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1 Introduction

We consider the time-dependent Schr\"odinger equation:

$ih \frac{d}{dt}\psi(t)=\mathcal{H}(t.\epsilon)\psi’(t\rangle$ , $\mathcal{H}(t,\epsilon)=(V(t)\epsilon$ $-V(t)\epsilon)$ (1)

on $\mathrm{R}$ , where $\epsilon$ and $h$ are small positive parameters and $V(t)$ is a real-valued function. $\psi(t)$

is a vector-valued function with complex components. This equation (1) describes the
adiabatic time evolution associated to the Hamiltonian $\mathcal{H}(_{b_{d}^{\wedge}}, h)$ . This 2 $\mathrm{x}2$ real symmetric
and trace-free matrix $\mathcal{H}(\epsilon, h)$ has two real eigenvalues $E_{3_{\sim}^{\sim}}(t,\epsilon)=\pm\sqrt{V(t)^{2}+\epsilon^{2}}$ . The
difference of these eigenvalues

$E_{+}-E_{-}=‘ 2\sqrt{V(t)^{2}+\epsilon^{2}}$

is strictly positive for all $t\in \mathrm{R}$ and has its minimum $2\hat{\epsilon}$ at the zeros of $V(t)$ .
From the physical point of view, the two different unperturbed energy levels $V(t)$ and

$-V(t)$ cross each other at the zeros of $V(t)$ and $\tilde{\epsilon}$ is the interaction at the intersection.
Because of this interaction, $E_{+}(t,\epsilon)$ and $F_{J}-(t,\tau.)$ do not cross (avoided crossing), but the
transition occurs by the quantum effect. The parameter $h$ is the adiabatic parameter and
the quantum effect becomes small in the adiabatic limit. On the other hand, $-C$ is the gap
at the avoided crossing. One expects, then, that the transition probability $P(\epsilon, h)$ is small
when $h$ is small while it is large when $.c$ is small. It is an interesting problem to study its
asymptotic behavior as both $\vee c$ and $h$ go to $0$ .

The study of the transition probability $P$ has its origin at the works by L. D. Landau
[L] and C. Zener [Z]. In 1932, they studied the case $V(t)=at,$ where $a$ is a positive
constant, and derived the following explicit formula:

$P= \exp[-\frac{\pi^{c^{2}}}{ah}\vee]$

for all positive $\vee c$ and $h$ . This is the so-called Landau-Zener formula. There have been many
studies about the transition probability in the adiabatic limit $harrow \mathrm{O}$ (see the summaries
[BT]. [HJ], [T] $)$ . The adiabatic limit of the transition probability is expressed in terms of
actions between complex eigenvalue crossing points:

$\{t\in \mathbb{C} ; V(t)^{2}+W(t)^{2}=0\}$ ,

which we call turning points.

数理解析研究所講究録
1510巻 2006年 8-25 8



In this proceeding we consider more general $V(t)$ which vanishes at one point to order
$n$ , and compute the asymptotic behavior of $P(\epsilon, h)$ as $(\epsilon, h)arrow(\mathrm{O},0)$ under the condition
$h/\epsilon^{(n+1)/n}arrow 0$ . In case $n=1$ , this problem is studied in more general settings by [CLP]
and [Ro].

Recently new approaches of an exact WKB method have been studied. These ap-
proaches give the rigorous argument to the divergent power series solution on the singular
perturbation $h$ . [AKT] studied the Hamiltonian, which is 3 $\mathrm{x}3$ real symmetric matrix with
polynomial elements, by the exact WKB method based on the Borel resummation. In this
paper we apply the exact WKB method developed by C.G\’erard and A.Grigis [GG], and
S.Fujii\’e, C.Lasser and L.Nedelec [FLN] to this adiabatic transition problem. This method
enables us to express the Wronskian of two exact WKB solutions as a convergent series
defined inductively by integrations along a path. Careful observations of the phase func-
tion on the path gives us their asymptotic behavior of the Wronskian as $(\epsilon_{!}.h)arrow(\mathrm{O},0)$

with $h/\epsilon^{(n+1)/n}arrow 0$ .
Finally we remark that this is similar to the scattering problem for Schr\"odinger oper-

ator over the maximum of the potential. See [Ra], [FR] for a non-degenerate maximum
case and [BM] for a degenerate maximum case.

2 Definitions and Results
We first define the scattering matrix and the transition probability for the equation (1)
under the following assumptions on $V(t)$ :

(A) $V(t)$ is real valued on $\mathrm{R}$ and there exist two real numbers $0<\theta_{0}<\pi/2$ and $\rho>0$

such that $V(t)$ is analytic in the complex domain:

$S=\{t\in \mathbb{C} ; |{\rm Im} t|<|{\rm Re} t|\tan\theta_{0}\}\cup\{|{\rm Im} t|<\rho\}$ .

(B) There exist two real non-zero constants $E_{r},$ $E_{l}$ and $\sigma>1$ such that

V $(t)=\{$
$E_{r}+O(|t|^{-\sigma})$ as ${\rm Re} t\overline,$ $+\infty$ in $S$ ,

$E_{l}+O(|t|^{-\sigma})$ as ${\rm Re} tarrow-\infty$ in $S$ .

Under the conditions (A) and (B), there exist four solutions th$r+\cdot\psi_{-}^{r},$ $\psi_{\vdash}^{l}$ , and $\psi_{-}^{l}$ to
(1) uniquely defined by the following asymptotic conditions:

$\{$

$\psi_{+}^{f}(t)\sim\exp[+\frac{i}{h}\sqrt{E_{f}^{2}+\epsilon^{2}}t]$ , as ${\rm Re} tarrow+\infty$ in $S$ ,

$\psi_{-}^{r}(t)\sim\exp[-\frac{i}{h}\sqrt{E_{r}^{2}+\epsilon^{2}}t]$ , as $\mathrm{R}\epsilon tarrow+\infty$ in $S$ ,

$\psi_{+}^{l}(t)\sim\exp[+\frac{i}{h}\sqrt{E_{l}^{2}+\vee^{-2}\llcorner}\iota]$ , as ${\rm Re} tarrow-\infty$ in $S$ ,

$\psi_{-}^{l}(t)\sim\exp[-\frac{i}{h}\sqrt{E_{l}^{2}+\epsilon^{2}}t]$ . as ${\rm Re} tarrow-\infty$ in $S$ ,

(2)
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where $\tan 2\theta_{r}=\epsilon/E_{r}$ and $\tan 2\theta_{l}=\vee^{\wedge}\vee/E_{l}(0<\theta_{r}.\theta_{l}<\pi/2)$ . These solutions are called
Jost solutions to (1). We notice that the principal term of each Jost solution, for example
$\exp[+\frac{i}{h}\sqrt{E_{r}^{2}+\epsilon^{2}}t]{}^{t}(-\sin\theta_{r}\cos\theta_{r})$. is a solution to the constant coefficient system:

$ih \frac{d}{dt}\psi(t)=\psi(t)$ .

