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A scaling limit for quantum field models

L ERFRERBERREER 8K &3 (Akito Suzuki)
Department of Mathematics, Hokkaido University

Abstract

We study a scaling limit for the generarized spin-boson model and
a generalization of the Nelson model. Applying it to a model for the
field of the nuclear force with isospin, we obtain an effective potential
of the interaction between nucleons. Also, we get some applications
to condensed matter physics.

1 Introduction

We consider a scaling limit of abstract quantum field theoritical Hamiltonians
for interaction models between particles and a Bose field. The purpose of
this paper is to derive a quantum mechanical Hamiltonian in a scaling limit
of such a quantum field theoritical Hamiltonian in a general framework.

A typical example is a scaling limit for an interaction model, called the
Nelson model [8], of norelativistic quantum particles coupled to a Bose field
whose Hamiltonian is given by

1
H=-—AQI+1®H
oM @I+ 1I®Hy,+ gHy,
where M > 0 denotes the mass of the particles, A the generalized Laplacian,
H,, the free Hamiltonian of the Bose field, H; an interaction between the
particles and the Bose field, g € R a coupling constant which represents the
strength of the interaction. A scaled Hamiltonian of H is introduced by

H(A) = —QEM-A®1+A2I®H1, +gAH;, A > 0.

Hiroshima [4, 5] showed that, under suitable conditions, there exists a sym-
metric operator Vg, called an effective potential, such that

. ) 1 -
s- Al_l_{folo(H(A) -2zl = (—2_M—A + Ve — z) ® P, (1.1)

for all z € C\ R, where P, denotes the orthogonal projection onto ker Hyp,.
Physically, a vector belonging to the subspace ker Hy, represents the vacuum



of the free Bose field. Therefore one obtains a quantum mechanical Hamilto-
nian, called a Schrédinger Hamiltonian, in the vacuum of the free Bose field
in the resolvent sense. Indeed, the limit (1.1) implies that, for allt € R,

s- lim e *HW)(] @ Py) = e~it(~2i4+Ves) @ P, (1.2)
A—o0

According to Davies 3], the limit (1.2) is the weak coupling limit at the same
time as the mass of the particles becomes infinity, since we can write

1
2MA?

H(A)=A2( A®I+I®Hb+—g—H1),’

A

where the factor A% on the whole Hamiltonian is interpreted as a time scaling.

On the other hand, Arai [1] studied scaling limits for a spin-boson in-
teraction model, called the spin boson model, and a model in nonrelativistic
quantum electrodynamics, called the Pauli-Fierz model, in the dipole approx-
imation without the self-interaction of photons. The methods in [1] have been
extended to the generalized spin boson (GSB) model [2] and the Pauli-Fierz
model with the self-interaction of photons ([6] and the refernces therein).

In this paper, we study a scaling limit for the GSB model and a gener-
alization of the Nelson model. Various branches of physics, such as nuclear
physics and condensed matter physics, have many examples of these models,
and the interaction H; depends on models (see {2, 12]). From this point of
view, it seems natural to consider scaling limits of these general models under
conditions as weak as possible.

This paper is organized as follows. In Sec. 2, we introduce some notions,
and discuss an abstract scaling limit theorem. In Sec. 3, we introduce the
Boson Fock space and define the GSB model. We state a scaling limit for
the GSB model under weaker conditions than those in [2]. A scaling limit
for the generalization of the Nelson model is treated in Sec. 4. This model
describes nonrelativistic quantum particles coupled to a Bose field with some
internal degrees of freedom. As a result, we are now able to derive an effective
potential that is an operator valued potential in the weak coupling limit. Note
that, since the Nelson model has no internal degrees of freedom, the effective

potential is a scalar potential. However, in nuclear physics, matrix valued

potentials appear as effective potentials. A new feature of our work is in that
a quantum mechanical Hamiltonian with such a potential is derived. In the
last section, we discuss some examples. The first two examples are concrete
realizations of the GSB model in condensed matter physics; the last one the
generalization of the Nelson model in nuclear physics.
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2 Preliminaries

In this section, we describe an abstract scaling limit theorem ([1, 4, 12]) in
convenient form to establish scaling limits for our models. We denote the
inner product and the associated norm of a Hilbert space £ by (-,-)c and
| - llc, respectively. If there is no danger of confusion, we omit the subscript
L in {-,-)z and || - ||¢. Moreover, the domain and range of an operator T' is
denoted by D(T') and Ran(T).

