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- On the propagation of the homogeneous wavefront set for
Schrodinger equations and on the equivalence of the
homogeneous and the gsc wavefront sets
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1 Introduction

We consider the Schrodinger equation

.0 1 _ _ 2
(Zb—t--*-iA-V) U(t,z)"'oa U(O’ ') = Up €L ’

and study the propagation of singularities, that is, we would like to tell by the information
of ug where the wavefront set of ur = u(T,-) disappears for T > 0.
For the motivation we first deal with the simplest case;

8 - 0?

Let A(0) = a¥(z, D;) be an observable, then in the Heisenberg picture it moves as
A(t) := ™ 3o 4(0)e7"80 = g¥(z + tD,, D,),

where a¥(z, D,) is the Weyl quantization of a symbol a(z,():

a¥(z, D,)u(z) = (21r)“"/e*(z‘w)<a (z -; w’ C) u(w) dwd(.
Recall the characterization of the wavefront set; For u € S’ (R™) and (29, (o) € R* x (R™\ {0})
(20,C0) ¢ WF(u) is equivalent to
dp € C§° (]RQ") such that ¢(z, o) # 0 and ||¢™ (2, hD;)u(2)|| 2 = O (h*).

O (k) means O (h") as h | 0 for any N > 0. Then studying the wavefront set of ur
means measuring the decaying rate of ||¢*(z,hD,)ur|| as h | 0. Through the Heisenberg
picture it means measuring the decaying rate of [|¢¥(z+TD,,hD,)uo||. Since ¢ is compactly
supported, we have

z=0(h"!) and {( = O (k™) on suppy(z + T¢, h().

Therefore it suffices to measure the decaying rate of up in a 2n-cone in the (z, {)-phase space.
With these observations we introduce the homogeneous wavefront set:



Definition 1.1 (Nakamura) Let u € S’ (R") and (20,{o) € R?™\ {0}. We denote (20, o) ¢
HWF(u), if there exists p € Cg° (R*") satisfying ¢(z0, (o) # 0 and

lp* (hz, RD.)u(2)| 12 = O ().

The homogeneous wavefront set HWF(u) is the complement in R?™ \ {0} of the set of such
(20,60) s

A more general case is dealt with in this article. Take a scattering metric g on the half
sphere ST, and let A be defined by

n
A=Y 046%(2)0,, 2€R,
=1
Here R™ is identified with the interior of S7 by the stereographic projection, or the radial
compactification:

SP: R" 87 = {w € R™jju| = 1w, > 0}, ”(ﬁﬂ @ =vithl

Then the half sphere is considered as the Euclidean space with spherical boundary at infinity.

We refer to the paper [9] by Melrose or Section 2 of this article for the definition of scattering
metric. We write L2 = L? (R"; dz) with the L*-inner product

(u,v) 2 = /n u(z)v(2)dz.

We may have considered the Laplace-Beltrami operator

A——Zag \/—6], G =detg

3.7“'

and L? = L2 (R"; /Gdz ). However, if the metric is a scattering metric on R", /G expressed

in the standard coordinates is bounded from above and below by positive constants. Thus,
whichever is the case, the argument below would be parallel.

Assume V is a smooth potential on R” with a subquadratic growth at infinity, that is,
there is v < 2 such that

102V (2)| € Cal2)?~® Va € Z7.

Theorem 1.2 Let w- € R, T > 0 and ug € L?, and assume (—Tw_,w_) ¢ HWF(ug).
Then, if v(t) = (2(t),((t)) is a free backward non-trapped classical trajectory with limiting
direction w_, i.e. if

10 = (26O -26), se0=3 3 #660
IJ-
Jim [2(t)] = oo,

q0) oo 2(t)
)

w_= lim 2% =— lim

t==o0 |((¢)] t==c0 [2(t)]"

we have

WF(ur) N {y(t);it eR} = 2
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Note If the metric is a scattering one on R", every free trajectory «(t) is always defined for
all t € R. Moreover, if it is backward non-trapped, there exists w_ € S™1 such that

¢(t) o 2(t)

w-=w_(y) = lim =t =— lim

to-co [((t)] t=moo [2(t)]’

that is, the limiting direction exists.
Nakamura [11] proved Theorem 1.2 for asymptotically flat metric on R™. The following
proposition is also from [11].

Proposition 1.3 Ifue & (R”) decays rapidly in a conic neighborhood of 29 € R™\ {0}, that
is, if there is a conic neighborhood I' C R™ of zy such that (z)Nu|r € L2 (T') for any N > 0,
then (z9,¢o) € HWF(u) for any {p € R™.

