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Abstract

We recall the known explicit upper bounds for the residue at s = 1
of the Dedekind zeta function of a number field K. Then, we improve
upon these previously known upper bounds by taking into account the
behavior of the prime 2 in K. We finally give several examples showing
how such improvements yield better bounds on the absolute values of the
discriminants of CM-fields of a given relative class number. In particular,
we will obtain a 4000-fold improvement on our previous bound for the
absolute values of the discriminants of the non-normal sextic CM-fields
with relative class number one.
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Explicit upper bounds for residues

1 Introduction

The solutions to some class number one problems for CM-fields are sometimes
difficult and rely heavily on good upper bounds for residues at s = 1 of Dedekind
zeta functions of totally real number fields (e.g. see [Lou98, Section 5] for the
construction of a very short list of CM-fields containing all the normal CM-
fields of degree 24, of Galois group the special linear group over the finite field
with three elements SLo(F3), and of class number one. Then, see [Lou0Ola,
Theorem 12] for the solution to this class number one problem). At the moment,
one difficult class number problem which is not yet completely solved is the
determination of all the non-isomorphic non-normal sextic CM-fields with class
number one which do not contain neither an imaginary quadratic subfield nor
a real cyclic cubic subfield (however, see [BL, Corollary 17] for the conjectural
complete list of these non-isomorphic CM-fields). The solution to this class
number one problem will rely heavily on improvements on known upper bounds
for residues at s = 1-of Dedekind zeta functions of non-normal totally real
cubic number fields. The aim of this paper is to provide in Theorem 9 such
improvements and to apply them to the solution to this difficult class number
one problem (see Corollary 10). The main results arrived at in this paper are a
new proof of Theorem 2 and Theorems 5, 6, 9, 16 and 24.

Let dx and (x(s) denote the absolute value of the discriminant and the
Dedekind zeta function of a number field K of degree m > 1. The best general
upper bound for the residues kx := Res;=1(Cx(s)) at s = 1 of the Dedekind
zeta function of number fields K of a given degree m > 1 is:

Theorem 1 (See [Lou00, Theorem 1] and [Lou0lb, Theorem 1]). Let K be a
number field of degree m > 1. Then

o < elogdg \™*
K=\2(m-1) )

However, for some totally real number fields an improvement on this bound
is known (see [BL] and [Oka] for applications):

Theorem 2 (See [Lou0lb, Theorem 2]). Let K range over a family of totally
real number fields of a given degree m > 1 for which (x(s)/((s) is entire (which
holds true if K/Q is normal or if K is cubic). There exists Cp, (computable)
such that dg > Cp, implies

log™ ! dg 1 elogdx \™!
kK < <
CT 2t m -1 T f2r(m -~ 1) (2(7” - 1))

In fact, it is known that (x(s)/{(s) is entire (i) for any normal number field
K (see [MM, Chapter 2, Theorem 3}), and (ii) for any number field K for which
the Galois group of its normal closure is solvable (see [Uch], [vdW] and [MM,
Chapter 2, Corollary 4.2]), e.g. for any cubic or quartic number field.

For totally real cubic number fields we have a slightly better bound than the
one given in Theorem 2:

Theorem 3 Let K be a totally real cubic number field. Set A\ := 2 + 2y —
2log(4r) = ~1.90761---. Then,

kx < =(logdg + )2

Qo b=
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Explicit upper bounds for residues

Let us finally point out that in the case that K/Q is abelian we have an
even better bound (use [Raml, Corollary 1] and notice that if K is imaginary,
then m/2 of the m characters in the group of primitive Dirichlet characters
associated with K are odd):

Theorem 4 Let K be an abelzan number field of degree m > 1. Set A\, =0 if
K is real and Ay, = 7% Z — 1log6) if K is imaginary. Then,

56;:75+Am)m_3

Now, we showed in [Lou03] how taking into account the behavior of the
prime 2 in CM-fields can greatly improve upon the upper bounds on the root
numbers of the normal CM-fields with abelian maximal totally real subfields of
a given (relative) class number. The aim of this paper is, by taking into account

" the behavior of the prime 2, to improve upon these four previously known upper
bounds
kK < Cm(dmlogdk + Am) ™2

for the residues kx of Dedekind zeta functions of number fields K given in
Theorems 1, 2, 3 and 4 by the factor I1x(2)/II5(2):

K( ) r ym—1
Kx < Cm % (2) (dmlogdr + A,)™ .

Here, K is a number field of degree m > 1, p > 2 is a prime and for s > 0 we

have set
k(p,8) =[] (1 = (Nk/q(Px))™*) " <T{(p.5),
Pxlp

(where Pk runs over all the primes ideals of K above p) and Ik (p) := Ik (p,1).
In particular, Ik (p)/IIF(p) < 1. However, if 2 is inert in K, then the factor
Mk (2)/11Z(2) = 1/(2™ — 1) is small. We give in Corollaries 7 and 10 two ex-
amples showmg how useful such improvements are. See also [Lou05] for various
other applications.

We also refer the reader to [LK] for a recent paper dealing with upper bounds
on the degrees and absolute values of the discriminants of the CM-fields of class
number one, under the assumption of the generalized Riemann hypothesis. The
proof relies on a generalization of Odlyzko ([Odl]), Stark ([Sta]) and Bessassi’s
([Bes]) upper bounds for residues of Dedekind zeta functions of totally real num-
ber fields of large degrees, this generalization taking into account the behavior
of small primes. All these bounds are better than ours, but only for numbers
fields of large degrees and small root discriminants, whereas ours are developed
to deal with CM-fields of small degrees (see Corollary 10).

2 The abelian case

Theorem 5 (Compare with Theorem 4). Let K be an abelian number ﬁeld of
degree m > 1. Set A\, = 2log2 if K is real, and A, = m(8/ 2"'155%8/ ?i))) —4log? s
K is imaginary. Then,

Nk (2) (_logdx m
KSHW%(%m—D+MJ |
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Explicit upper bounds for residues

Proof. According to [Ram2, Corollary 2], for any primitive Dirichlet character
x of conductor f, > 1 it holds that ‘

- 22 101,50] < F00g 5 + 0,
where

5 —2log(3/2) if x is odd.