To begin with, we introduce the following notions which are useful for .

describing a condition of a scaling limit theorem.

Definition 2.1 Let L be a Hilbert space, a point ty in an interval Iy C
[—00,+00], and L(t) and M(t) (t € Ip) operators on L satisfying

N D) #0.

(1) We say that M (t) is L(t)-bounded uniformly near iy if there ezist a neigh-
borhood I C I of ty and constants a,b > 0 such that for any t € I\ {to},
D(M(t)) > D(L(t)) and ’

1Ml < allLE)T| +0l1¥ll, ¥ e DL(E))

(2) We say that M(t) is L(t)-infinitesimally small uniformly near ty if for
any € > 0, there erist an interval I(¢) C Iy and a constant b(e) such that for
any t € I(e)\ {to}, D(M(t)) D D(L(t)) and

IM(@)¥|| < el LE)T| +b(e)[ 2], ¥ e DL())

Note that, from the Kato-Rellich Theorem, if M(t) is L(t)-infinitesimally
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small uniformly near %o, then L(t) + M (t) is self-adjoint on D(L(t)) for all -

t € I\ t; with some neighborhood I of ¢, and moreover, if L(t) is bounded
from below, then so is L(t) + M(t). :

Let A be a non-negative self-adjoint operator on a Hilbert space H and
B a non-negative self-adjoint operator on a Hilbert space X with

‘ker B # {0}.

We denote by Py the orthogonal projection onto ker B from K. Let {Ch}aso
be symmetric operators on X :=H @ K. Put

K(A) := Ko(A) + Ch,

where
Ko(A):=AQI+AIQ®B.

We consider the scaling limit of K(A).
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Theorem 2.1 (scaling limit [1, 4, 13]) Suppose that Cy is Ko(A)-infinitesimally
small uniformly near oo and there exists a symmetric operator C on X such
that D(C) D D(A) ® ker B and

s- lim Cp(A - 2)'®@ Pp=C(A—2)"'® Pp. (2.1)

Then, the following (1)-(8) hold.

(1)For any A > Ao with some Aq, K(A) is self-adjoint on D(K,) and bounded
from below uniformly in A > Ag. Moreover, it is essentzally self-adjoint on
any core for Kp.

(2) The operator

Ko =A®I+(I® Pp)C(I ® Pp)

is self-adjoint on D(A®I) and bounded from below. Moreover, it is essentially
self-adjoint on any core for AQ I.
(8)For any z € C\ [0,00) or z < 0 with |z| sufficiently large

s fim (K(A) = 2)* = (K~ 2(1 @ ). 22
Proof. See [13]. O

If ker Hy, = {of2p | o € C} with some Qp € K (||| = 1), there exists
a symmetric operator Ep(C) such that

<faEB(C)g> = (f®QB:C(g®QB)>7 f € H’ g€ D(A)a

and

Hence, we have

(Koo — 2)7H(I ® Pg) = (Keg — 2)~' ® Pp,

where
Keff =A + EB(C).