Then the microlocal smoothing property of Craig-Kappeler-Strauss’ [1] follows.

Corollary 1.4 Let ug € L? decay rapidly in a conic neighborhood of —-w_, then for any free
trajectory ~y(t) with limiting direction w_ we have

WF(ur)n{y(t);teR} =2 VI >0.

Wunsch [12] has obtained a similar results w.r.t. the notion of the quadratic scattering
(gsc) wavefront set. The gqsc wavefront set WFqs(u) in general is defined for a tempered
distribution on a scattering manifold M and is a subset of CqecM = 0 (qscT M ) In case of
M = 8% O R™ we have an essential identification

CascST 2 8 (ST x ST) = (R™ x §71) U (5™ x §7~1) U (S"~! x R").

The intersection WFge.(u)N(R"™ x §7~1) corresponds to WF(u), and WFgsc(u)N(S™! x R")
is regarded as a blow-up of the scattering (sc) wavefront set in its corner, where the infor-
mation on the wavefront sets of v and Fu is mixed up. For a precise definition we refer to
[4, 12]. We will also make a brief sketch of the sc and gsc calculus in Section 3. The following
theorem implies that WFgsc(u) N (S™~! x R™) is equivalent to HWF ().

Theorem 1.5 Define ¥ : R™\ {0} — GL(n;R) by

- (o),

Then the following equality holds:
{(2,%(2)¢) € R*";(2,¢) e HWF(u) \ ({0} x R™)}
= {(tz,t¢) € R*;(2,{) € WFqsc(u) N (S*! x R") ,¢t > 0}.

The homogeneous wavefront set is a blow-down of the qsc wavefront set in its wavefront set
part WFgec(u) N (R™ x $771).
If we note that for any T > 0

(-Tw_,w-) € HWF (ur) <= ( W, 2T) € WF g (ur) ,

then one of the main results in {12} follows from Theorem 1.2 under a weaker condition on
the potential on the Euclidean space. Our condition on the potential is optimally weak in the
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sense that, if the potential is a quadratic or superquadratic one, the microlocal smoothing
property is completely different 2, 13, 14, 15].

The homogeneous wavefront set measure the decaying rate of u in a 2n-cone in the phase
space, while, considering ||¢¥(z + TD,, hD,)upl, that of u in an n-cone transformed by the
classical flow must be measured. The homogeneous and the gsc wavefront set are, indeed, a
rough scale for investigationtn of WF(ur).

Concerning this problem, Hassell and Wunsch [3, 4] obtained more refined results than
those in [12].

Cn the other hand in [10] Nakamura independently obtained a necessary and sufficient
characterization of WF(ur) in terms of ug by measuring the decaying rate in a transformed
n-cone. :

The author has also found it is very easy to see that the above two results by Nakamura
and Hassell-Wunsch are equivalent under an appropriate condition.

This article totally depends on (6], [7] by the author, so the proofs of Theorem 1.2 and
1.5 given in Section 2 and 4 are just sketchy. Instead Section 3 is devoted to the explanation
of the. sc and the gsc calculus, which was omitted in [6], [7] for brevity. This section owes
much on [4, 9, 12]. In Appendix A the formulae for the coordinate transformation between
the standard and the polar coordinates are gathered for convenience.

2 Proof of Theorem 1.2

2.1 Scattering metric and free trajectories

Let M be a manifold with boundary 0M, and g a Riemannian metric on the interior M°. If
z € C®°(M) (it is C* also on OM) satisfies

" OM ={z¢€ M;z(z) =0}, dz+#0ondM,

« is called a boundary defining function on M. For example (z)~!, z € R™ gives a boundary
defining function on S} under the identification R® = SP (R") = (S7)°. If z is a bound-
ary defining function, there are local coordinates of the form (z,y) such that y gives local
coordinates on OM when z = 0. We say g is a scattering metric on M, if g is of the form

dx?  h(z,y,dz,dy)
=gt a2

z z
near the boundary. Here h is a 2-cotensor on M and, when restricted, or pulled back to the
boundary, defines a Riemannian metric on M.

Consider a free trajectory v(t) = (z(t), {(t)) w.r.t. a scattering metric on M, that is, y(t)
is a solution to the Hamilton equation

10 = (00 -Z60)), #0=3 3 660
ij=1

Free trajectories on a scattering manifold are always defined for all t € R. We say 7 is
backward non-trapped if lim;—,— o z(2(t)) = 0.