The pairs of Jost solutions $(\psi_{+}^{f},\psi_{-}’)r.$ and $(\psi_{+}^{l}, \psi_{-}^{l})$ are orthonormal bases on $\mathbb{C}^{2}$ for any
fixed $t$ . Moreover they have the following relations:

$\psi_{\pm}^{f}(t)=\mp\overline{\psi_{+}^{r}(t)}$ , $\psi_{\pm}^{l}(t)=\mp\overline{\psi_{\mp}^{l}(t)}$ . (3)

The scattering matrix $S$ is defined as the change of bases of Jost solutions:

$(\psi_{+}^{l}\psi_{-}^{l})=(\psi_{+}^{r}\psi_{-}^{r})S(\hat{\in}, h)$ , $S(\epsilon, h)=$ .

$S$ is an unitary matrix independent of $t$ and moreover, by (3),

$s_{11}(\epsilon, \mathrm{h})=s_{22}(- h\vee)’,$ , $s_{12}(\epsilon, h)=-\overline{s_{21}(\epsilon,h)}$.
The transition probability $P(\epsilon.h)$ is defined by

$P(\overline{\epsilon},h)=|s_{21}(\epsilon, h)|^{2}$ .

Let us assume

(C) V$(t)=0$ if and only if $t=0$ .

Then the eigenvalues have the so-called avoided crossing at the origin. We call turning
point a complex zero of V $(t)^{2}+_{\vee}c^{2}$ , and in particular, simple turning point if it is a simple
zero.

Let $n\in \mathrm{N}=\{1,2, \cdots\}$ be the number such that $V^{(k)}(0)=0$ for $0\leq k<n$ and
$V^{(n)}(0)\neq 0$ . We can assume $V^{(n)}(0)>0$ without loss of generality. Then there are $2n$

simple turning points $T_{j}(\epsilon)$ and $\overline{T_{j}(\hat{\epsilon})}(j=1, \ldots , n)$ with $0<\arg T_{1}<\cdots<\arg T_{n}<\pi$

which converge at the origin as $\epsilon$ tends to $0$ . We define the action integral $A_{j}(\epsilon)$ by,

$A_{j}(_{\dot{\mathrm{c}}}^{\backslash })=2 \int_{0}^{T_{j}(\epsilon)}\sqrt{V(t)^{2}+\epsilon^{2}}dt$,

where the integration path is the complex segment from $0$ to $T_{j}(\in\rangle$ and the branch of the
square root is $\epsilon$ at $t=0$ . Our main result is the following asymptotic formula of $P(\epsilon, h)$

when $\epsilon$ and $h$ are both small.

Theorem 2.1. Assum,$e(\mathrm{A}),$ $(\mathrm{B})$ , and (C). If $n=1$ there exists $\epsilon_{0}>0$ such that rv$e$

have
$P( \epsilon,h)=\exp[-‘\frac{2\mathrm{I}\mathfrak{n}\iota A_{1}(\overline{\mathrm{a}})}{h}](1+O(h))$ as $harrow 0$
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uniformly $for\overline{\vee\succ}\in(0, \epsilon 0)$ . If $n\geq 2$ there exists $\epsilon_{0}>0$ such that, for all $\epsilon\in(0,4\vee^{\wedge}0)$ . we have

$P(^{-}. \cdot, h)=|\exp[\frac{?}{h}A_{1}(\epsilon)]+(-1)^{n+1}\exp[\frac{i}{h}A_{n}(\epsilon)]|^{2}(1+O(\frac{h}{\epsilon^{\frac{n+1}{n}}}))$ as $\frac{h}{\epsilon^{\frac{n+1}{n}}}arrow 0$ .

In case $n=1$ we notice that this theorem implies the result in [J2]. In case $n\geq 2$ we
remark that $h/\epsilon^{(n+1)/n}$ appears in an obvious way in the case $V(t)=t^{n}$ . By a simple
rescaling $t=\epsilon^{1/n}\tau,$ (1) is reduced to

$i \frac{h}{\epsilon^{(n+1)/n}}\frac{d}{d\tau}\phi(\tau)=\phi(\tau)$ ,

where $\psi(\epsilon^{1/n}\tau)=\phi(\tau)$ .

Let us study the asymptotic behavior of

$P_{0}( \epsilon, h)=|\exp[\frac{i}{h}A_{1}(\epsilon)]+(-1)^{n+1}\exp[\frac{i}{h}A_{n}(\epsilon)]|^{2}$

in case $n\geq 2$ when both $\epsilon$ and $h$ go to $0$ . We rewrite it as

$P_{0}( \in, h)=\exp[-\frac{{\rm Im}(A_{1}(\epsilon)+A_{n}(\epsilon))}{h}](\exp[\frac{{\rm Im}(A_{1}(\epsilon)-A_{n}(\Xi))}{h}]$

$+ \exp[\frac{{\rm Im}(A_{n}(_{\vee}^{\mathrm{r}})-A_{1}(\Xi))}{h}]+(-1)^{n+1}2$coe $[ \frac{{\rm Re}(A_{1}(\epsilon)-A_{n}(\epsilon))}{h}])$ .

Put $V(_{\sim}’)= \frac{\mathrm{t}\gamma(n\prime(0)\backslash }{n\mathrm{I}}z^{n}v(z)$ then $v(\mathrm{O})=1$ . We can compute the asymptotic expansions of
the action integral.

Lemma 2.1. $A_{j}(\epsilon)$ is an analytic fun.ction of $\overline{\epsilon}^{1/n}$ at $t=0$ and has th.$e$ following Madaurin
expansion:

$A_{j}( \epsilon)=\sum_{k=1}^{\infty}C_{k}\exp[\frac{(2j-1)k\pi i}{2n}]\epsilon^{\frac{n+k}{n}}$

where $C_{k}= \frac{\sqrt{\pi}\Gamma(\frac{k}{2n}\rangle}{(n+k)(k-1)!\Gamma(\frac{n+k}{2n})}(\frac{n!}{V^{(n)}(0)})^{\frac{k}{n}}[\frac{d^{k-1}}{d_{\tilde{k}}k-1}(v(z)^{-\frac{k}{\mathfrak{n}}})]_{z=0}$

We can refer to [W] for this proof. From this lemma, we have the following proposition:

Proposition 2.1.
1) If $V^{(n+2l-1)}(0)=0$ for all $l\in \mathrm{N}$ . then

${\rm Im} A_{1}(\epsilon)={\rm Im} A_{n}(-.)$’
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and

$P_{0}( \circ, h\mathrm{c})=2\exp[-\frac{2{\rm Im} A_{1}(\epsilon)}{h}](1+(-1)^{n+1}\cos[\frac{{\rm Re}(A_{1}(\epsilon)-A_{n}(\epsilon))}{h}])$ .