(See also [Lou04b] for shghtly worse bounds). Now, by letting x range over
the m — 1 non-trivial characters x # 1 of the group Xk of Dirichlet characters
associated with K, by noticing that

x(2)_ x(2),-
nk@= [ a-=5"=2 J] - 2)1

XE€Xk 1#x€Xk

{ 4log2 if  is even,

and kx = [[,cx, L(1,X), by using the fact that the geometric mean is lass than
or equal to the arithmetic mean, by using the-conductor-discriminant formula

Hl#xex,( fx, and by noticing that if K is imaginary, then /2 of the
chara.cters X € Xx are odd and m/2— 1 of the characters 1 # x € Xy are even,
we obtain the desired result. o

3 The general case

Theorem 6 (Compare with Theorem 1). Let K be a number field of degree
m > 2 and root discriminant pg = dl/m Set E(z) := (e* —1)/z = 1+ O(x)
forz — 01, Ag = (log4)E (1—&3‘;;) log4 + O(log™* px) and vy, = (m/(m -
1))™~1 € [2,€e). Then,

RK_<_(€/2)m 1 K( )

o 3] (0BPR M) @

Moreover, 0 < 8 < 1 and {k(B) =0 imply

Mk(2)

x < (1= 0/ 1 )

(log pxc + Ax)™ . (2)

Proof. We only prove (1), the proof of (2) being similar. According to [Lou01b,
Section 6.1] but using the bound

x(s) =[] Tx(ps) < Tk(2,5) [[ 13 (p,5) =
p>2 p=>3

(for s > 1), instead of the bound {x(s) < {™(s), we have

Mx(2) [ elogdg \™*
< e () 9o

Tk(2,s)
I13(2,s)

¢™(s)

where sg =1+ 2(m —1)/logdk € {1,6] and

o10) = T ) < M) = TR/TE(2.9
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Explicit upper bounds for residues

(for Ik (2,s) < Mg (2,1) = Hk(2) for s > 1). Now, logh(1l) =0 and

(b /h)(s) = T

< mlog?2

for s > 1. Hence,

(m—1)log4

< - =
logh(sk) < (sx — 1)mlog2 o8 prc

m-—1
alexc) < h(ore) < (expliomal))

and (1) follows. e

Corollary 7 (Compare with [LouOlb, Theorems 12 and 14] and [Lou03, Theo-
rem 9 and 22 ). Setc = 2(v/3—1)2 = 1.07---. Let N be a normal CM-field of de-
gree 2m > 2, relative class number hyy and root discriminant py = dl/ ™ > 650.
Assume that N contains no imaginary quadratic subfield (or that the Dedekind
zeta functions of the imaginary quadratic subfields of N have no real zero in the

range 1 — (c/logdn) < s < 1). Then,

he > c PN )
N = 2mume/?-1 \ re(log pn + (1084)E(T£S;;47))

Hence, hy > 1 for m 2 5 and py > 14607, or for m > 10 and py > 9150.
Moreover, hy, — oc as [N : Q] = 2m — oo for such normal CM-fields N of

root discriminants py > 3928.

Proof. Follow the proof of [Lou0lb, Theorems 12 and 14] and [Lou03, Theo-
rems 9 and 12], but now make use of Theorem 6 instead of [Lou01b, Theorem

1] and use the following lower bound with p = 2:

Iy (p) m I (2) m 1
nx(p§v/n (p)“(pz—)l) n2(2>=(p31) 11

Remark 8 It may be worth noticing that if instead of simply considering the
prime 2 we fiz a finite set S of primes, then (1) and (2) still hold true with
the log4 term in Ak being replaced (twice) by 2(21)65' 2EB) gnd the factor
g (2)/11F(2) being replaced by the product Hpes(ﬂx(p /Hm(p)). However,
choose S = {2,3}. Then the terms § and log4 (twice) in the lower bound
in Corollary 7 are changed into 3 = 5;"—_233?_2_—1 and log(12) = 2(le82 4 1&3)
(twice), and we have a better asymptotic lower bound for hy. However, this
better asymptotic lower bound yields only hyy > 1 for m > 5 and pn > 14496,
or for m > 10 and py > 9208, and hy — oo as [N : Q] = 2m — oo for such

normal CM-fields N of root discriminants py > 4072.

>
xn/k(Px) =
Px|(p) 1- Wx/qi'PKi

(here xn/x is the quadratic character associated with the quadratic extension
N/K, and Pk ranges over the primes ideals of K lying above the prime 2). o
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Explicit upper bounds for residues

4 The non-normal cubic case

It follows from [LouO4a, Corollary 2] that if F' is a real quadratic number field,
then we have an explicit upper bound of the type

Ir(2)

krp <
ZII?Q (2)

(logdr + Ar).

More precisely, set

Ao =2+~ —logm=143248---,

AL =2+~ —log(4w) = 0.04619 - - -,
A3 = 2+~ — log(m/4) = 2.81878 - - -.

Then,

(logdr + A2)/4 if (2) =7P%in F,
(logdp + X3)/6 if (2) =P in F.

Moreover, O. Ramaré proved in [Raml, Corollaries 1 and 3] and [Ram2] that
this result still holds true with the better following values: A} =0, A2 = 2log2 =
1.38629 - and A3 = 4log?2 = 2.77258 ---. In the same way, if F' is an abelian
cubic number field, then F is (totally) real, 2 is inert or splits completely in
F, and according to Theorems 4 and 5 we have the desired types of explicit
bounds:

(logdr + X\1)/2 if (2) =P1P;in F,
Kr <

oo < (logdr)?/16 if (2) = P1P,P3in F,
F =1 (logdr + 8log2)?/112 if (2) =P in F.

One of the main result of this paper is the following one which gives an explicit
upper bound of the type

HF(2) 2
& e
KR 8H3 (2) (logdp + /\p)

for non-normal totally real cubic number fields F:

Theorem 9 Set

A =2+2y~—2logm —4log2 =—1.90761---,
A2 =2+2y~—2logm —2log2 = —0.52132---,
A3 =2+2vy—2logm +4log2 =3.63756- - -,
A =2+2v-2logm =0.86497-- -,

As =2+2y—2logm+2logh =4.44849---.