Proposition 2.1 Let y(t) = (2(t),{(t)) be a free backward non-trapped trajectory, and (z,y)
local coordinates near a point on M. Then we have as t — —o0

2() = (2pot? + O (tlogt)) F, (20, ) = — (2po)} £2 + Oltlogt), po = p(¥(2)),
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where (z,y,€,n) is the coordinates of T*M corresponding to (z,y). These estimates are
independent of the choice of y. Moreover

z_ = lim 2(t) € M

t-——00

exists, and, with an appropriate choice of coordinates y,

y-:= lm y(t), n-:= lm n(t)

t——00
exist.
We now apply Proposition 2.1 to a backward non-trapped trajectory v on the compactified
Euclidean space ST D R™ with a scattering metric. Take the appropriate coordinates (z,y) as
in Proposition 2.1. By exchanging the standard coordinate axes if necessary, we may assume

(z,9) = (2,9Y(4+n)), which is defined in Appendix A. Then from the existence of (z—.,y-,£-,7-)
and the formulae in Appendix A it follows that

o 2Oy () o _
woi=— s TR e & A S = ViIpew-

exist. Thus (-=Tw_,w_) in Theorem 1.2 can be replaced by (—T¢(—,(-) thanks to the (z,()-
homogeneity of the homogeneous wavefront set.
2.2 A sketch of proof of Theorem 1.2
It suffices to show that '
(20,G0) = 7(0) ¢ WF(ur).
Let us given some operator F(t, h) = ¢¥(z, D,;t, h) with parameters t and h, then

* (F(0, R)ur, ur) = (F(=T, h)uo, uo) + /j; (6F(t, h)ut+T, uesr) dt, (21)
SF(t,h) = %F(t, h) +i[H,F(t,h)].

We require the following support properties for ¢(z,{;t, h); As h — 0, supp ¢(:, -; 0, h) moves
near (zo, h~1¢p); and supp ¢(:,-; —T, h) moves near (—h™*Tw_,h~'w_). Then, in the Lhus.
of (2.1) appears the definition of the wavefront set, and the first term of the r.h.s. gets to be
O (h®) by definition of the homogeneous wavefront set. Moreover, if 6F < O (h*°), which
roughly corresponds to

%cp = %‘{i + -g%%% - g—i%—(g <0, (the Lagrange derivative of ¢ is non-positive)
then the second term of the r.h.s. of (2.1) is also O (A*). So we have only to construct ¢ with
the above properties. Actually the non-positivity of a symbol results only in an O(h) bound
from above in L2, so our construction needs an asymptotic method, following Nakamura’s
argument in [11].

Take small § > 0, large Ty > 0, large C > 0, and & € (0,¢). Let x € C*([0, +o0)) be
such that

Iy ifr<%, d
X(T)"{O, ifr>1 and E;x(r)so vr >0,
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and define ¢ : (—o0,—T1 + 1] x T*R™ — R by

_ (et =27 ly —y(2)] |22 — =(t)%(t)] In = n(®)|
Y-1(t,2,() = x (W) X (50 — Clﬂ"") X ( 30— Clt[-> X < AT ) :

The constants &, A, u are supposed to satisfy

O<k<l=p, 0<A<2-2u v—-1<pu<l

We may assume -23 < v < 2. Note that, if we put

(r,y) = (:c"l,y(_m)) = ([z], %’ ooy Izz—"l) (the polar coordinates, cf. Appendix A)

and (r,y,p,n) are the corresponding coordinates of T*R", then z~! = r and z2¢ = p. Thus
the support of 1, is designed to move along the trajectory ~(t) as t goes to —oco. To define
Y1 for all t < 0 we modify ¢_; for small |¢| using the Hamilton flow; Consider the solution
%o to the transport equation

'gzwo(ta 2, C) = a(t)—DD_tlb—.l (t, 2, C)a ¢o(—T1,Z, C) = ¢—1(‘T1,Z, C)’
where a € C%°((~0,0]) satisfies

@< {L <=1,
I =N0, ift> T +1.

Lemma 2.2 vy satisfies the following:
1.

Yolt,z,{) >0 forall (t,z,{) eR_xT*R",  o(t,y(t) =1 forall t<0.
2. If one takes sufficiently small § >>0 and large C > 0 in the construction of o, then
—giwo(t,z,() <0 forall (t,z()€eR.xT'R"
holds.
3. ¥o(t,z,C) satisfies the estimates
208 7ot z,c)' < Cagn ()~ Mel+2-2)18]

that is, Ao € S _ ((t)“", (t)2 d2? + ()22 dcz).