2) If th.$ere$ eansts $m\in \mathrm{N}$ such that $V^{(n+2l-1)}(0)=0(l=0, \ldots, m-1)$ and $V^{(n+2m-1)}(0)\neq$

$0$ , then for sufficiently small $\epsilon$

${\rm Im}(A_{1}( \epsilon)-A_{n}(\epsilon))=2C_{2m}(\sin\frac{m}{n}\pi)\epsilon^{\frac{n+2m}{n}}+O(\epsilon^{\frac{n+2m+2}{n}})$ , (4)

where

$C_{2m}=- \frac{2m\sqrt{\pi}\Gamma(\frac{m}{n})V^{(n+2m-1)}(0)}{n\Gamma(n+2m+1)\Gamma(\frac{n+2m}{2n})}(\frac{n!}{V^{(n)}(0)})^{\frac{n+2m}{n}}$ ,

and the asymptotic behavior $ofP_{0}(\epsilon, h)$ as $(\epsilon, h)arrow(\mathrm{O}, 0)$ is given by the following formulae:

(i) When $\epsilon^{(n+2m)/n}/harrow 0$,

$P_{0}( \epsilon,h)=2\exp[-\frac{{\rm Im}(A_{1}(\epsilon)+A_{n}(\epsilon))}{h}]$

$\mathrm{x}(1+(-1)^{n+1}\cos[\frac{{\rm Re}(A_{1}(\epsilon\rangle-A_{n}(\epsilon))}{h}]+O(\frac{\epsilon^{\frac{2(n+2n)}{n}}}{h^{2}}))$

(ii) When $h/\epsilon^{(n+2m)/n}arrow 0$ ,

$P_{0}( \epsilon, h)=\exp[-\frac{2{\rm Im} A_{1}(\epsilon)}{h}](1+O(\exp[(2C_{2m}(\sin\frac{m}{n}\pi)+\delta)\frac{\epsilon^{\frac{n+2m}{n}}}{h}]))$

(5)

for any positive constant 6 $ifm/n\not\in \mathrm{N}$ and $V^{n+2m-1}(0) \sin\frac{m}{n}\pi>0$ and

$P_{0}( \epsilon^{-}, h)=\exp[-\frac{2{\rm Im} A_{n}(\epsilon)}{h}](1+O(\exp[-(2C_{2m}(\sin\frac{m}{n}\pi)-\delta)\frac{\epsilon^{\frac{n+2m}{n}}}{h}]))$

(6)

for any positive constant 6 if $m/n\not\in \mathrm{N}$ and $V^{n+2m-1}(0) \sin\frac{m}{n}\pi<0$ .

3 Review of the exact WKB method

We use as a basic tool the exact $WKB$ method for 2 $\mathrm{x}2$ systems introduced in [FLN],
which is a natural extension of the method in [GG] for Shor\"odinger equations.
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Let us consider the following type $2\cross 2$ system of first order differential equations:

$\frac{h}{i}\frac{d}{dt}\phi(t)=\phi(t)$ . (7)

The functions $\alpha(t)$ and $\beta(t)$ are assumed to be holomorphic in a simply connected domain
$\Omega\in$ C.

First of all we make the change of variables $trightarrow z$

$z(t;t_{0})= \int_{t_{0}}^{t}\sqrt{\alpha(\tau)\beta(\tau)}d\tau$ ,

where $t_{0}$ is a fixed base point of St. If $\Omega_{1}$ is a simply connected open subset of $\Omega$ in
which $\alpha(t)\beta(t)$ does not vanish, the mapping $z$ is bijective from $\Omega_{1}$ to $z(\Omega_{1})$ for a given
determination of $(\alpha(t)\beta(t))^{1/2}$ . Zeros of $\alpha(t)$ and $\beta(t)$ are called turreing points. If $t_{0}$ is a
simple turning point, we get

$z(t)-z(t_{0})= \frac{2i}{3}(\alpha(t)_{}\theta(t))’|_{t=t_{0}}(t-t_{0})^{\frac{3}{2}}(1+g(t-t_{0}))$, (8)

where $g(t)$ is holomorphic and $g(\mathrm{O})=0$ .
We put $\phi(t)=e^{\perp_{z/h}}"\varphi_{\mathrm{x}}(z)$ and reduce (7) to the next equation in the variable $z$ :

$\frac{h}{i}\frac{d}{d_{\wedge}\sim}\varphi\pm(z)=\varphi\pm(z)$ , (9)

where $H(z(t))=(\theta(t)/\alpha(t))^{1/4}$ We change unknown function $\varphi\pm(z\rangle=M_{\pm}(z)w\pm(z)$ ,
where $M_{\pm}(z)$ is given by

$\Lambda I_{\pm}(z)=$ .

Consequently, we obtain the first order differential equation of $\mathrm{c}\iota_{\pm}’(z)$ :

$\frac{d}{d_{\tilde{4}}}w_{\pm}(z)=(\neq_{\langle z)}^{0}H’z\mathit{1}$ $\frac{H’(z)}{H(z),\mp_{\mathrm{F}}^{2}})w_{\pm}(z)$ , (10)

where $H’(z)$ stands for $\frac{d}{dz}H(z)$ . We notice that $M_{\pm}(\approx(t))$ and $w_{\pm}(z(t))$ are independent
of $t_{0}$ . We define the sequences of functions $\{u_{\pm,n}’(z:, z_{1})\}_{n=0}^{\infty}$ by the following differential
recurrent relations:

$\{$

$\mathrm{e}\iota|\pm,-\iota(z)=0$ , $w_{\pm,0}(z)=1$ ,

$\frac{d}{dz}w_{\neq,2k}(z)=\frac{H’(_{\sim})}{H(z)},w_{\pm,2k-1}(z)$ $(k\geq 0)$ ,

$( \frac{d}{dz}\pm\frac{2}{h})w_{\pm,2k+1}(z)=\frac{H’(z)}{H(\sim\prime)}w_{\pm,2k}(z)$ $(k\geq 0)$ .

(11)
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The vector-valued functions $w\pm(z(t))=$ with

$u_{\pm}^{e}’(z(t))= \sum_{k\geq 0}w\pm,2k(z(t))$
,

satisfy (10) formally.
$H’(z)/H(z)$ is, in terms of $t$ ,

$w_{\pm}^{o}(z(t))= \sum_{k\geq 0}w_{\pm,2k-1}(z(t)\rangle$ .