Let F be a non-normal totally real cubic number field. Then,

(logdp + M)2/8  if (2) =P1PyPs in F,
(logdr + X2)%/16 if (2) =P1PZ in F,
kr << (logdp + )\3)2/24 if (2) =P1P2 in F,
(logdr + X4)?/32 if (2) =P3 in F,
(logdp + As)2/56 if (2) =P in F.
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Explicit upper bounds for residues

This result will follow from Theorem 3 (in the case that (2) = P;PP; in
F), Theorem 23 (in the cases that (2) = P;PZ or (2) = P3 in F) and Theorem
29 (in the cases that (2) = PyP; or (2) = P in F) which are special cases of
more general results (see Theorem 2, and Theorems 16 and 24 below). However,
we first give an important consequence of these new bounds, that is a 4000-fold
improvement on our previous bound on the absolute values of the discriminants
of the non-normal sextic CM-fields of class number one:

Corollary 10 Let K be a non-normal sextic CM-field such that K contains no
imaginary quadratic subfield and the totally real cubic subfield F of K is not
normal. Assume that dg > 4 -10%°, which implies px = d}(/s > 2683. Then,

il
Ck(logdx + Ak)3’

hg >

3)

Hence, hy > 1 for dg > Bk or for dp > Bp := /Bk/3, with Ck, Ak, Bk
and Br as follows:

splitting of 2 in I frequency Ck AK By Bp
(2) = P1P.Ps 2/21 149 -2.90 50-10°* 4.1-107
(2) = P1P2 6/21 100 —-1.06 11-10** 2.0.10"
(2) = PP, 6/21 8.27 449 17-10* 24.1012
@2 =p 3/21 662 079 22.-10%* 8.6.10'!
2 =P 4/21 496 557 18-10%® 7.8.10"

Remark 11 This greatly improves upon the lower bound (obtained in [BL, The-
orem 12])

1/4
o, _dg
K= 68log® dg’
which implies hy > 1 for dg > 2 -10%° or dp > 3. 10'*. Notice that the

number N(X) of non-isomorphic non-normal totally real cubic number fields F
of discriminants dp < X s asymptotic to X/(12¢(3)) (H. Davenport and H.
Heilbronn). Hence, our 73-fold improvement on Br would considerably allevi-
ate the amount of numerical computation required to rigorously solve the class
number one problem for the non-normal CM-sextic fields. In this respect, let us
mention that all the non-isomorphic non-normal totally real cubic number fields

F of discriminants dp < 10! have been determined in [Bel].

Proof. Let N denote the normal closure of K. Then [N : Q] = 48, d§; divides
dn and dy divides d% (see [BL, Lemmas 10 and 11]). Set ¢ := 2(\/§\-— 12 =
1.07---. The Dedekind zeta function {n(s) of a number field N has at most
two real zeros in the range 1 — (¢/logdny) < 8 < 1 (see [LLO, Lemmas 15]).
Since any complex zero of (x(s)/(r(s) is at least a triple zero of {n(s) (see
[BL, Lemma 11]), it follows that {x(s)/{r(s) has no real zero in the range
1—(2/logdx) < 1— (c/8logdx) < 1— (¢/logdy) < s < 1. Finally, recall
from [Lou03, Theorem 1(4)] that if px > 2683, 1 — (2/logdx) < 8 < 1 and
¢k (B) <0, then
ki 2 (1-B)dE 1k (2).

Now, there are two cases to consider.
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Explicit upper bounds for residues

1. First, assume that (r(s) has a real zero 8 in {1 — (c/ logdy),1). Then,
Cx(B) =0 and

ki > (1— B)dL ™V Ik (2) 2 (1 - B)e/ Tk (2),
1-08 1 1-4
48 768

or < = P10g?dp < =L log ) ogdi <

(by [Lou0lb, (2) and (7)]), and

he = Qrwk L_iﬁﬁ_]_{_ > 19211 (2)\/dk /dF (4)
K~ "(27)3 V dr kr = m3ev/18(logdr)?logdn

(where wy > 2 is the number of complex roots of unity contained in K and

Qx € {1,2} is the Hasse unit index of K).

2. Second, assume that (r(s) has no real zero 8 in [1 — (c/logdn), 1). Then,

Ck(s) = Cr(s)(Cx(s)/¢r(s)) has no real zero 8 in [1 — (c/logdn),1), hence
Cx(1 = (¢/logdn)) < 0, which yields

c
ec/18 logd

(log dr)* log dn

KK 2 Tk (2).
Using the five bounds in Theorem 9 which we write kr < §%E(log dr + Ap)?
with ¢p € {1,2,3,4, 7}, we obtain

b — Qrwk /Ei_}'ii}g > QCCFHK(2)\/dK/dF (5)
L dr KF

(27)3 = m3ec/16(logdp + Ar)2logdy

Since (4) is better than (5), this latter lower bound (5) always holds true.
Using dy < (dk/dr)* (see [BL, proof of Lemma 11]), dx/dr 2 V3dk (see
[BL, Proposition 1]) and consequently dr < /dg /3, we obtain (logdr +
Ar)2logdy < 24(logdp+)\p)2 log(dk /dr) < 24(10g(\/d}{/3)+)\p)2 log(+/3dKk)
= 3(log(dk/3) + 2Ar)? log(3dk) < 3(logdk + (4AF —log 3)/3)?, from which (3)
follows with

33ec/16 dp —log3
d \g = ———=2%,
2 3% coplig(2) 0 K 3

Finally, we notice that
1 1 1
nx(2) = [] T = > [ ————=1r22)
Prl(2) 1= Nr/q(Px) 1 — Nx_j_("i,:(fi")) Prl(2) 1- Nr7q(Pk)?

(where xx/r is the quadratic character associated with the quadratic extension
K/F, and Pp ranges over the primes ideals of F lying above the prime 2). Using
the following Table:

Cg =

splittingof 2in F cr Mx(2) 2p(2,2) = Ak = Ckx =
(2) = P1P2Ps 1 64/27 —2.90969 .- 14.87387---
(2) = PP} 2 16/9 —1.06130---  9.91591.--
(2) = P1P» 3 64/45 4.48387---  8.26326---
(2) = P? 4 4/3 0.78709---  6.61061 -
=P 7 64/63 5.56511---  4.95795- -

we obtain the desired bounds on Bg and Bp. e
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5 Proofs of Theorems 2 and 3

In this section, we give a clearer proof of Theorem 2 than the one given in
[Lou01b, Proof of Theorem 2]. We will then adapt this clearer proof to prove
Theorems 16 and 24 below. To begin with, we set some notation: K is a totally
real number field of degree m > 1, and we assume that (x;q(s) := (x(s)/((s) is
entire. We set Ag/q := \/dx/m™~! and Fg/q(s) := }(/QFm‘l(s/2)CK/Q('s).
Under our assumption, Fg/q(s) is entire and satisfies the functional equation