For the definition of symbol classes we refer to [5]. The subscription R- means the set of

parameter t, where the uniformity w.r.t. parameter is always supposed in the estimates of
symbols. Proof. 1. Obvious from the definition.

2., 8. We may use 9_; instead of ¥p. Then, compute the differentiations directly. O

Put
Fo(t,h) = 9 (2, D, h) 0 9 (2, Dt R), o (2,51, k) = o (R, 2, RC)
and restrict the parameter t € R- to the interval [-T,0]. Then
Fo(t,h) = g (2, D5t h), 3o € Si—1,0 (1,81),
where §; = (h‘lt)_z“ dz? + h? (hflt)2“2“ d¢?.
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Lemma 2.3 There ezists 7o € Sj_7y) ({h‘lt)”-“_l ,gl)' such that

£ Folt, )+ iLH, Folt,h)] < 7 (2, Dt ),

and that ro is supported in supp Yo modulo S-r,0) (>, d2% + d(?).
Proof. The symbol of & Fy(t, h) + i[H, Fy(t, h)] is given by

- D - - v—p—1 o
2¢0E¢o + T, Ir € S[—to,O] ((h 1t> B y g ) .

Then apply the sharp Gérding inequality to the principal part 29 T)D?d;o <0. O
Take an increasing sequence
6
0<60<61<52<---<Z.

Using C, Ty, and these §; construct 1); similarly to 4o, that is, consider

|zt =) ly = y(t)| |z2€ — z(t)2€(¢)| In — n(t)|
Y-1(t,2,{) = x ( 45 1t] X <5j — C’]t|-") X 6; — Clt|=> X ( G5ltm ) ’

D2, =) ppa(t.7.0), B5(=Ts,2,0) = Yor(~Th, 2,0).

We put
¥;(z, ¢t h) = 5 (Rt 2, RC)
Since 91 is bounded from below by a positive constant on supp o, there is C; > 0 such that
r0(2,¢;t,h) < Cihr (2,3t h)  mod Si_rg) (R, d2* +d¢?).
Put
Fi(t,h) = ¢¥(2,Dz5t,h), o1 = Ciltlgr € Siry (I8, §1) -

Then similarly to the proof of Lemma 2.3 there is 71 € Si_1,) (R#**!~¥,§1) that is supported
in supp; modulo S_1j (h*°,dz% + d(?) and satisfles

—(%Fl(t, R) +i[H, Fi(t, h)] < r¥(z, Dyit, h) — 1&(z, Dait, b).
Thus
o (Bolt )+ Fi(t ) 4+ [H, Folt,h) + Fy(t,h)] < ri(z, Dast, ).
We repeat this procedure to get Fj(t,h) = ¢} (2, D;;t,h) for j = 1,2,.... Suppose

Y1, ..,k are given such that

k

k
o> Byl h) e {H, S Et, h)] < r¥(z Dast, ), (22)
j=0 .

j=0
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where 7y € Sj_z,0] (A¥¥+1=¥) 1) is supported in supp ¥ modulo Si-r,0) (b, dz? + d¢?).
Then one finds Cj; > 0 such that

re(2,Gt,h) < Copt R 1 (2,4 k) mod Sp_gygp (b, d2* + d¢?) .
Put

Fepa(th) = G841 (2, Daity h), g1 = CpRREH ity € Sipg) (hk(”ﬂ_y)ltl,.‘h) .

There exists 7441 € Si_1,0 (A*+D¥+1-%) 5.} with support contained in supp Pr+1 modulo
Si=r,9) (h*°,d2% + (?) satisfying

0 .
—Flc+1 +1 [H, Fk+1] S 'r‘f_,_l(z,D,;t,h) - T;:’(zaDz;tah)v

ot
so that A
o k+1 k+1
52 O Fi(t;h) +i |H Y Fi(t,h)| < 1z, Daityh).
3=0 j=0

pk+1 is constructed.

Lemma 2.4 There ezists an operator F(t,h) = ¢ (z, D;;t,h), ¢ € Sj_1,g (1, d2% + d¢?) such
that

1. F(t, k) € L(L?) is differentiable in t € [-T,0] and
F(0,h) = Fo(0,h) = ¥(0,2,hD; )", (23)
2. For any € > 0, choose small § > 0, then the support of p(z,(; =T, h) is contained in
{(z,Q) e T*R™; |2 + (-h™'T| < eh7'T, |( —h7'(-| <eh7'},

modulo S (h*, dz* + d(?).