$\frac{d{}_{\tau z}H(z(t\rangle)}{H(z(t))}=\frac{\alpha(t)\beta’(t)-\alpha’(t)\beta(t)}{4i(\alpha(t)\beta(t))^{3/2}}$ . (12)

From (8) and (12), we see that $H’(z)/H(z)$ has a simple pole at $z=z(t_{0})$ .
We fix a point $z_{1}=z(t_{1})$ with $t_{1}\in\Omega_{1}$ and take the initial conditions to $w_{\pm,n}(z_{1})=0$

for every $n\in$ N. Then the differential recurrent equations (11) are transformed to the
integral recurrent equations:

$\{$

$w_{\pm,0}(z;z_{1})=1$ ,

$w_{\pm,2k+1}(z;z_{1})= \int_{z_{1}}^{z}e^{\pm\frac{2}{h}(\zeta-z)}\frac{H’(\zeta)}{H(\zeta)}u_{\pm,2k}’(\zeta;z_{1})d\zeta$ $(k\geq 0)$ ,

$w_{\pm,2k}(z;z_{1})= \int_{z_{1}}^{z}\frac{H’(\zeta)}{H(\zeta)}w_{\pm,2k-1}(\zeta;z_{1})d\zeta$ $(k\geq 1)$ .

From these integral representations, we obtain the following proposition on the convergence
of these formal series.

Proposition 3.1. Th.e elements of the function, $w_{\pm}(z;z_{1})$ :

$w_{\pm}^{e}(z;z_{1})= \sum_{k\geq 0}w_{\pm,2k}(z;z_{1})$ $w_{\pm}^{o}(z;z_{1})= \sum_{k\geq 0}w_{\pm,2k-1}(z;z_{1})$
(13)

converge absolutely and uniformly in a neighborhood of $z=z_{1}$ .

Hence $nj+(z_{\backslash }z\iota)$ are exact solutions to the equation (10) and

$\phi_{\pm}(t, h;t_{0},t_{1})=e^{\pm z(t;t_{0})/h}hf_{\pm}(z(t))w_{\pm}(z(t\rangle, h;z(t_{1}))$. (14)

define exact solutions to (7). We call $\emptyset\pm(t, h;t_{0},t_{1})$ exact $WKB$ solutions. (14) are holo-
morphic in a neighborhood of $t=t_{1}$ , and extended to $\Omega$ analytically because (14) satisfy
(7) with the holomorphic coefficients in $\Omega$ . We call $t_{0}$ the base point of the phase and $t_{1}$

the base point of the symbol.
The series (13) are also asymptotic expansions as $harrow \mathrm{O}$ in certain domains.
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Proposition 3.2. There exist a positive integer $N$ and a positive constant $h_{0}$ such that,
for all $h\in(\mathrm{O}, h_{0})_{j}$ we have

$w_{\pm}^{e}(z(t), h;z(t_{1}))- \sum_{k=0}^{N-1}v_{\pm,2k}’(z(t), h;z(t_{1}))$ $=O(h^{N})$ ,

$w_{\pm}^{o}(z(t), h;z(t_{1}))- \sum_{k=0}^{N-1}u_{\pm,2k-1}’(z(t), h;z(t_{1}))=O(h^{N+1})$ ,

$unifo7mly$ in $\Omega_{\pm}$ , where $\Omega_{\pm}=\{t\in\Omega_{1}$ ; there erists a curve from $t_{1}$ to $t$ along which
$\pm{\rm Re} z(t)$ increases strictly}.

Moreover the Wronskian between two exact WKB solutions $\mathcal{W}[\phi(t),\tilde{\phi}(t)]=\det(\phi(t)\tilde{\phi}(t))$

is given by $w_{+}^{e}:$

Proposition 3.3. Linearly independent exact $WKB$ solutions $\phi_{+}(t, h;t_{0}, t_{1})$ and
$\phi_{-}(t, h;t_{0}, t_{2})$ satisfy the $follo\dot{w}ng$ Wronskian formula:

$\mathcal{W}[\phi_{+}(t, h;t_{0},t_{1}), \phi_{-}(t, h;t_{0}.t_{2})]=2iw_{+}^{e}(z(t_{2});z(t_{1}))$.

In particular, if there $e$ rists a curve from $t_{1}$ to $t_{2}$ along which ${\rm Re} z(t)$ increases strictly,

$\mathcal{W}[\phi_{+}(t, h, t_{0}, t_{1}), \phi_{-}(t, h;t_{0}.t_{2})]=2i(1+O(h))$ .

Notice that the Wronskian is independent of the variable $t$ because the matrix of right-hand
side of (7) is trace-free. The latter claim is evident from Proposition 3.2.

4 Stokes geometry

We introduce the so-called Stokes line. which plays an important role in our problem.

Deflnition 4.1 (Stokes line). The Stokes lines passing by $t=t_{0}$ in $S$ are defin.$ed$ as the
set:

$\{t\in S$ ; ${\rm Im} \int_{t_{0}}^{t}\sqrt{V(\tau)^{2}+\epsilon^{2}}d\tau=0\}$ .

A Stokes line is a level set of the real part of the WKB phase function $z(t:t_{0})$ referring
to (16). The turning points are the branch points of $z(t;t_{0})$ . If ${\rm Re} z(t)$ increases along
an oriented curve, then this curve is transversal to Stokes lines. Such a curve is called
canonical curve.

We first state the local properties of Stokes lines near a fixed point $t_{0}\in S$ .

(i) If to is not a turning point, then $z(t;t_{0})$ is conformal near $t=t_{0}$ .

(ii) If $t_{0}$ is a turning point of order $r\in$ N. that is $V(t)^{2}+\epsilon^{2}=(t-t_{0})^{r}\dot{V}(t)$ with
$\tilde{V}(0)\neq 0$ . then there exist $r+2$ Stokes lines emanating from $t=t_{0}$ and every angle
between two closest Stokes lines is $2\pi/(r+2)$ at $t=t_{0}$ .
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From the assumptions (A) and (B), Stokes lines are symmetric with respect to the
real axis and the real axis itself is a Stokes line. At infinity in $S$ the Stokes lines are
asymptotic to horizontal lines ${\rm Im} t=const.$ .