FK/Q(I - S) = FK/Q(S). Let_

1 c+100

Skiq(z) : Fkiq(s)z™*ds (c>1andz>0) (6)

2 ¢c—100

denote the inverse Mellin transform of Fg,q(s). Since Fk;q(s) is entire, it
follows that Sk/q(x) satisfies the functional equation

1 1, '
- e 7
Sk/q(z) xSK/Q(‘x) (7)
(shift the vertical line of integration R(s) = ¢ > 1 in (6) leftwards to the
vertical line of integration R(s) = 1 — ¢ < 0, then use the functional equation

Fr/q(1 — 8) = Fg/q(s) to come back to the vertical line of integration R(s) =
.¢>1). For R(s) > 1,

(o]
dz
Fiiq(s) = /(; Sx/q(w)xa";

is the Mellin transform of Sk/q(z). Using (7), we obtain

* o4z
Frq(s) = /1 Sk/q(z)(z® +z* )? - (8)
on the whole complex plane.
Now, set .
Fp-1(8) = (x~*/*T(s/2)¢()™ (9)
Apoq = n—(m=1)/2 apnd
d:= vV d}\' = AK/Q/Am_]_. (10)
Then, :
e 1
Vagrk = drk = Fyjq(l) = / Sx/a@)(1+ 2)ds. (11)
1 .
Let )
) 1 ct+i00
Sm-1(z) == v Fp—1(s)z™%ds (c>1and z > 0) (12)
c~1io00

denote the inverse Mellin transform of F,,_;(s). Here, Fy,_1(s) has two poles,
at s =1 and s = 0, the functional equation F,_1(1 — 8) = Fp,~1(s) yields

Res;=0(Frm-1(s)z™° =fReSa=1(Fm—1(3)$s_l)

and ) 1
Sm-1(x) = Resye1 {Frn_1(8)(z™* — 2" 1)} + ES’"—I(E) (13)
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(shift the vertical line of integration R(s) = ¢ > 1 in (12) leftwards to the
vertical line of integration R(s) = 1 — ¢ < 0, notice that you pick up residues at
s = 1 and s = 0, then use the functional equation Fr,_1(1 — s) = F,,_;(s) to
come back to the vertical line of integration R(s) = ¢ > 1). Finally, we set

Cc+4100
Hp_1(z) = — I'™=1(s/2)z7%ds (c>1and z > 0).
c~100
Notice that Hy,~1(z) > 0 and Sp—1(z) > 0 for z > 0 (see [Lou00, Proof of
Theorem 2] ). This observation is of paramount importance for obtaining our
bounds, e.g. for obtaining (14), (18), (20) and (27) below.

5.1 An upper bound on kg

Now, write
Cr/q(8) = (k(8)/¢(s) = Y ax/q(n)n™°
n2>1
and
= Z am-1(n)n"%.

n>1

Then, |ag/q(n)| < am-1(n) for all n > 1 (see [Lou01lb, Lemma 26] or use (17)
below). Since

Sk/q(@) = _ ak/q(n)Hm_1(nz/Ak/q)

n>1
and
0< Sm-1(@) = _ am-1(n) Hm_1(nx/Am_1),
n>1
we obtain
1Sk/Q@)| < Sm-1(z/d), (14)

by (10). Using (11) and (14), we obtain:

dkk < /1 ” Sm1(z/d)(1+ -j;)dz. (15)

Now, we compute the integral in (15) to obtain the following key Proposition:

Proposition 12 For a and D > 0 real, it holds that

DS Dl—s
Ress:l {Fm~1(s)(s+a -1 + 5 — O!)}

/w Sm-1(z/D)r~%*dz
1

o0
—-D'-e / Sm_1(z)z* 1dz
D

D D~
Rﬁss=1 {Fm—l(s)(s+a_ 1 + 8§ — a)} .

! Notice the misprints in [Lou00, page 273, line 1] and [Lou01b, Theorem 20] where one
should read

IN

(M1 > M2)(z) =/ Ml(z/t)bfz(t)%.
0
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Proof.

o0 oo
/ Sm-1(z/D)z~%*dx = D@ Sm-1(z)z™%dz
1 1/D

oo 1
- Di-e / Sm_1(z)z=%dz + D@ / ' Smi(z)eodz
1 1/D
* P11
1
= Dl“"/ Sm_.l(a:)(:c“"+w°“1)dm—D1"°/ Sm_l(x)a:"“lda:
1 D

—DY@ /D Ress=1{Fm—_1(s)(z™° —z* H}z>¥dz (by (13))
1

- pi-e / Spi(z)(@=® + 2~ 1)dg — DI / S_1(z)2*Lda
1 D

D
—Dl‘“Res.g:l{F _1(3)/ (m“’—w’“l)z"‘_ldx}
1

(compute these residues as contour integrals along a circle

of center 1 and of small radius, and use Fubini’s theorem)

1

= D= (/loo Sm-1(z)(@™* +2°1)dz - R358=1{F’"—1(3)( : mpr +a- 1)})
Dl-s

l1-a a—1
s——a+s+a—1)} b /S-z)x dz.

The desired result now follows from Lemma 13 below. e

+Rese=1{ P (5)(

Lemma 13 For a real eand D > 0, it holds that

/100 Sm—1(z)(z™* + z°"')dz = Res,=1 {Fm_1(s)(s _1 i - — 1)}-

s+«

Proof. Let Ip,,_1(c) denote this left hand side integral. By (12) with c large
enough (namely with ¢ > 1, ¢ > 1 — a and ¢ > —a) and by Fubini’s theorem,
we have

1 ferie ® —s-a ~s+a-1
In_1(a) = i) Fm_l(s)(/l (z +z )dw)ds
] [fetico .
= 2 o Gm-1,a(s)ds,
where
Cm-10(8) = Frno1(8)(—— 4+ ——).

s—a 8+a-1
The functional equation Grm—1,a(1 — 8) = —Gp-1,a(s) yields

1 c+100
Im_.l(a) = 2_71'1 oo Gm_l,a(s)ds
1-c+1ic0
= Re84m1(Grmet,als)) + Resymo(Grmor,a(9)) + 55 / Gr1.a(s)ds
-C—“lw

= 2Ress=1(Gm-1,a(8)) = Im-1(c),
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from which the desired result follows. e

Hence, using (15) and Proposition 12 with D = d and o = 0, and with
D = d and o = 1, we have proved:

Proposition 14 Let K be a totally real number field of degree m > 1, and
assume that (i (s)/((s) is entire. Set d = +/dx. Then, kKx < pm-1(d), where

pm-1(d) = Respm { (1=*/2D(s/2)¢(6)) ™5 + —=) (@ +d7)}

5.2 Proof of Theorem 2
Lemma 15 It holds that

w0 (s/2)G(s) =

with ap = (log(4m) — v)/2 =0.97690 - - - and

~ao+ai(s~1)+0((s — 1))

a; = —y(1) + 72/16 — 4%/2 + (log(4r) — 7)%/8 = 1.00024 - - -,
where
logk
~(1) mm(z 1 og?m = —0.072815 - -

Let us now complete the proof of Theorem 2. It is clear that

Ress=1{(w-8/2r(s/2)g(s))’"‘1(§ + s—i—l-)d"l} = Pr-1(logd)

for some polynomial P,,,_;(z) of degree m — 1. Then,

d
= Om(

Res,s {(r~*20(s/2)C(6) "G + —=7)d™*} = 7Pmos(-logd)
m——ld
s

Since by [Ram1, Corollary 1] Theorem 2 holds true for m = 2, we may assume
that m > 3. Using Lemma 15, we obtain

1
(m —1)!

log

m-14__ Em m~—2 m—3
log™ ™" d CED)] log™ " “d + Om(log™™>d) (16)

with ¢y, = (m — 1)ag — 1 > 0 for m > 3. The desired result follows.

Pm-1 (d) =

5.3 Proof of Theorem 3
We have just proved that

1 m-—1
< K - —_ m—3
kK < pm-1(d) < CE) (logd — cm) + O (log™ ™ d).

In the special case that m = 3, we want to prove that this error term O,, (logm‘3 d)
is less than or equal to zero. We have ¢; = 2a9—1 =log(4n)—y—1=-);/2 =
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0.95380 - - - and, setting ¢y = 3+2a%—4a; = 3+272+4y(1)—n2/4 = 0.90769 - - -,
we obtain (and this result can be checked using Maple)

1 1
p2(d) = 5((10811 — ) — ) + -2-3((logd +c2)? - c3),

from which it follows that pa(d) < (logd — ¢g)2/2 for (d + 1)c} > (logd + ¢3)?,
hence for d = /dx > /148 (notice that 148 is the least discriminant of a
non-normal totally real cubic number field).

6 First bound for xkx taking into account the be-
havior of the prime 2, when (x(s)/((s) is entire

The proof of Theorem 2 stems from the bound |ax/q(n)| < @m-1(n), which
yields (14). To improve upon Theorem 2 we will give better bounds on the
ax/q(n)’s (see Lemma 18 below) in order to obtain in (20) a better bound than
(14). This will enable us to prove the following bound:

Theorem 16 (Compare with Theorem 2). Let K range over a family of totally
real number fields of a given degree m > 3 for which (i (s)/¢(s) is entire (which
holds true if K/Q is normal or if K is cubic). Then,

.m-—3

with
Tyt ifdie{l, - ,1} such that NK/Q(Pi) =2,
I=V1+1 otherwise,
where (2) =P - Pl in K, and A,y = 2+ (m—1)(y—log7) — 2(g— 1) log 2.

Remark 17 1. Notice that 1 < g < m. Moreover, if m > 3 and if 2 does

not split completely in K, then 1 < g < m and Theorem 16 yields a better

upper bound than Theorem 2. Indeed, if none of the N k/Q(Pi) is equal to
2, then 2™ = Ng/q(2) > 4! implies g <1+1<m/2+1< m form > 2,
and g <m for m > 3.

2. We have Ik (2)/TI{(2) < 1/2™79, and 1/2™9 = Mg (2)/1G(2) if and
only if (2) =P -+ P/ in K with N(P,) = --- = N(P,) = 2. For ezam-
ple, let K be a non-normal totally real number field of prime degree p > 3
whose normal closure is a real dihedral number field of degree 2p. Then,
Cx(8)/¢(s) is entire. Assume that 2 is ramified in K. Then, (2) = PP or
(2) = PyPE- P, 5, with N(P) = N(P1) = - = N(Plpinyys) = 2
(see (Mar, Théoréme II1.2]).

6.1 Bound on Sk/q(z) taking into account the behavior of
the prime 2

Lemma 18 (Compare with [Lou0lb, Lemma 26]). Let K be a number field of
degree m > 1, let p > 2 be a prime, let (p) = P;*--- P be the prime ideal
factorization in K of the principal ideal (p). Set

g= l if H e {l,---,1} such that Ng/q(Pi) =p,
{+1 otherwise.
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Hence 1 < g < m. Define the ax/q(p*) and an(p*) by means of

HK (p, 3) 1- : 1-N
—K\PS) Pi)”
Tia(p,s) (1-p~ )E( k/Q(Pi) I;)ax/q p*)p*
and
(P, ) Za’ﬂ -—ks.
k>0

Then, lak/Q(p*)| < ag—1(p*), which implies lak/Q(P*)| < am-1(p*) and

lax/Q(n)| € am-1(n)  (n21). (17)
Finally, ’
) B R S e (i T
k>0 k=0

is a finite Dirichlet series.

Proof. Set l
Ek = {(mh e ,I[); Zf’ix‘i = k}1
=1
where Ng/q(P;) = pfi,

’ i
Fi={(z1, ", m); Y@ =k}
i=1

and define the ax (p*) by means of Il (p, 8) = k>0 ax(p*)p~*e. Then, #F} =

(- 1"“") = a;(p¥). Since (x1,---,z1) € Ex — (fla:l, -+, fiz;) € Fy is injective,
we have ax (p*) = #Ei < #F). Moreover, aK/Q(p ) = ak(p*) — ax (P*71).