3. The Heisenberg derivative of F(t, h) satisfies
SF(t,h) = %F(t,h) +1i[H, F(t,h)] < R(t),
where R(t) is an L?-bounded operator with sup_p<,<o [|R(t)]| = O(h™).

Proof. The asymptotic sum ¢ ~ Z‘;‘;O ; satisfies the required properties. a
Then we have

. v
(F(0, R)ur,ur)2 = (F(=T, h)uo, uo) 12 + /»T (OF (t, h)us, ue) 2 dt

< (F(=T,h)ug,uo)zz +T sup ||R(t,h)|.
~T<t<0

The r.h.s. is O(h*) by the assumption and Lemma 2.4. Thus Theorem 1.2 is proved.
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3 The scattering and the quadratic scattering calculus

Before going to the proof of Theorem 1.5, we give an introduction to the sc and the gsc
calculus. This section depends much on (4, 9, 12].

3.1 The scattering calculus

Let M be a manifold with boundary, and z a boundary defining function. We put
Vo(M) = {v € X(M);v is tangent to M}, V(M) =1V,

If (z,y) are local coordinates of M near OM, :c% andz% span Vy,(M) near M, and 2%
and za% span Vg.(M) near M.

Lemma 3.1 Let M = S7 be the compactified Euclidean space. Then V, (S_’;) is spanned by
linear vector fields z"a—z-f, z€R™, 4,5 =1,...,n over C®(S%), and Vi (S%) is spanned by
constant vectors 3%, i =1,...,n over C* (S%). ‘

Here we note that the functions in C* (S7) are required to be smooth also on the boundary.
This implies, for example, that derivatives of any function in this class are bounded, which
is not the case for functions in C* (R™).

Let **T'M be a vector bundle over M whose sections form Vi (M);

Vee (M) =T (M; *TM).
Then, of course, x23% and :1:3‘9— make a local frame near 0M. Note that there exist fibers of
TM also on 8M. (This frame seems to vanish on M thanks to the coefficient z. They
indeed vanish as vector fields, but they do not as sections of **T'M. We just use them as a
notation.) We make some explanations for why we consider such a vector bundle. We would
like to treat the boundary M as infinities of an open manifold M°, the interior of M. Since
M?° is an open manifold, there are infinitely many ways of taking frames near the boundary;
Some frames may grow longer as they approach the boundary, and others may shrink to
vanish on the boundary. Here we standardize the growing rate of frames of the vector fields
by attaching OM to M° and allowing only the vector fields that is tangent of degree 2 to
OM to be a frame. Since M consists of local charts which are diffeomorphic to open sets in
ST, Vsc(M) is considered as the vector fields on M° of bounded length by Lemma 3.1. Then
only the vector fields that approach constant vector fields are allowed to be frames of *TM.
Similarly V(M) is considered as vector fields on M of linear growth at infinity.
Let *°T*M be the dual bundle of **TM. We can take % and 4} as a frame near the
boundary. Note that then a scattering metric is a Riemannian metric on the vector bundle
ST M the coefficient of whose cross terms %’y ® g} and %" ® g%- vanish on M. We compactify

each fiber of **T*M by SP and write it * 1" M. If M = S?, it is the same as S x 7 which
is obtained by compactifying the each component of T*R" 2 R%:C)‘ This isomorphism is
essential, since a frame of *“T'ST near the boundary must be written by a linear combination
of constant vector field on R™ over bounded functions. If we compactify the fibers of the
tangent bundle T*S%, then it is also isomorphic to ST x S%. However, we can say it is not
essential in the sense that a frame of T*S7 near the boundary corresponds to growing vector
fields on R™ at quadratic rate near infinity; The proportion of compactified spheres of **T*S%}

and T*S% are different as approaching OM.
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We now want to define an appropriate symbol class on M, which is a natural extension
of the class § ((z)“’ (O™, (2)"2d22 + (¢)2 dgz) on the Euclidean space. Let

ae$((7HO™, ()72 d? + ()2 d¢?) (3.1)

that is, a € C® (IR2") satisfies

8208a(2,C)| < Cag (2) 7191 (181

Put pnv = (2)™', po = (¢)~!, which are boundary defining functions of two faces of scT".S’:‘L.
(SCT'S?, is actually a manifold with corners. We define boundary defining functions on such
a manifold in a natural way. Other notions are also extended naturally.) Then (3.1) is
equivalent to a € A™#, where

A™H(ST x 8)
= {u € plyp;™ L (87 x S7) ; Diffy (ST x S7) u C pyp;™L™ (57 s2)}.