We note the following fact.
Proposition 2.2 Let H, be self-adjoint operators acting on the tensor prod-

uct of two Hilbert spaces "y and Ha. Suppose that, there exists a self-adjoint
operator Hy, acting on H; such that, for some zo € C\ R,

8- im (H, — 20) ™! = (Hoo — 20) "' ® P,

n—oo



where P is an orthogonal projection from Hy onto RanP. Then, for allt € R,
s- lim e7# (] @ P) = e""H= @ P,
n—o0 :

Proof. We need only to prove taht, for all t € R,
s- lim (e7" — ¢~ @ P) (Hw — 20) ' ® P =0.

n—0o0

We can write

(e-—itHn _ e—ith ® P) (Hco - zo)—l ® P
= ¢ itHn [(Hc,c> -2)'®@P - (H, - zo)‘l] (I®P)
+ (Hn _ zo)—l [e—itHn _ e--z'tHm ® P] (I ® P)
+ [(Hn = 20) ™" = (Ho — 20) ™' ® P] (e7*#= ® P).

In the same way as in [7, p.503, Theorem 2.14], we can prove that
s- lim (H, — z) ™! [e7#» — e7H> @ P] (Hy — 20) "' @ P = 0.
n—o0 .
Hence, we obtain the desired result. (]

By Proposition 2.2, we obtain the following fact.

Corollary 2.3 Let A,B,C and C, be as above. Suppose that ker H, =
{afdp | a € C} with ||Qp|| = 1. Then, for allt € R,

s- lim e KA (] @ Pg) = e™"¥f @ Pp.
A—o0

3 Scaling Limit for the GSB Model

3.1 Boson Fock space

To describe a Bose field, one uses the Boson Fock space over a complex

Hilbert space K:

Fb(’C) . =é®’€

n=0 s

= {TP = {\I,(n)}:o=0

n’ o
n>0, ¥We@K, Y ™| < oo} ,
8

n=0
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where @7 K denotes the n-fold symmetric tensor product of K with ®g K=
C. '

The annihilation operator a(f)(f € K) is a densely defined closed linear
operator on Fy,(K) such that, for all p = {T(™} € D(a(f)"), (a(f)*zp)(o) =
0 and

(@(f)9)™ = Vasu(f @ ¥Y), n21,
where S, is the symmetrization operator on @" K (Sp* = Sp, Sn? = Sa,
R’ K = S.(®" K)). The adjoint a(f)*, called the creation operator, and the
annihilation operator a(g)(g € K) obey the canonical commutation relations

[a(f),a(9)] = (f.9), [a(F),a(9)] =0, [a(f)",a(g)"] =0

for all f, g € K on some dense subspace, where [X,Y] = XY - Y X.
Let

a(f) + a(f)"
= , e Kk,
¢(f) 7 f
which is called the Segal field operator. It is shown that ¢(f) is essentially
self-adjoint on Fy(KC) [10, §X.7]. We denote its closure by the same symbol
o(f)- -

For every self-adjoint operator T' on K, one can define a self-adjoint op-
erator dI'(T"), called the second quantization of T [9, p.302], by

o0

dr(T) := @ T,

n=0

with 7@ = 0 and T™ is the closure of

n jth
YI® - ®@T® @I

j=1

éD(T).

alg

If T' is non-negative, then so is dI'(T).

3.2 Definition of the GSB model

We consider a model of a quantum system S coupled to a Bose field. We
denote the Hilbert space of the system S by H which is taken to be an
arbitrary separable complex Hilbert space. In concrete realizations, S may
be a system of quantum particles. We denote the one-boson Hilbert space by
K which is taken to be an arbitrary separable complex Hilbert space. The
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Hilbert space of the coupled system of & and the Bose field is given by the
tensor product

F =H® F(K).

We assume that T is a non-negative, injective and self-adjoint operator on
KC. Then, the free Hamiltonian of the Bose field is defined by

H, := dI'(T)

acting on F(K).
Suppose that A is a self-adjoint operator on A and bounded from below,
which denotes physically the Hamiltonian of the quantum system S. Let

B; (j =1,...,J,J € N) be bounded self-adjoint operators on H and g; € -

K(j=1,...,J). As a total Hamiltonian of the coupled system, we take the
following operator:

J
Hgsp :=A®I+I®Hb+gZBj®¢(gj), (31)
Jj=1

where g € R denotes a coupling constant of the system & and the Bose field.
Such a Hamiltonian is called the generalized spin-boson (GSB) Hamiltonian
introduced by Arai and Hirokawa [2]. Altough a scaling limit of the GSB
model has been studied in [2], some assumptions are made. One of them is
the commutativity of {B;};_; :

B;, By =0, j,k=1,---,J.
J

We study a scaling limit of the GSB model without this condition.