If $\epsilon$ is sufficiently small, there exist $2n$ turning points $T_{j}(\overline{\epsilon})$ and $\overline{T_{j}}(\in)(j=1, \ldots , n)$ in
a neighborhood of each root of $(V^{(n)}(0)/n!)^{2}t^{2n}+\tau^{2}.=0$ . It is possible to take $\rho=\rho(\epsilon)$ and
$\theta_{0}$ properly small, so that $S$ includes only four turning points $T_{1},$ $T_{n},$ $\overline{T_{1}}$, and $T_{n}$ . Moreover
the Stokes lines emanating from these turning points are not connected with those from
the other $2n-4$ turning points. Indeed, by Lemma 2.1. we see that the principal terms
of the action integrals for $\epsilon$ small enough have the relation:

$\max\{{\rm Im} A_{1}(\epsilon),{\rm Im} A_{n}(\epsilon)\}<\min\{{\rm Im} A_{2}(\epsilon), \cdots,{\rm Im} A_{n-1}(\epsilon)\}$ ,

under the determination of $\sqrt{V(t\rangle^{2}+\epsilon^{2}}$ the same as the action integral. Therefore, for
sufficiently small $\epsilon$ , the Stokes geometry in $S$ is as in Figure 1. Even if the number of
turning points increases, the geometrical structures of the Stokes lines in $S$ is essentially
invariant.

Figure 1: Stokes geometry

5 Proof

We can express the elements of the scattering matrix by the Wronskians between Jost
solutions. To calculate these Wronskians, we shall take two steps. The first step is that
we construct the exact WKB solutions satisfying the asymptotic condition (2) at infinity.
The second step is that we connect those solutions around the turning points near the real
axis. In this proceeding, we summarize the result of the first step as Proposition 5.1 and
state the second step.
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First of all, by the change of the unknown function $\psi’(t)=Q\phi(t),$ $Q= \frac{1}{2}$ ,

(1) is reduced to an equation of the form (7):

$\frac{h}{i}\frac{d}{dt}\phi(t)=\phi(t)$ . (15)

In this case, the phase function $z(t;t_{0})$

$z(t;t_{0})=? \int_{t_{0}}^{t}\sqrt{V(\tau)^{2}+\epsilon^{2}}d\tau$ $(t_{0}\in S)$ . (16)

Recalling that we take the branch of $\sqrt{V(t)^{2}+\epsilon^{2}}$ which is $\epsilon$ at $t=0$ . we aee that ${\rm Re} z(t)$

increases as ${\rm Im} t$ decreases, and ${\rm Im} z(t)$ increases as ${\rm Re} t$ increases around the real axis.
Similarly the branch of

$H\langle z(t))=\sqrt[4]{\frac{iV(t)+\sigma}{iV(t)-\vee c}=}$
.

is $e^{\pi/4}$ at $t=0$ . We introduce four symbol base points $r_{+},$ $r_{-},$ $l_{+},$ $l$ -and make the branch
cuts as in Figure 2. We write, for short, the exact WKB solutions by

$\emptyset\pm(t, h;T_{j},t_{1})=\phi_{\pm}^{(J)}(t_{1})$ . $\emptyset\pm(t, h;T_{j}, t_{1})=\phi_{\pm}^{(\overline{j})}(t_{1})$ ,

because the Wronskian calculation is independent of $t$ . Then we sum the first step as
follows:

Figure 2: symbol base points
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Proposition 5.1. We obtain the following relations between the Jost solutions and the
exact $WKB$ solations:

$\psi_{+}^{r}(t)=-Q\exp[\frac{i}{2h}(-A_{\infty}(\epsilon)+A_{1}(\epsilon))]\phi_{+}^{(1)}(r_{+})(1+O(h))$ ,

$\psi_{-}^{r}(t)=-iQ\exp[\frac{i}{2h}(A_{\infty}(\epsilon)-\overline{A_{1}(\epsilon)})]\phi_{-}^{(\overline{1})}(r_{-})(1+O(h))$ ,

$’ \psi_{+}^{l}(t)=-Q\exp[\frac{i}{2h}(-A_{-\infty}(\epsilon)+A_{n}(\epsilon))]\phi_{+}^{(n)}(l_{+})(1+O(h))$ ,

$\psi_{-}^{l}’(t)=-iQ\exp[\frac{i}{2h}(A_{-\infty}(\epsilon)-\overline{A_{n}(\epsilon)})]\phi_{-}^{(\overline{n})}(l_{-})(1+O(h))$,

where

$A_{\infty}( \epsilon)=2\int_{0}^{\infty}(\sqrt{V(t)^{2}+\epsilon^{2}}-\lambda_{t})dt$, $A_{-\infty}( \epsilon)=2\int_{0}^{-\infty}(\sqrt{V(t)^{2}+\epsilon^{2}}-\lambda_{l})dt$

and $O(h)$ is uniform for small $\epsilon$ .

We can refer to [W] for the proof of this proposition. Now we explain the second step of
connecting thp exact WKB solutions around the avoided crossing.

5.1 Transition at the avoided crossing

The elements of the scattering matrix can be expressed by Wronskians.

$S= \frac{1}{\mathcal{W}[\psi_{+}^{r},\psi_{-}^{r}]}$ ( $\mathcal{W}[\prime l_{+}^{l}’,\psi \mathcal{W}[\psi_{+}^{f},4’|^{\frac{r}{\iota+}]}]$ $\mathcal{W}[\psi,\psi^{r}]\mathcal{W}[\psi^{\frac{l}{+f}},\psi^{\iota}=]$ ).
From Proposition 5.1, we obtain the diagonal and off-diagonal elements:

$\frac{\mathcal{W}[\psi_{+}^{r},\psi_{+}^{l}\prime]}{\mathcal{W}[\psi_{+}^{r},\psi_{-}^{r}]}=-i\exp[\frac{i}{2h}(-A_{-\infty}(_{\vee}^{-}.)-A_{\infty}(\in)+\overline{A_{1}(\epsilon)}+A_{n}(\epsilon))]$

$\cross\frac{\mathcal{W}[\phi_{+}^{(1)}(r_{+}),\phi_{+}^{(n)}(l_{+})]}{\mathcal{W}[\emptyset_{+}((1)r_{+}),\phi_{-}^{(1\rangle}(r_{-})]}(1+O(h\rangle)$. (17)

$\frac{\mathcal{W}[\psi_{+}^{r},\psi^{l}\prime]}{\mathcal{W}[\psi_{+}^{r},\psi^{r}]},==\exp[\frac{i}{2h}(A_{-\infty}(\epsilon)-A_{\infty}(\grave{\epsilon})+\overline{A_{1}(\hat{\mathrm{e}})}-\overline{A_{n}(\epsilon)})]$

$\cross\frac{\mathcal{W}[\phi_{+}^{(1)}(r_{+}),\phi^{(\overline{n})}(l)]}{\mathcal{W}[d_{+}^{(1)}(r_{+}\rangle,\phi^{(1)}(r)]}==(1+O(h))$ . (18)

In order to know the asymptotic property of the Wronskian of two exact WKB solutions
there should be a canonical curve between their symbol base points (see Proposition 3.3).
If it is not the case. it is necessary to define some intermediate exact WKB solutions.
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Two Wronskians $\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{-}^{(\overline{1})}(r-)]$ , $\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{-}^{(\overline{n})}(l_{-})]$ in (18) can be calculated
directly by Proposition 3.3 as follows.