Diffy (S7 x S%) is the set of all the differential operators generated by W, (8% x 8%) over
C (87%). The smoothness of functions in A™* (S7 x S7) on R* x R* = (87 x S%)° follows
from the Sobolev embedding theorem. Recalling that b means linear growth at infinity, it
is natural that the two sets above coincide. We use this characterization for the required
symbol class, that is, define

At (“Tw) = {uwe i (°T"a0) 0ty (“T ) w < oo (VT2

where py and p, are boundary defining functions of *“T* M for two faces respectively. Since
M is defined by coordinate patches that are diffeomorphic to open sets of S7, we can define
the quantization of symbols in A™! (SCT*M ) by patching the pseudodifferential operators
on each chart using a partition of unity, as in the case of open manifolds. The reader
might feel anxiety for the treatment near the boundary, however, it is well-defined, because
our operators are first supposed to act on the Schwartz class C® (M) = NP_z¥ C®(M).
Using a partition of unity, the Schwartz function on M are mapped to Schwartz functions in
each chart, and on each chart the Schwartz functions are mapped into themselves by locally
defined pseudodifferential operators. Once the pseudodifferential operators are defined on
the Schwartz class, they can be extended to on the tempered distributions C~-*°(M) =

N /
(C°°(M )) by the duality argument. Of course, the quantization is not unique.
The class

gt (sc-T-'M) = pﬂ\,p;mCm (SCT*M) c A™ (“T'M)

corresponds to the classical symbols, since the asymptotic expansion corresponds to the
Taylor expansion around the boundary by Borel’s lemma. The inclusion relation above is
due to the good behavior of functions that are smooth also on the boundary. Put

I (M) = Op A™ (TM) . ™M) = Op ™ (”T"M) .
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We denote

Cood =0 (*T"M), A (CooM) = 4™ (“T"M) [ Am1453 (“T" ).

Since At} (CscM) forms a sheaf over Csc M, the notation is compatible. (The behavior of

SCr%

symbols in the interior of *T* M is irrelevant.) Let a € A™! ( T M ) and its quantization

be A € \Ilg’éal(M ). The equivalence class in Almi} (CscM) of a is determined uniquely by A
regardless of the quantization. Therefore define joom, : U (M) — A™} (Coe M) by A - a.
Then we clearly have an exact sequence for sc category:

0— ql’s’;—l,l-!-l(M) _— \Ilg'évl(M) N A{m,l} (Csc) jmt 0.
Put for A € V(M) |
ell™(A) = {p € CecM; jaemi(A)(D) # 0}, EMHA) = CocM \ ellH(A),

and for u € C~®°(M) = (C°°(M)),
WFio(u) =) {zgg-l(A); Acum™(M), Aue 0°°(M)} .

We are using the classical operators \I’Q’é’l(M ), while js,m, is defined on \IJL'C"CI(M ). This is

because we can not use {p € CocM; jsc.mi(A)(p) # 0} for the definition of ell*(A), since

there might be, for example, a logarithmic growth near the boundary, or at infinity. '
It should be noted that, if M = S%, then

CecST =0 (ST xS%) = (R* x S U (S xRY)U(S™ ! x "),
and, since Fa® (z, Dz) F-l=a¥(-D¢,(), we have a correspondence |
WF(u) NR™ x §"7! e WF(u), WFs(u)N 5" x R «— WF(Fu).
Observing this, as long as we restrict ourselves to the case M = S%, we could have defined,
for example, for A = Opa, a € A%® (S% x S%) = S (1, (2)~2d2% + (¢)~2d¢?)
Tml(A) = {(z,() € s 1 x R”;lti_r_r’l_ki&f |a(tz, Ol = 0}

(disjoint union)-

{0 e R x smmintlate, ) = 0}
However, then the ellipticity on the corner of Cs ST can not be defined naturally, since
there are many ways to approach the corner, although the corner part of WF; contains less
information than the gsc or the homogeneous wavefront set do.

3.2 The quadratic scattering calculus

Let M, be a copy of M as a topological manifold with boundary, and © =id : M — M, the
identity as sets. We introduce new coordinates on M, such that z2, the square of a boundary
defining function on M gives a boundary defining function on M,. If z € My, = M is near



the boundary, we can take a coordinate neighborhood U in M in which z is expressed by
(z(2),y(2)). Put U; = U and we give coordinates in U, by

(9(2),y(2)) = (2(2)?,y(2)).