3.3 Scaling limit for the GSB model

To state main results of this section, we need some assumptions.

(A.1) The vectors g;(j =1,..., J) satisfy the following conditions:
9 € DT, j=1,...,] | (3.2)
and

(gjagk) ? <gj’T_lgk> ’ (T—lgj) T—lgk> € R7 j’ k= 1a sy J. (33)

(A.2) There exists a dense subspace D C D(A) such that
BDCD, j=1,---,J. (3.4)
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(A.3) [B;,A]|D(j =1,---,J) are bounded.

We introduce a scaled Hamiltonian by
HGSB(A) =AQT+ A IQ® Hy, +gAH;, A>0, (3.5)

where

J
Hi:=7)_ B;®¢(g;)-
j=1
Let Py be the orthogonal projection onto ker Hy, which is the one-dimensional
subspace generated by the Fock vacuum Q := {1,0,0,---} € F,(K):

ker Hy, = {QQ l ac C}

Then, we obtain the following result which is one of the main theorems
in this paper.

Theorem 3.1 Assume (A.1)-(A.3). Let z € C\ R or z < 0 with |2| surffi-
ciently large. Then, '

s- }i_{%o(HGSB(A) —2)'=(A+Vg —2)"'® Py, (3.6)
where | ,
g _
Vet = -5 ,Z;;<T *95, 9x) BiB;. 3.7

Proof. See [12]. O

If A is a bounded self-adjoint operator on H, then (A.2) and (A.3) hold.
Therefore, Theorem 3.1 implies the following corollary:

Corollary 3.2 Suppose that (A.1) holds and that A is bounded. Then, (3.6)
holds for all z € C\ R or z < 0 with |2| surfficiently large.

We can state a result of another type without the condition (A.3). To
do this, we introduce some objects. We denote by [Bj, A] the closure of
[BJ,A]ID(] =1,... ,J) Put Mo = 1nf0(A) and

A::'A—”'Oy
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which is a non-negative self-adjoint operator on . We need the following

assumption.



(A.4) D is a core for A and [B;,A] (j = 1,---,J) are A2_bounded, i.e.
D(A'?) c D([Bj;, A]) and there exist constants aj,b; > 0 such that, for all
u € D(A'Y?),

1185, Alu] < o]

Al/zuN + bl (3.8)

Moreover, [B;, A]|D (j =1,- -+, J) are commuting with Bg(k =1,--+,J) on
D.

Then, we obtain the following theorem:

Theorem 3.3 Assume (A.1), (A.2) and (A.4). Then, (8.6) holds for all
z € C\ R or z < 0 with |z| surfficiently large.

Proof. See [12]. O

4 Scaling limit for a generalization of the Nel-
son model |

4.1 Definition of the model

In this section, we study a model of a quantum system S coupled to a Bose
field with some internal degrees of freedom. We denote the Hilbert space of
the system S by L?(R% H). Here d € N and H is taken to be an arbitary
separable complex Hilbert space. In concrete realizations, S may be a system
of quantum particles with some internal degrees of freedom such as spin and
isospin. The Hilbert space of the coupled system of S and the Bose field is
given by the tensor product

F:=L*R%4GH) @ Fo(K) =~ H @ LA(R%; Fo(K)). (4.1)

We defined the quantized scalar field by

2(0) = [ | dlole))ds

on L%(R% Fu(K)), where g : z € R? —» g(z) € K denotes a strongly continu-
ous function. Then, ®(g) is self-adjoint (see [11, Theorem XIIL.85 (b)]).
Now we define a total Hamiltonian H acting on F by

Hgn :=-AQ®1+1Q® Hy,+ gHj, (4.2)
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where g € R denotes a coupling constant, A the generalized Laplacian and
J

Hp:=) B;®%(g;). (4.3)
Jj=1

Here, B;j(j = 1,---,J) are bounded self-adjont operators on H. The func-
tions g;(j = 1,--- ,J,J € N) from R? to K are strongly continuous.