$\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{-}^{(\overline{1}\rangle}(r_{-})]=\exp[-\frac{i}{2h}(A_{1}(_{\vee}^{c})-\overline{A_{1}(\epsilon)})]\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{-}^{(1)}(r_{-})]$,

$=2i \exp[-\frac{i}{2h}(A_{1}(\epsilon)-\overline{A_{1}(\epsilon)})]w_{+}^{e}(z(r-); z(r_{+}))$.

$\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{-}^{(\overline{n})}(l_{-})]=\exp[-\frac{i}{2h}(A_{1}(\epsilon)-\overline{A_{n}(\epsilon)})]\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{-}^{(1)}(l_{-})]$ ,

$=2i \exp[-\frac{i}{2h}(A_{1}(\epsilon)-\overline{A_{n}(\epsilon)})]w_{+}^{e}(z(l-); z(r_{+}))$

Therefore we have

$\frac{\mathcal{W}[\phi_{+}^{(1)}(r_{+}),\phi_{-}^{(\overline{n})}(l)]}{\mathcal{W}[\phi_{+}^{(1)}(r_{+}),\phi_{-}^{(\overline{1})}(r)]}==\exp[\frac{i}{2h}(\overline{A_{n}(\epsilon)}-\overline{A_{1}(\overline{\epsilon})})]\frac{w_{\perp}^{e}(\sim \mathit{7}(l);z(r_{+}))}{\iota\iota 1(_{\sim}^{\gamma}e(\perp r);z(r_{+}))}=$. (19)

By Proposition 3.2, we can obtain the asymptotic expansions of these Wronskians as $harrow \mathrm{O}$

for the reason why there exist canonical curves form $r_{+}$ to either $r_{-}$ or $l_{-}$ (see \S 5.2).
However we must be careful in calculating the Wronskian $\mathcal{W}[\phi_{+}^{\langle 1)}(r_{+}), \phi_{+}^{(n)}(l_{+})]$ , be-

cause there exist remarkable differences on the geometrical structures of the Stokes lines
whether $n=1$ or $n\geq 2$ . Therefore we will separately discuss the cases where $V(t)$ has a
simple zero or a zero of higher order.

5.1.1 Transition at a simple zero
In the case where $n=1$ . there are two simple turning points $T_{1}(_{\vee}^{c})$ and $\overline{T_{1}(\epsilon)}$ . The
calculation of $\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{+}^{(1)}(l_{+})]$ is the connection problem at the turning point of order
1 over the branch cut as in Figure 3. Let $l_{+}^{\wedge}$ be the same point as $\iota_{+}$ but continued from
$r_{+}$ passing by the branch cut from $T_{1}$ .

Proposition5.2. If $n=1$ , we obtain

$\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{\neq}^{(1)}(l_{+})]=-2w^{e}"(z(t_{+})_{\backslash }.z(r_{\mathrm{T}}))$ .

Proof of Proposition5.2. We can not apply Proposition 3.:3 to this calculation directly.
Therefore we consider the following lemma, which give the relation between exact WKB
solutions on the different Riemann surfaces.

Lemma 5.1. Let $T$ be a simple tuming point and $t_{1}\neq T$ sufficiently dose to T. Then

$\phi\pm(t;T,T+(t_{1}-T)e^{-2\pi i})=\{$

$i\phi_{\mp}(t,T_{k},\hat{t}_{1})$ ( $T$ is a zero of $V(t)-i\epsilon$),
$-i\phi_{\mp}(t;T_{k},\hat{t}_{1})$ (I’ is a zero of $V(t)+i_{\vee}^{\sigma}$ ).
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Figure 3: Stokes geometry $n=1$

$T_{1}$ is a simple zero of $V(t)-i\epsilon$ . Since $l_{\tau}$ is obtained from $l_{+}\mathrm{a}\mathrm{R}\mathrm{e}\mathrm{r}$ turning clockwise
around $T_{1}$ , one has from Lemma 5.1. $\phi_{\mathrm{Y}^{t}}^{(1)}(l_{+})=i\phi_{-}^{(1)}(l_{+})\wedge$ . Hence

$\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{+}^{(1)}(l_{+})]=i\mathcal{W}[\phi_{+}^{(1)}(r_{+}\rangle,\phi_{-}^{(1)}(l_{+}^{\wedge})]$.
We apply Proposition 3.3 to this Wronskian then Proposition 5.2 is obtained. $\square$

Hence the Wronskian of the exact WKB solutions in (17) is given by

$\frac{\mathcal{W}[\phi_{+}^{(1)}(r_{+}),\phi_{+}^{(1)}(l_{+})]}{\mathcal{W}[\phi_{+}^{(1)}(r_{+}),\phi_{-}^{(\overline{1})}(r_{-})]}=i\exp[\frac{i}{h}$im $A_{1}( \epsilon)],.\frac{w_{+}^{e}(z(l_{+}^{\wedge});z(r_{+}))}{u_{+}^{e}(\sim\sim(r_{-});z(r_{+}))}$ . (20)

For the symbol base $l_{+}^{\wedge}$ on the another Riemann surface, there exists a canonical curve
from $\mathrm{r}_{+}$ to $l_{+}\wedge$ passing through the branch cut (see \S 5.2).

5.1.2 Transition at a zero of higher order

In case $n\geq 2$ , the geometrical structures of the Stokes lines emanating from four turning
points $T_{1},$ $T_{n},$ $\overline{T_{1}}$ and $\overline{T_{n}}$ are classified into three cases ${\rm Re} z(T_{1})>{\rm Re} z(T_{n}),$ ${\rm Re} z(T_{1})=$

${\rm Re} z(T_{n})$ and ${\rm Re} z(T_{1})<{\rm Re} z(T_{n})$ (see Figure 4, 5, 6).
We introduce the two symbol base points 6 and $\overline{\delta}$ on the imaginary axis such that

$\max\{{\rm Re} z(T_{2}), {\rm Re} z(T_{n-1})\}<{\rm Re} z(\delta)<\min\{{\rm Re} z(T_{1}), {\rm Re} z(T_{n})\}$ .