For a point in M, far from the boundary we use the same coordinates as in M. This gives
M, a C* structure, and, indeed, ¢ = z? is a boundary defining function on M;. ©is C™
and bijective. ©|pso is a diffeomorphism onto M; . ©~1 is not smooth on M, but

0 : C®(M,) = C®(M), or C~®(M,)— C~*(M)
are isomorphisms. Using this isomorphism, we define
Vo (M) = ©* o Ul=™2 (M) o (0%) 71

The seemingly eccentric indexing is intended to indicate the index of the scattering calculus,
for example,

0 1 0
vor2? seyi i, 29 -1 | =
eoqaqo(@) 5% T o (m=1,1=1),
©*0g* o (0") 7! = 2% (m=0, I =2k),
* 9 -1 _ .., _3_ = =
(-)oqayO(@) =TT (m=1,1=1).

For Ae ‘I’gé’cl(M) there is P € \Ilgéé(l‘m)/Q(Mq) with A = ©* 0 Po (6*)!. We define
quc,m,l(A) = (6“)—1 [jsc,m,(l—m)/Z(P)]
e (o)1 [Am,(l-m)/? (SCT*Mq)/Am—l,(l—m)/‘zH (_SCT‘Mq)]
= Amil-m (QSCT"‘M)/Am-Ll-m+2 (qscT* )’

where ©* : SCT*Mq — ®T'M is a naturally defined pull-back, and ©** is a pull-back

from functions on *“T" M to functions on SCT*Mq. The compactified gsc cotangent bundle
%“T" M is defined similarly to the sc case; ‘

Vase (M) = 2V (M), , »
¥ET*M : a vector bundle on M such that I'(M; ¥°T* M) = Ve (M),
%T" M : the fiber-compactified ¥°T*M . :

The rest argument can be done similarly to the sc case, so we just write down
WFge =) {zg;g(A); A€ o UMI-mM2(M Yo (%), Aue C'°°(M)} :

The gsc wavefront set is nothing but the sc wavefront set of a coordinate-changed function.
So, away from M, we have

Lemma 3.2 For any u € C~>°(M) we have a correspondence
 WFa(s) N (8" M)® s WFquo(w) N (¥°5* M)° — WF(u),
where **S*M, ¥°S*M are sphere bundles over M defined by
S M = CiM \ (“c‘r‘gMM)" , 9CSTM = CgeeM \ (““T‘;MM)" .
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However, on OM there is a crucial difference between the sc and the qsc wavefront sets. The
corner part of the sc wavefront set corresponds to one face of the gsc wavefront set:

Proposition 3.3 Letu € C*°(M) and assume WFg(u)N*°S5p M = @. Then WFqs(u) C 0
(the zero section).

4 Proof of Theorem 1.5

Let M = M, = S% and define the mapping q : M — M, by
g + q

0= = (2+122)" -

g is a bijection between M and M, and designed to satisfy (g}~ = (z)~2. Thus M, is thought
to be M whose C* structure near the boundary is generated by the new boundary defining
function (z) 2.

Let u € §' (R") = C~%°(M), and we first assume

(20,¢0) € (5™ x R") \ WFqec(u),
which is equivalent to
(20,¢0) € (5" x R") \ WFy ((¢") " w).

Then there exists ¢ € C§° (Rz") such that ¢ (20, o) # 0 and

o (ha, Do) ()| = 0 (41)

where ¢ (hq, Dg) is the standard [left] quantization of ¢ (hg, 7).
By the change of variables, we have

e D) @) ] =5 [ l [ 5, 0,6 Wyutw)dudc &,

where

n~-2

@ (z,w,¢;h) = (2) (2 + lziz) £ (w)? (2 + lw|'~’>"‘%z
7 (h (2 + !ZlZ)% 2, ®(z, w)() det ®(z, w),

dt 1 [ (p‘+t(q"—p‘))(p’+t(q’-1”))
®;5(2,w) =65 -3
(2,0) /o 1+ (p+ta-pt 2/o G+ p+ta-pNiprta-p)

We wrote ¢ = g(z) and p = g(w). @ belongs to a very good class;

Lemma 4.1

. (z)7 (w)* dz?  dw? d¢?
‘Oes(uw)"’() (w)2+(zw )
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Proof. We first claim that there is C,, > 0 such that

n ! dt e
(z;w) S/o (p+t(q_p)>%SCn(z,w>

for each positive odd integer n. The first inequality is easily obtained, and for the second
consider the four cases:

() la-pl<5lal, () lg~pl < 319l
() g~ pl > 7 (lal+[p) 2 1, (iv) 7 (lal +1pl) < 1.
It then follows from the claimed inequality that
®i(z,w)e S ((z;w)‘l (zw)"2d2? + (z;w) 2 dwz) .
As a polynomial in ®;;(z, w) of degree n
det (z,w) € S ((z;w)_" (z;w) 2 d2® + (z;w) 2 dw2) .