Example 4.1 (the Nelson model) If dimH = 1 and B; = 1, then the Hamil-
tonian Hyg is written as

J
Hyetson = —AQ I+ 1@ Hy +9 Y _ ®(g5)

j=1

on L?(R% F,(K)), which is called the Nelson Hamiltonian. The weak cou-
pling limit of this Hamiltonian is studied by Hiroshima [4, 5].

4.2 Scaling limit for the model
To begin with, we introduce a scaled Hamiltonian H(A) (A > 0) by

Hgn(A) = —-A® I+ A’ I ® Hy, + gAH;. (4.4)

In order to describe our result, we introduce some notations, and formulate
our assumption.

We denote by L=(R¢; K) the set of mesurable functions f : R¢ — K for
which

1 7lloo := ess. sup [|f(z)||lx < oo.
z€ERS

For a € R, we define a K-valued function T7*f on R? as follows: if f(z) €
D(T*°) a.e.x € R? with respect to Lebesuge mesure,

(T*f)(z) =T f ().

Definition 4.1 Let o € R. LY (R% K) denotes the set of K-valued functions
f on RY satisfing the following conditions:

(i) f is strongly continuous with f € L*(R%; K).

(it) f(z) € D(T®) (z € R) and T*f € L®(R% K).

A K-valued function f on R? is said to be diferentiable with respect to z,, if
the net
f(wh"' 7wu+€7”' 7$d) B f(x)

€

(4.5)
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converges as € — 0 for any = (z1,--- ,z4) € R? . Then, we denote the
limit of (4.5) by 8,f. One can define the n times diferentiability (n € N),
inductively:

orf = 0,00 Vf), n> 1.

(A.5) The functions gj(j = 1,---,J) are twice diferensiable and satisfy the
following conditions:

(i) g; € L°_°3/2(Rd;IC).

(ii) 8,(T1g;) € LZ ;5 (R, K) N LY, (R K) for p=1,-+- ,d.

(ZH) aﬁ(T-ng) € Liol/Z(Rd; ’C) fOT‘ B = 17 Tt ,dv'

Moreover, we assume that for any j,k=1,---,J and z € R?

(9i(2), (), (9i(®), T gu(=)), (T7'9;(2), T 'qr(c)) €R.  (46)

We are now ready to describe our result. Let

2
Veff=—-g-2~ > BiBjVjx, (4.7)

1<5,k<J
on L*(R% H), where
Vir(z) = (gi(z), T gx(2)), aex€R. (4.8)

Theorem 4.1 Assume (A.5). Let z € C\ R or z < 0 with |z| sufficiently
large. Then,

s- lim (Hon(A) —2)7" = (He ~2)7 ® P, (4.9)

where

Hg=-A+Veg (4.10)

on L*(R%H).

5 Examples

5.1 Lattice spin system interacting with a Bose field

Let A be a finite set of the v-dimentional lattice Z¥ and consider the case
where an N component spin § = (SM), §@ ... 8(M) sits on each site i € A
and each component S™ on C* (s € N) obeys the following anticommuting
relations:

{s™ 8™ = 25,.. i=1,---,N.
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The Hilbert space of this spin system is given by Ha = @), Hi with H; = C°,
i € A. The spin at site  is defined by S; = (5" s . Sy g =

1 Mo

I® - @8S™®...®I with S™ acting on H;. A Hamiltonian of the spin
system interacting with a Bose field is given by