Then we can consider linearly independent intermediate exact WKB solutions $(\phi_{+}(t;T_{1}.\delta)$ ,
$\phi_{-}(t;T_{1},\overline{\delta}))$ and $(\phi_{+}(t;T_{n},\delta),$ $\phi_{-}(t:T_{n},\overline{\delta}))$ . Let $\hat{l}_{+},\hat{r}_{+}$ be the same point as $\iota_{+},$

$r_{\mathrm{i}}$ but
continued from 6 passing through the branch cuts as in Figure 2. Then one see that
$\iota_{+}=T_{n}+(l_{+}^{\wedge}-T_{n})e^{-2\pi i}$ and $r_{+}=T_{1}+(\hat{r}_{+}-T_{1})e^{2\pi i}$ .
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Figure 4: ${\rm Re} z(T_{n};T_{1})<0$ Figure 5: ${\rm Re} z(T_{n};T_{1})=0$ Figure 6: ${\rm Re} z(T_{n}; T_{1})>0$

Proposition 5.3. If $n\geq 2$ , we obtain

$\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{+}^{(n)}(l_{+})]=-2((-1)^{n+1}\frac{w_{+}^{e}(z(\overline{\delta});z(r_{+}))w_{\tau}^{e}(z(l_{+}^{\wedge});z(\delta))}{w_{+}^{e}(z(\overline{\delta});z(\delta))}\exp[\frac{z(T_{n};T_{1})}{h}]$

$+, \frac{w_{+}^{e}(z(\overline{\delta});z(l_{+}))w_{+}^{e}(\sim\prime(\hat{r}_{\vdash}\rangle\}\tilde{\wedge}(\delta))}{u_{+}^{e}(z(\overline{\delta});z(\delta^{\neg}))}\exp[\frac{z(T_{1\backslash }T_{n})}{h}])$ .

Proof. The exact WKB solutions $\phi_{+}(t;T_{1}, \delta),$ $\phi_{-}(t;T_{1}.\overline{\delta}),$ $\phi_{+}(t\backslash T_{n}.\delta)$ and $\phi_{-}(t_{j}T_{n},\overline{\delta})$

have the well-defined semicl\"assical asymptotic expansions in the direction from the sym-
bol base points to the phase base points. The pairs of $(\phi_{+}(t:T_{1}, \delta),$ $\phi_{-}(t;T_{1}.\overline{\delta}))$ and
$(\phi_{+}(t;T_{n}, \delta),$ $\phi_{-}(t;T_{n},\overline{\delta}))$ are fundamental bases of the space of solutions each other. So
$\phi_{+}(t;T_{1},r_{+})$ and $\phi_{+}(t;T_{n}, l_{+})$ are written by the linear combinations:

$\phi_{+}^{(1)}(r_{+})=\frac{\mathcal{W}[\phi_{+}^{(1)}(r_{+}),\phi_{-}^{(1)}(\delta)]}{\mathcal{W}[\phi_{\vdash}^{(1)}(\delta),\phi_{-}^{(1)}(\overline{\delta})]}\phi_{+}^{(1)}(\delta)+\frac{\mathcal{W}[\phi_{+}^{(1)}(\delta),\phi_{+}^{(1)}(r_{+})]}{\mathcal{W}[\phi_{+}^{(1)}(\delta),\phi_{-}^{(1)}(\overline{\delta})]}\phi_{-}^{(1)}(\overline{\delta})$,

$\phi_{+}^{(n)}(l_{+})=\frac{\mathcal{W}[\phi_{+}^{(n)}(l_{+}),\phi_{-}^{(n)}(\overline{\delta})]}{\mathcal{W}[\phi_{+}^{(n)}(\delta)_{!}\phi_{-}^{(n)}(\overline{\delta})]}\phi_{+}^{(n)}(\delta)+\frac{\mathcal{W}[\phi_{+}^{(n)}(\delta),\phi_{+}^{(n)}(l_{+})]}{\mathcal{W}[\phi_{+}^{(n)}(\delta)_{\backslash }\phi_{-}^{\langle n\rangle}(\overline{\delta})]}\phi_{-}^{(n)}(\overline{\delta})$.

These Wronskian calculations are same as the connection at the turning point of order
1. Notice that turning point $T_{n}(\epsilon)$ is a zero of $V(t)$ –is when $n$ is odd and that of
$V(t)+i\epsilon$ when $n$ is even. By Lemma 5.1, we have $\phi_{+}^{(1)}(r_{+})=-i\phi_{-}^{(1)}(\hat{r}_{+}),$ $\phi_{+}^{(n)}(l_{+})=$

$(-1)^{n+1}i\phi_{-}^{(n)}(l_{+})\wedge$ and then, by Proposition 3.3,

$\phi_{+}^{(1)}(r_{+})=’\frac{u_{+}^{e}(z(\overline{\delta}):z(r_{+}))}{w_{+}^{\rho}\prime(z(\delta);z(\delta))}\phi_{+}^{(1)}(\delta)-i\frac{u_{+}^{e}1(z(\hat{r}_{\mathit{1}})_{\backslash }z(\delta))}{w_{+}^{e}(\wedge(\sim\overline{\delta});\sim(r\delta))}.\phi_{-}^{(1)}(\overline{\delta})$ .
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$\phi_{+}^{(n)}(l_{+})=,\frac{w_{+}^{e}(z(\overline{\delta});z(l_{+}))}{u_{+}^{e}(z(\overline{\delta});z(\delta))}\phi_{+}^{(n)}(\delta)+(-1)^{n+1}i’\frac{u_{+}^{e}(z(l_{+}^{\wedge});z(\tilde{\delta}))}{w_{+}^{\mathrm{e}}(z(\overline{\delta});z(\delta))}\phi_{-}^{(n)}(\overline{\delta})$,

$= \frac{w_{+}^{e}(z(\overline{\delta});z(l_{+}))}{w_{+}^{e}(z(\overline{\delta});z(\delta))}e^{z(T_{1;}T_{n})/h}’\phi_{+}^{(1)}(\delta)+(-1)^{n+1}i.\frac{w_{+}^{e}(r(l_{+}^{\wedge}))\sim\prime(\delta)\rangle}{w_{+}^{e}(z(\overline{\delta});z(\delta))}e^{z(T_{n_{)}}\cdot T_{1})/h}\phi_{-}^{(1)}(\overline{\delta})$ .