1. First, assume that there exists i € {1,---,!} such that Ng/q(P;) = p. We
may assume that Nx,;q(P1) =p. Then, g=1, fi =1 and

ak/Q(p*) = ax(p*)-ax(®@*)
i
#{(1, -, m); 21+ Y fizi =k}

i=2

]
~#{(@1, @) T+ Y fizi=k -1}

=2
k l
= Y #{(@2,m); Y fiwi =k — 5}
j=0 =2
’ k—1 i
—z#{(z%"'ﬁ“); Zfiwi=k—1"j}
=0 i=2
l
= #{(@s,--- @) Y fimi=k}

i=2

IN

=2

#{(z2, -, 2); Zwa—k} < —i+k) = a1-1(pF) = ag-1(p).
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2. Otherwise, g — 1 =1[,1 < m —1 and using

0 < ax(p") = #Bk < #Fi = (l - 24”“)

and

- l-14+k-1 l—-14+k
0 < ag(p* 1)=#Ek—1£#Fk—1=( k-1 )S( k ),

we obtain

oxra¥)] = lare ) — a7 ) = i) = apata¥)

This proves the first point of this Lemma. Finally, (17) follows from the fact
that n — ag,q(n) and n ~ ap,_1(n) are multiplicative. o

Lemma 19 Let the notation be as in Lemma 18 and, in accordance with Lemma
18, assume that |ax/q(2¥)| < b(2%) where

—‘m— m— 2k C2k
( 1)(2 )Z 2ks = 2.9) IZ 21:3)‘"2—%123—)

k>0 k20 k=0

is a finite Dirichlet series. Then,

1Sk/Q(@)] < D c(2%)Sm-1(2¥z/d). (18)
k=0
Proof. We have
k(8)/¢(s) = agjq(n)n~* = an s) Y- akqn/)n~*
n21 n/>1

and

¢"HS) =Y o1 ()T =TIZ7N(2,8) Y am-a(n)n'7

n>1 n/21
n’ odd

Now, define the a,,—1(n) by means of

(Z 2 gm0 (2, 9¢m1(6)

(X)) (3 am-stery=)

k>0 k>0 n'21
n’ odd
~ -8
= E Gm—1(n)n"%.
n>1

If n = 2%n’ with n’ 6dd, then

lak/Q(m)| = lak/q(2)llak/Q(n)| < lak/q(2")lam-1(n') < b(2*)am—1(n')

and
lax/Q(n)| < @m-1(n). (19)
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Hence, we obtain

ISk/q(@)l = 1> ak/q(n)Hm-1(nz/Ak/q)|
n>1
< 3 am-1(n)Hm1(na/dAm-1) (use (19) and (10))
n21
1 c+i0o L
= 5= ™ (3/2)(2 dm_l(n)(nm/dAm_l)"“’)ds
c—1i00 a>1
¢+i00 ~
= il (E Gmotl) e\ Tm s/2)(/d) s
1 c+1i00 e b(Qk) .
= %./c_ioo HQ( 1)(2,8)(1‘:220 W)Fm-—l(s)(x/d) ds

c+ico , T k
- L (Zgé—z,we))Fm_l(s)(:r/d)"ds

2ms c—io kg
= Zc(2k)sm_1(2kl’/d) (by (12)))
k=0

as desired. o

6.2 An upper bound on kg
By Lemmas 18 and 19, we obtain (compare with (14)):

m-g

Sca@i < (0" 9 Smos(2a/a). (20)
k=0

Using (11) and (20), we obtain: (compare with (15)):

m-—g 0o
drx < k2=0(—1)’°<m’:g> /1 Sm_1(2%z/d)(1 + i-)dz. (21)

Proposition 20 (Compare with Proposition 14). Let K be a totally real num-
ber field of degree m > 1. Assume that (x(s)/((s) is entire. Set d = /dx
and let F,_1(s) be as in (9). Let g be as in Theorem 16. Then, kg <
Pm~1,4(d) — Rm—1,4(d), where

Pm—1,g (d)

1 1
= Ress=1 {Fm—l(s)(; +

-1

(- 27ymeat + (1~ 2-y0a) )

and
= L mz—g k(m=—g\ [® d
Rm—l,g(d) =3 2 (-1) ( k ) o/ Sm,l(x)(-%- + 1)dz.

Proof. Use (21) and Proposition 12 with D = d/2¥ and o = 0, and with
D=d/2*anda=1.e
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6.3 Proof of Theorem 16

Using Lemma 15 and Proposition 20, we obtain (compare with (16)):

1 log™'d _ cm(g) log™2d
2m-9 (m —1)! 2m=9 (m —2)!

Pm—-1,4(d) = + Om(logm‘-3 d) (22)

with ey (g9) = =1+ (m — 1)ag — (m — g) log 2. Hence, Theorem 16 follows from
the following bound (notice that Rp,—1 m,(d) > 0):

Proposition 21 For 1< g<m—1, it holds that

m—~g. m—1

4 2/(m-1)
!Rm—l,g(d)l < (m - DW exp(—qr(zm g) /(m—1 )

Proof. Noticing that

/ Sma(®) (55 +1)dz<2/ Sm_i(@)dz (0<k<m—g)
d/2k d/2m—¢
and

E (0)-E ()

= = M—9= R
2 U )= 2
. k even k odd

we obtain

2m-g
|Bm-1,4(d)| <

/ Sm.—l (x)dx-
df2m=s

The desired bound follows from Lemma 22 below. e

Lemma 22 Set
k

dk(n) = #{(n1, -, nk); ni > 1 and n =[] ni}.

i=1

For A > 0 it holds that

¢e) = '"A”".

| suore < = b3 Bl ot
A

n>1
Proof. Since ¢¥(s) = Y >y dk(n)n~*, we have (by (9) and (12))

c+ico

=3 di n)——— / (n*/2ng)~*T* (s/2)ds
n>1 c—io0
Usin,
2% J o ioo s-1¢ 0 fo<t<l
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and Fubini’s theorem we obtain

/ ” (—1— /c CHw(wk/?m)-srk(s/z)ds) dz

A 2m —i00

A [ ks gy-apk ds
—2—7}—1_ i (11' nA) I} (8/2)8—1

= A// __l_/c'mo tl"'tk)s ds e—-(t1+...+tk)dt1"'dtk
211 Jeioo \ ™A ) s-1 t - tx
= ——1—-/.../ e—(t1+--'+tk)dt1“'dtk
Wk/zn‘ ty---ti _>_1r’°n2A2 - \/EI—_"_tk

< _1___// et te)gy, L. dty
wkn2A ty -t >wkn2 A2

k * P k —n(nA)?/*
1rkn2A -n'(nA)z/" eTidt = 1r’°n2Ae

<

(if the product t - - -ty is greater than or equal to 7¥n?A42, then at least one of
the t;’s is greater than or equal to m(nA)%/*). e

6.4 Proof of the first part of Theorem 9

Theorem 23 Let K be a totally real cubic number field. Set Ag = 2 + 2y —
2logm —2log2 = —0.52132- .- and Ay =2 + 2y — 2logm = 0.86497---. Then,

o < (logdx + X2)?/16 if (2) = P1P2, P1Py or P in K,
K= (logdk + 24)2/32 if (2)=P3 in K.