N
— (— Z J,;js,; S]) QI+I® Hb+0lzzsi(n) ®¢(gt(n)),

(i9)CA i€A n=1

acting in Hy ® Fo(L*(RY)), where J;; € R, 4, j € A, are constants and
g™ € L?(R¥), i€ A,n=1,---,N. Here, @ € R is a coupling constant.
This model is a general type of a lattice spin system interacting with a Bose
field (see [2]), which is a concrete realization of the abstract model H in (3.1)
with the following choice:

H=Hr K=L*R"), g=a
- Z JijSi : Sj7 T = w, Bj = Si(n)a g; = g‘i(n)’

(3.5)CA

where w : RY — [0,00) is a Borel measurable function, almost ,evervywhere
finite with respect to the Lebesgue measure on R, physically denoting the
dispersion relation of a free boson in momentum representation. Let

H()) := (- > TS Sj) ®I+NI®Hy+0)) SN‘_J Si™ ® ¢(g:™).
' (t.4)cA i€EA n=1
By applying Corollary 3.2, we obtain the following theorem:
Theorem 5.1 Suppose that
| w2, e [ARY), i€A, n=1,---,N.
Then, for all z € C\ R or z < 0 with |z| surfficiently large,
| s lim (H(\) = 2) 7! = (Ho — )™ @ P,

where

Hg = — Z J,,JS S +ZE +ZV,J

(i.5)CcA €A i#j



and
92 N (n) ||2 2 (n) ,.(m)
« gi o [75 g;
E;, = —— 2\, Vij=-— < 2 >5(n)5(m).
2|V =72\

- Proof. Note that the following anticommutation relations:
{5™, 8™} = 26, i=1,---,N.
U

Remark 5.1 Physically, E; and V; ; above are considered respectively as the
self-energy of each spin and an effective interaction between two spins. In
particular, the case where

v=3 N=3 s=2 wk)=kl, ™ =p(-z)/VIK

is interesting. Here, x; denots the coordinate of a lattic point and p a real
distribution sutisfying p/|k|*/?, 5/|k|> € L*(R®). This case is considered as a
lattice spin system interacting with phonons.

5.2 Model of a Fermi field interacting with a Bose field

Let F:(L) be the fermion Fock space over the Hilbert space £ and 9(f), f €
L, the fermion annihilation operators on Fs(L), which are bounded. We
denote by H; the second quantization operator of a self-adjoint operator 1"
acting on £. Then, a Hamiltonian of a quantum system of a Fermi field
interacting with a Bose field is given by

J
H=HQRI+I®H,+ Z Y(£i)"0(f;) ® 8(g;),

j=1

acting in F¢(L) ® Fo(K), where f; € L,j =1,--- ,J and o € R is a coupling
~ constant. In the case £ = L?(R3; C?) and K = L?(R?), this model may serve
as a model of electrons interacting with phonons in a metal. (See [2].)

Let

J
H(A) = H:® I+ A 1@ Hy + oA Y 9(f;)"9(f;) ® 8(g5)-

j=1

Applying Theorem 3.1, we can prove the following theorem:
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Theorem 5.2 Suppose that (3.2),(3.3) and
fJED(TI)’ .7=171']
Then, for all z € C\ R or z < 0 with |z| surfficiently large,

s- lim (H(A) = 2)™ = (Heg — 2) 7' ® P,

A0

where

Her = He = 5 37 (0, T 0u) W) U5 W) (o).

Jk
Proof. It is well known or easy to see that, for f € D(T"),

¥(f)D(Hy) C D(Hy), +(f)*D(Hy) C D(Hy),

and
[Hs, p(f)] = »(T'f)", [Hp,o(f)] = —9(T'f).