From these relations, we have Proposition 5.3.
$\square$

Applying Proposition 5.3, we have

$\frac{\mathcal{W}[\phi_{+}^{(1)}(r_{+}),\phi_{+}^{(n)}(l_{+})]}{\mathcal{W}[\phi_{+}^{(1)}(r_{+}),\phi_{-}^{(\overline{1})}(r_{-})]}=i\exp[-\frac{i}{2h}(\overline{A_{1}(\epsilon)}+A_{n}(\epsilon))]\frac{1}{w_{+}^{e}(z(r_{-});z(r_{+}\rangle)}$

$\mathrm{x}((-1)^{n+1}\frac{w_{+}^{e}(z(\overline{\delta});z(r_{+}))w_{+}^{e}(z(l_{+}^{\wedge});z(\delta))}{w_{+}^{e}(z(\mathit{5});z(\delta))}\exp[\frac{i}{h}A_{n}(\epsilon\rangle]$

$+ \frac{w_{+}^{e}(z(\hat{\delta});z(l_{+}))w_{\perp}^{e}(z(\hat{r}_{+}):z(\delta))}{w_{+}^{e}(z(\overline{\delta});z(\delta))}\exp[\frac{i}{h}A_{1}(\epsilon)])$ (21)

Note that there exists a canonical curve for each Wronskian calculation (see \S 5.2).

5.2 Asymptotics of the Wronskians as $harrow \mathrm{O}$

About the calculations of the asymptotic expansions of the Wronskian (19), $(20\rangle,$(21) as
$harrow \mathrm{O}$ , we must pay attention to the distance between the canonical curve and the turning
points on the complex $z$-plane because $z=z(T_{j})$ are simple poles of $H’(z)/H(z)$ . We give
the figures of the canonical curve on the complex $z$-plane, where the phase base point is
equal to $0$ .

For the Wronskian in (19), the canonical curve from $z(r_{+})$ to $z(l_{-})$ passes between
$z(T_{1})$ and $z(\overline{T_{1}})$ as in Figure 7. Therefore we get

$w_{+}^{\mathrm{e}}(z(l_{-});z( \mathrm{r}_{+}))=1+O(\frac{h}{{\rm Re} z(\overline{T_{1}})-{\rm Re}_{\tilde{k}}(T_{1})})$ as $harrow 0$ .

By Lemma 2.1, we have

${\rm Re} z(\overline{T_{1}})-{\rm Re} z(T_{1})=O(\epsilon^{\underline{n}\pm\underline{1}}n)$ as $\epsilonarrow 0$ .

In case $n=1$ , for the Wronskian in (20), the canonical curve from $z(r_{+})$ to $z(l_{+})\wedge$

through the branch cut passes over $z(T_{1})$ as in Figure 8.

$w_{+}^{e}(z(l_{+}^{\wedge});z(r_{+}))=1+O(h)$ as $harrow 0$ .

Therefore we obtain, in case n— 1,

P$($ \^e, $h)= \exp[-\frac{2}{h}{\rm Im} A_{1}(rightarrow)\overline{\vee}](1+O(h\rangle)$ as $harrow$. $0$ .
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Figure 7: $n\geq 2,$ ${\rm Re} z(T_{n})=\mathrm{R}\epsilon z(T_{1})$ Figure 8: $n=1$

In case $n\geq 2$ and ${\rm Re} z(T_{n})={\rm Re} z(T_{1})$ , for the Wronskians in (21), the canonical curve
from $z(\delta)$ to $z(\overline{\delta}\rangle$ passes between $z(T_{1})$ and $z(T_{n})$ , the canonical curve from $z(r_{+})$ to $z(\overline{\delta})$

passes between $\sim \mathit{7}(T_{1})$ and $z(T_{1^{-}})$ and the canonical curve from $z(\delta)$ to $\approx(r_{+}^{\wedge})$ through the
branch cut passes between $z(T_{1})$ and $z(T_{2})$ as in Figure 7. Therefore we get

$u_{+}^{e}’(z( \hat{\delta});z(\delta))=1+O(\frac{h}{{\rm Im} z(T_{1})-{\rm Im} z(T_{n})})$ as $harrow 0$ ,

$\iota\iota_{+}^{e}.(z(\delta);z(r_{+}))=1+O(\frac{h}{{\rm Re}_{\wedge}^{\sim}(\overline{T_{1}})-{\rm Re} z(T_{1})})$ as $harrow 0$ ,

$u_{+}^{e}’(x( \hat{r}_{+});z(\delta))=1+O(\frac{h}{{\rm Re} z(T_{1})-{\rm Re}_{\sim}(T_{2})},)$ as $harrow 0$ .

By Lemma 2.1, we have

${\rm Im}\approx(T_{1})-{\rm Im} z(T_{n})=O(\epsilon^{\frac{\mathfrak{n}+1}{n}})$ as $\epsilonarrow 0$ ,

${\rm Re}\approx(\overline{T_{1}})-{\rm Re} z(T_{1})=O(\epsilon^{\frac{n+1}{n}})$ as $\epsilonarrow 0$ ,

${\rm Re} z(T_{1})-{\rm Re} z(T_{2})=O(\epsilon^{\frac{n+1}{n}})$ as $\epsilonarrow 0$ .

Hence we obtain Theorem 2.1 in case $n\geq 2$

$P( \epsilon,h)=|\exp[\frac{i}{h}A_{1}(\epsilon)]+(-1)^{n+1}\exp[\frac{i}{h}A_{n}(\epsilon)]|^{2}(1+O(\frac{h}{\vee^{\frac{n+1}{n}}=}))$ as $\frac{h}{\epsilon^{\frac{n+1}{n}}}arrow 0$ .

We remark that there exists the canonical curve from $l_{+}$ to $\hat{r}_{+}$ in the case ${\rm Re} z\langle T_{n})<$

${\rm Re} z(T_{1})$ as in Figure 9. The Wronskian can be calculated without interm\’eiate exact
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WKB solutions as follows:

$\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{+}^{(n)}(l_{+})]=\exp[\frac{i}{2h}(A_{1}(\epsilon)-A_{n}(\epsilon))]\mathcal{W}[\phi_{+}^{(1)}(r_{+}), \phi_{+}^{(1)}(l_{+})]$ ,

$=-i \exp[\frac{i}{2h}(A_{1}(\epsilon)-A_{n}(\epsilon))]w_{+}^{e}(\approx(\hat{r}_{+});z(l_{+}\rangle)$ .

$w_{+}^{e}(z( \hat{r}_{+});z(l_{+}))=1+O(\frac{h}{{\rm Re} z(T_{1})-{\rm Re} z(T_{n})})$ as $harrow 0$ .

By Lemma 2.1, we have

${\rm Re} z(T_{1})-{\rm Re} z(T_{n})=O(\epsilon^{(n+2m)/n})$ as $\epsilonarrow 0$ .

The asymptotic expansions (6), (5) in Proposition 2.1 imply that $P(\epsilon, h)$ in case $n\geq 2$

can be calculated as in case $n=1$ when $h$ goes to $0$ faster than $\epsilon^{(n+2m)/n}$ tends to $0$ (see
Figure 4).

Figure 9: $n\geq 2,$ ${\rm Re} z(T_{n})<{\rm Re} z(T_{1}\rangle$
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