g u(z)u(y)
Q—l(m’y) - \/m ”unz ’
0(2,9) = (¥, 2) = A1 (0) " (w2} (y) — p(@)u@)/Ilul® vy <z,

where Ay, _1(0) > 0, and u and v are real-valued linearly independent solutions of Ly =
Pan—1Y Such that u is a periodic function with period 1 and ¥(z) = zu(z) +v(x) for some
periodic function v with period 1.




Remark 6. If v,,_;, a,, or us, is an edge of the spectrum, a similar expansion holds
around it.

Proof. Since D{usn—1) = 2 and D'(puon—1) < 0, there exists a holomorphic inverse
function D~! of D near D = 2. Put A(¢) = D7 !(e* + e~ %) near ¢ = 0. Then A(¢) =
Aon—1(€) > pon—1 for small £ € R and X' (0) = 0. Furthermore, since D(A(£)) = 2cos&, we
have

D"(MEIN()? + D' (M)A (€) = —2cos.

This implies that A”(0) = —2/D’(u2n—1) > 0. Therefore we can choose a sufficiently
small positive number R such that the set {A(¢);Im¢ > 0, |{| < R} is a subdomain of
C\ [#2n-1,00). We have also that s;(1, pon—1) and cz(1, gon—1) are not both zero (cf. [E,
p-29]). So we can choose a holomorphic eigenvector (a;(¢), 2(¢)) of M(A(¢)) correspond-
ing to the eigenvalue €% near ¢ = 0. Put y¢(z) := a1 (¢)ea(z, A(¢)) +a2(¢)s1(z, A(€)). Then
u¢(z) := e %%y, (z) is a holomorphic eigenfunction of L(¢) corresponding to the eigenvalue
A(¢) near ¢ = 0. Let C, := {¢ € C;Im¢ > 0}. For small ¢ € C,, since A(¢) = A({), it fol-
lows that y¢ = e%%u; and J7 = e~ “*77 are linearly independent solutions to Ly = A(¢)y.
Hence as in the proof of Theorem 1, since ify¢, 7z](0) = N ({)(u¢, ug), we have for small
(eCy

G0 (@,y) = G0 ¥ 7) = ¥ (@) )/ [ue, Tz)(0) = iN () 1! ¥epe(2,y), y <, |

| (13

where p¢(z,y) = uc(c)uz(y)/(u¢, uz) is a C(T x T)-valued holomorphic function near

¢ =0. Let y < z. We write the Taylor expansion of e“@~¥)¢p.(z,y) with respect to ¢ as
follows:

et=v)p, Zq; z,9)¢7 + Fm (G5 2, 1), (14)
where ;
gi(z,y) = Y (= — ) Gr(x,y) (15)
k=0

for some §;x(z,y) € C(T x T), and 7 (¢; 7, y) satisfies the estimate: for any 0 <0 <1
7 (G2 0| < Crl™ (12 =yl + 1) (16)

Let us show this remainder estimate. We have

HE=9)C in: (i(z = y)¢)? (z(a: - y)C)""+1 / (1 - t)meit @) gy,

J!

Jj=0

Thus
(lz = yll¢h™+!
(m+1)! °

ei(z—-y)( _ i (2(1" - y)C)J <

=

since Re[it(z — y)¢] < 0. This implies that

Fm (G2, 9)] < CrlC™ (|2 -yl + 1)™
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On the other hand, since

fm(<)$7y) = f’m—l(c;may) - fjm(% y)Cm7

we have
7 (C; 2, 9)] < Cl¢I™(lz — yl + )™,

Hence we get the desired estimate (16). We see that go(z,y) = po(z,¥) and Gi(z,y) =

i(@—y)po(e, y)+0cp¢ (%, y)|¢=0- We shall show that §i(z,y) = i(4()u(y) —u(z)¥(y))/lul?,
where u(r) and ¥(z) = zu(z) + v(z) are linearly independent solutions stated in the
theorem. We have

Ocycle=0 = @1 (0)er (T, pan—1) + a5(0)s1(x, pan—1) = iU + O¢uclc=o,

/

BcTzlc=0 = &4 (0)ea(z, pan—1) + 5(0)81(x, pan—1) = —izUo + O¢Uz|¢=o-

So B¢ycle=o0 and O;¥zlc=0 = O¢ycl¢=0 are solutions of Ly = pizn_1y, and we have up = cu
and Oy |¢=0 = icy + c'u for some c,c’ € C. Hence

Bcuclc=0 = icv(z) + cu(z), OcUzlc=0 = —itv(z) + cu(z).
Using this we have

qi(z,y) = i(z — y)po(x,y) + Ocp¢(z,Y)lc=0

y O (ug(z)ug(y))le=o (ug, ug)'l¢=0
- 7’(1: - y)po(x, y) + HUOTP - pO(wa y) “U0“2
e M@uy) | (icv(z) + Ju(z))eu(y) + cu(z) (—icv(y) + Cu(y))
VT P Tul?
3 u(z)u(y) 2Re(icv + c'u, cu)
[[ull? lef?lwll?

= i(z - yu@)uy)/lull® +i(v(@)uly) - u(@)v®))/|ull®
= i(p(2)uv) — w@)p®)/llul*.

There exists an entire function F(z) such that F(¢?) = €¥ + e™% — 2; F(2) is real for
real z, F(0) = 0, and F'(0) = —1. So there exists an inverse function F~' of F near the
origin. Thus for § > 0 small, the map z € {z € A} + pan_1;|2 — fizn-1] < 8} = ((2) =
(F-Y(D(z2) — 2))* € C, is conformal from the disc with the cut to the intersection of
a neighborhood of the origin and C;. Note that A({(z)) = z. Noting that D(z) — 2 =
D' (pan-1)(z — pan—1) + O((z — pan-1)?) and F~1(w) = —w + O(w?), we have the Puiseux
series

¢(2) = Y aj(z - pan-1)*3, (17)
j =0



Wher(e a)o = /|D'(p2n-1)| = \/2/X5,_,(0). Note that N(¢(2))~! = ¢’(z). By (13), (14)
and (17),

G, (:Z:, y) = icl(z)ei(z—y)«z)p((z)(xa y)

=i} 050+ 3)( = pan 1A 4@ 9D 4 Fon(C(2)i 2, 0)]
§=0 j=0
= Z (2 = pan-1)""?gj(2,9) + rm(2; 2, 9).
j=-1 |

This together with (15) and (16) yields the desired expansion. O
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