Proof. If (2) = P1P2, PiP,, P or P3, then g = 2, 2, 2 or 1, respectively.
Using Lemma 15, we obtain (and these results can be checked using Maple)
log? 2

. d

(with x5 := (3 + 4log® 2 + 272 + 47(1) — 72/4)/8 = 0.35368 - - -) and

1
p21(d) = g(logd + 1+~ logm)* ~k +

1
p22(d) = Z(logd + 1+ — log(2m))?
log 2
—' + %%—-(ZIOgd +3log2 +2logm — 2~ 27)
(with &’ := (3 + 2log?2 + 292 + 4y(1) — n2/4)/4 = 0.46714--.). The desired

results follow from Proposition 21. e

7 Second bound for kx taking into account the
behavior of the prime 2, when (x(s)/{(s) is en-
tire

Let (2) = P§* - - - P;* be the prime ideal factorization in K of the principal ideal
(2). We noticed in Remark 17 that the bound on kg obtained in Theorem 16
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is of the desired type

o < HE(2) log™ ' dk
K= Tg2) 2n—T(m - 1)!

+ Om(l‘:)gm“2 dK)

only if NK/Q(Pl) =eee= NK/Q(Pl) = 2. The aim of this section is to obtain in
Theorem 24 below such a desired bound. However, Remark 30 below will show
that from a practical point of view this better desired asymptotic upper bound
for kx is sometimes poorer than the one obtained in Theorem 16. We set

II (2 8 ' ! —Ics 23
Ox(2,8) __1_H kad—ECk? (23)
2° k=1 k=0
where Ng/q(Px) = 2/ and r = —1+ ¥4 _; fi- We also set
fr(s) =Y lexl27™. (24)
k=0

Theorem 24 (Compare with Theorems 2 and 16). Let K range over a family
of totally real number fields of a given degree m > 3 for which (x(s)/{(s) is
entire (which holds true if K/Q is normal or if K is cubic). Then,

< Nk (2) (logdy + Ag)™!

m—3
K =Tg@e) 2vYm- 1) T Om(log™ " dx),

where Ag =2+ (m — 1)(y — logn) + 2(g —1)log2 + 2log fx(0).

Remark 25 In the case that (2) = Pt with Ng/q(P1) =+ = NK/Q(pz) =
2, wehaveg=1,1/2""9 = HK(2)/H”‘(2) (see Remark 17) and fK(O) =21

291, Hence, A\, 9 < Ak and the bound in Theorem 16 is better} than the one
given in Theorem 24.

Another way to take into account the behavior of the prime 2 is to obtain
bounds for the value at s = 1 of the Dirichlet series

< I L,
Ex/als) = E‘j—%;—%<<x<s)/<(s>>=gggg,j§ 3> axamn™.

n odd

We set 3 }
Fiq(8) i= Ak ql'™ 1(8/2)Ck/q(s)
and . 1 c+io0
Sx/a(@) = 5 / . Fraleeras (> 1amdz>0)
Then,

- o _ dzx
Fgiq(s) = /0 Sx/q(@)e’—,

for R(s) > 1. Since FK/Q(S) does not satisfy any simple functional equation,
neither does Sy /q(z), and we cannot readily obtain a simple integral represen-

‘tation for Fi /Q(s) valid on the whole complex plane, as in (8), or even valid at
the point of interest s = 1.
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7.1 The functional equation satisfied by S’K/Q(x)
Lemma 26 It holds that

Sk/q(@) chsx,q(z z) (z>0).

Hence, by (7), it holds that

-—SK/Q 1 ZCkSK/Q(m/2k) (z > 0).

Proof. We have

B 1 ctico
Skiqlz) = prell Fx/q(s)z™®ds (¢c>1and z>0)
-1
1 c+io0
= —— chZ k’ )Fk/q(s)z ™z~ *ds

271 Jeoioo pord

c+1i00
- Yo / Fx/q(s)(2"2)~ds,

k=0 e-ioo

and the desired result follows, by (6). e

7.2 Integral representation of F‘K/Q(s)

Now, by Lemma 26, for any a > 0 (to be suitably chosen later on (see (30)
below), we have '

- ® . dx
Fia) = [ Swa@s'
*1 1 dz

® = de
- [ TS T+ [ ke T

1/a T z
[ o] T
= / S'K/Q(w)m’d—w +ch2"’°/ SK/Q(z/2’°)ml‘3£i£,
a z k=0 1/0 z

and this representation is now valid on the whole complex plane, by Lemma, 26
and since |Sk/q(z)| < Sm-1(z/d), by (14). In particular,

. o0 T _ oo d
FK/Q(].) =_/ SK/Q(m)da: +ch2 k ‘/1‘/ SK/Q(x/zk)-f-. (25)
a . k=0 a

7.3 An upper bound on kg
Set

{(s) = 1"—4(8) Zn’

n2l
n odd
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Froi(s) = (n~°/2I(s/2){(s))™*

1 m—1 = k m-—1 —ks
= (=)™ Fas(s) = Y (1" )2 R Fnos(s).

k=0

Then,
B 1 [etio | . m-1 m—1
Sm—1(z) == | Fmoa(s)r7ds= Z(—l)"< , )Sm_1(2’°x). (26)

Cc—100 k=0

Since

S'K/Q‘(m) = Z ax/Q(n)Hm-1(nz/AK/Q),

n>1
n odd

using (17) and (10), we obtain

18k/Q@) < Y am-1(n)Hp-1(n2/dAm-1) = Sm-r(z/d).  (27)

Now, (25) yields
Fr/qW < [ S m/d)dx+z‘c’°‘ lSK/Q(m/Zk)I— (28)

Using (26) and (20) and noticing that —gﬁdnx Fi/q(1), we finally obtain
(Compare with 15 and 21):

q(2) (S m=1 [T
12 < Z(—nk( : ) / Sm-1(2¥az/d)dz
(29)

T m-—g _ oc T
XS ("7 [ st

k=0 i=0

Proposition 27 (Compare with Propositions 14 and 20). Let K be a totally
real number field of degree m > 1. Assume that (x(s)/{(s) is entire. Set