This implies (3.4) and [(f;)*¥(f;), Hs] are bounded. Thus, we obtain the
desired result. (]

5.3 Interaction between nucleons and pions with isospin

In this section, we give a concrete realization of Theorem 4.1, which is an

interaction model between nucleons and pions with isospin (see [12, Section
5.1]).
Let 0;,7;(j = 1,2, 3) be the Pauli matrices:

01 0 —i 1 0
O1=7T = 1 0 y O2=T2 = i 0 y 03 =1T3= 0 -1 ).

ith
aj(')=12®»--®c;;-®---®12, i=1,2,3,

. ith
=10 @7, ® -®ly,, a=1,2,3,

and

where 1, is the 2 x 2 identity matrix. Physically, c® = (0,0, 0,4, 53()) and
70 = (1@, 7, 75)) denote the spin and the isospin of the ith particle,

respectively. Set
' N N
Hy = {@cZ} & [@ CZ} :
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If there is no danger of confusion, we denote the operators o; (")®(®N 12) and
(®" 12) ® 7, acting on Hy by the same symbol ¢;? and 7, ), respectively.
We denote by /i the Planck constant divided by 27. Put

B.g,zf)l = go-j(i)Ta(i)a 1= 1’ e 7N7 j:a = 1,.2: 35
which act on Hy. It is straightforWard to see that
[B,B8] =0, i#1, jkap =123 (5.1)

By the anticommutativity of the Pauli matrices, it follows that, for i =
1,.-- ’NJ j:kaaaﬁ = 112a37 '
) _ R
{Bj('i,B() =T ik0ap) - (52
where {X,Y} = XY + Y X and §;; is Kronecker’s delta.
We denote by m and c the mass of a pion and the speed of light, respec-
tively. Let

w(k) = VR?KZ + m2ct (k € RY),

where w denotes a dispersion relation of one free pion. Let

)

The function w defines a multiplication operator on K. We denote it by the
same symbol w:

wf = (wflawaawf3)7 f = (fl’f2)f3) € }C

with f; € D(w). Let H, = dI'(w). Then, H), represents the free Hamiltonian
of the pion field.
Let

¢a(f) = ¢(fa), f € Lz(Ra)a
where

= (6a1f1 6a2f 5a3f)'

We denote by p the densn;y of a nucleon, which is a real distribution satisfying
8;p/+/@ € L*(R®), where 8;p denotes the Fourier transform of 0;p. Let

Bo(gl) = / Pa(gs? (z))dz,



where VB
o I g5~ ik
for z := (z1,--- ,zy) € R3". Here z; € R3 indicates the coordinate of the

ith nucleon.

A Hamiltonian of spin-nucleons interacting with pions, acting on Hy ®
L?(R3¥; F,(K)), is defined by

& ;
H(he, M) = —5 AT+ 2;03(*)®I+I®Hb+g " B ®@%a(g;"),
1<i<N

1<5,a<3
where g € R is a coupling constant.
Now, we define the scaled Hamiltonian by

H(A):

i

FH(A% AZc, AZM).

Then, we can write

2 N .
H(A) —-E—A®I+ 5 20'3(1') ®I+AQI®Hb +gAHI,

where
H, = Z S BY®a.(5;).
' 1=1 1<j,0<3

We now ready to derive a quantum mechanical Hamiltonian from H(A). Let

Hyg = ———A+ Zas(')+ Z E;1 + NE,,
1<i<I<N
where
. Ph (B e (Bow ) PO ikeima g
Bule) =~ / ( k) (500 1) e :
a.e.x = (1, - ,zn) € R¥ and

__39 i h |6(k)|*
Eo——§(27r)3z <>Ta<‘>(2) ;hkP ML dk.
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Theorem 5.3 Suppose that
w2, e LAR®), i=1,---,N, j=1,2,3.
Then, for all z € C\ R or z < 0 with sufficiently large,
. RS -1
S~ Algroxo (H(A) - 2) (Heg — 2)7" Q@ F.

Proof. Applying Theorem 4.1, we have
s- lim (H(A)-R® 1 - 27 =(Hg - R-2)"'® B,

where

 RELA
R = E ; 0’3(1) .
(For detail see [12].) Since R is bounded, we can prove the desired result in
the same way as in Theorem 2.1. O

Remark 5.2 Physically, Ey and E;; above are considered respectively as the
self-energy of each nucleon and an effective potential of the force between two
nucleons caused by the exchange of pions.
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