Considering supp ¢, the lemma follows. 0
Since ¢ is in a good class, we can get the principal part of ¢ by substituting w = z:

3n-6

5(2,2,Gh) = (2)° (2+ |z42) T (h (z + !zlz)% z,cp(z,z)g) det ®(z, 2)

with

1 1 g'¢
D,i(2,2) = 8;; - = )
= @

q=q(z).

i
Note that z ~ A~! and ¢ ~ h™! on suppy (h, (2 + [z|2)2 z, <I>(z,z)(> as h | 0, that is, the

support of ¢ (z,2,¢; h) moves towards the homogeneous direction in the phase space. This
argument is verified, and actually we have the ellipticity:

@ (h4a0,h~hz0, K40 () Goih) 2 Ch™2
uniformly in small h > 0, where for z # 0
coa . -1 .,
PAr 227
() = (65 - 22 =(5,-.+_) .
) ( N 2‘z|2)ij 77 22 ij
Thus
(20, ¥(20)¢0) ¢ HWF(u). (4.2)

One inclusion relation is obtained and the other is similarly obtained.
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A  Formulae for Coordinate Transformation

For a point z = (2},...,2") ER™® C M, z # 0 we set

1
| a:=|—z—{, w=(w1,...,wn)=é.

Since z # 0, there exists non-zero w*, and so, when +w* > 0, we can get rid of w* to

make local coordinates (T,y(k)) = (z, y(l ik),...,y?i',:)) of M(D> R") near the boundary
respectively:

o = W, for1<j<k-1,
k) T | Wit fork<j<n-1

We denote y ) simply by y if there is no confusion. We introduce local coordinates (z, ()
and (z,y, &, n) of the cotangent bundle T* M corresponding to z and (z, y) respectively. In the
following we write down formulae for the coordinate change between the above coordinates
that are needed in the article. We consider only the case where z" > 0, ie., y = y(4n)
Introducing a notation

g =y 1- @) - - 1),

we have

and thus

. P |
o= 1133”““2(? lzl3> v

j=1

- (A1)
= —1%y'0, +mZ (Jf - yiy") 0, (i=1,...,n),
j=1
1 & ia - i
- Zy i = —|z] Zz 0,4, (A.2)
i=1 i=1
s Y e — 1Bl (= _
Oy = xa,‘ poriCil |2]0,: 1z|zna,,. (i=1,...,n-1), (A.3)
dzt = —y—-d:c + ldyi = —|z|ztdz + |z|dy* (i=1,...,n), (A4)
n
2 7
Z‘—z'[gdz =-I Zyldl, (As)

. n 6'
f J = ;= -7 J
dy E (|Z| |z|3> dzd =z E ¥ y dz7. (A.6)

=
Then for the same point in 7* (R" \ {0}) C T*M

n _ n-1 )
Y Gde =gdz+ ) midy,



we obtain

=1
=—x2yi§+x2(63~yiyj)nj (i=1,...,n)
j=1
zy )
t=1
1 .
77i=;¢—;§;(n=|2|€3 |Z| Cn (i=1,...,n-1),

and on the tangent space to the cotangent bundle,

2 1 & i
0, = IzI332 + Z ( IZ|3) ayj - |z|(,-3€ - mZz 2335

i=1

—~ [ 2 5’[ l 8 |z] 2
+z (]?ICJ !zlann Cn ( )2 (n) nj?

=

Oy = = Zy‘@zz +Z (—2xy’§+z - y'y’) ) O¢;»

i=1 i=1
-1 .
8 = ~8, ——-azn + Z (-a;ix?g - xz (61y7 + ai*) m) 8,
=1 k=1
i n=1 4 ;
' (“%mz -” 3””) i
— 48 + 10, = ~l2l#8 + |10y, if i £ n,
O = L5, n=1 4 5 _ 1578 n—1Jz|27 o if i =
2% T Jl:cy ﬂj'—lz‘z f—Z]lz" ny  MI=T,

85 =—:I:2Zyiac‘. Z' I3 (:’
& 2
,,,..xg(aa-yy)ac,_z(‘;l_%)ac,.

Jj=1
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