= Vdk, let Fm-1(s), fx(s) and the cy’s be as in (9), (24) and (23). Then,
for any a > 0 it holds that

Nk (2)

K < Hq(z) ( k(d) — RK(d)) om-— 10k (2) (- (d) - ﬁ;{(d)),

ng @)

where px(d) = py x(d) + P2,k (d) with

1-3(1 - 2-—3)m—1 a’fK(l - 3)(1 - 2—s)m-g o—
s~-1 + s )d 1} '

p1,k (d) = Resy=y {Fm—l(s)(a

as(l - 2s~1)m-—1 + al“"fx(s)(l - 2s—l)m.-g) d"’}

s s—1

P2,k (d) = Resg=; {Fm_1(s) (
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and

Re) = & (M) [ smaE

/2%a
1 m—g - [>*]
+3 ‘%_‘ (-1 (mz g) / Sm_1(z)da.
k=0 < 1=0 2k-tad
Proof. Use (29) and Proposition 12 with D = d/2*a and a = 0, and with

D=2gdanda=1. e

Proposition 28 (Compare with Proposition 21). Set o* = min(1/a,2a). As-
sume that 2 < g < m (notice that if g = 1 then (2) = P™ in K and Theorem
16 already provides us with the desired bound for kg ). Then,

- mez ™2 —1)fk(1)) (m—1)a™1 a’d y2/(m-1)
RK(d)2~<2 2a+( 2m_2 ) Im=1g* g2 e"p(_”(‘ﬁ'—]‘) " )

Proof. We have
< (=1* fm —1\ 2ka [
Ry (d) Y. oF v )T, Sm-1(z)dz

k=0 /2m—ta
k odd

v

o0

1N Jog| =2 l(m——2)/ .
+_§:__._§ -1 Sm—1(x)dz (since g = 2
dk_—.Q 2k =0 ( ) l ad/zm—-Z " 1( ) ( g )
1 odd

i (37 - V(1) [*
= - Sm_1(z)dz —
d /d/2m~1a 1(:1:) “ 2m-1q ad/2m—2

2m=2q (3™ 2 - 1)fk(1) ee
> - .
- ( a 2m=id ) v/a‘d/2m'1 Sm-1(2)dz

Sm..l((L')dfl)

using Lemma 22, we obtain the desired bound. e

7.4 Proof of Theorem 24

To begin with, we notice that for a given degree m > 1, the fx(s) run over a
finite family of functions. Hence, using Lemma 15, we obtain (compare with
(16) and (22)):

: m-1 d

log
7

74C)) A1k (d) +O(

_ log™'d
= m2m_1(m — 1)‘ + Cm(a)

(logd + cm(a))™ !
271 (m — 1)]

where cm(a) = (m — 1)(y — logm)/2 — loga + 29-afx(0). To have cp(a) 8
small as possible, we choose

m—2 d

IOg m—3
Ftmozy T OnleE" )

+ Om(log™ % d),

a=1/(2"1fx(0)). (30)

We obtain ¢,,(a) =1+ (m — 1)(y—logn)/2 + (g — 1) log 2 + log(fk (0)). Using
Propositions 27 and 28, the proof of Theorem 24 is complete.
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7.5 Proof of the second part of Theorem 9

We now prove:

Theorem 29 Let K be a totally real cubic number field. Set Az = 2 + 2y —
2logm+ 4log2 = 3.63756--- and A\s =2+ 2y — 2logm + 2log6 = 4.44849 - - ..
Then,
Kk < { (logdx + A3)2/24 if (2)=P1P2 in K,
- (logdK+/\5)2/56 Zf(2)=P in K.

Proof. In the present situation, we have m = 3, ¢ = 2, r = 2 and c3(a) =
1+ v -logm+log2 + log(fx(0)).

1. If(2) = P1P; in K, then [Iq(2, s)/Tk (2,5) = 1-272% and fx(s) =1+272,
Hence, fx(0) =2, a =1/4 and

pr(d) = %(logd+ 1+ v —logn +2log2)?

-k + los—iz-(fﬂogd-i- 10log 7 — log 2 — 107),

with & := (22 +45(1) + 3 +4log? 2 —7?/4+8log2)/8 = 0.80660 - - - (this result
can easily be checked using Maple). Since Rx (d) > —%;;e"'d/ 8, by Proposition
28, we obtain px (d) — Rk (d) < (logd + 1+ — log 7 + 2log2)?/8 for d > 2.

2. If (2) = P in K, then [1Q(2, s)/Tx(2,s) = 1 +27° + 272 = fx(s). Hence,
fk(0)=3,a=1/6 and

1
8
_nl +

(logd + 1+~ — log 7 + log 6)?
7log 2
4d
with &' := (272 + 4v(1) + 3 + 4log®2 — 7%/4 + 410g6)/8 = 1.002934- -~ (this
result can easily be checked using Maple). Since Rx(d) > —2Z8;e~7¢/12, by

Proposition 28, jx(d) — Ry (d) < (logd + 1+~ — log 7 + log 6)2/8 for d > 2.5.
The proof is complete. e

Pr(d) =

1
(logd —logm + v — Iglog2+log3),

Remark 30 These bounds are better than the first one given in Theorem 28 for
di > exp((As — v/3/2X2)/(1/3/2 — 1)), hence for dx > 2108, if (2) = PPy,
and for dg > exp((As — \/7/2X2)/(1/7/2~ 1)), hence for dx > 507, if (2) = P.

8 The case of Dirichlet L-functions

8.1 A bound on |L(1, x)|

Let L{s,x) = Y_,,5; X(n)n™° be the Dirichlet series associated with a primitive
even Dirichlet character x of conductor f > 1. It is known that

A(s, x) == AZT'(s/2)L(3, ),
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with A, := /f/m, is entire and satisfies the functional equation A(s,x) =
WyA(1—s, x) for some complex number W, of absolute value equal to one (see
[Dav, Chapter 9]). It follows that

Cc+100
A(s, x)z"°ds = Z x(n)Hi(nz/Ay)

n21

1
S(z,x) := 7

satisfies the functional equation §(z, x) = -W}S(-zl-, X) and that

{o o] e o]
A(s,x)-——-‘/; ‘S"(:I:,x)m"’dac+WX/1 S(zx, ¥)z* " ldz.

Since |x(n)| < 1, we obtain |S(z, x)| = [S(z, X)| < S1(z/d) and (to be compared
with (15)

dLLI< [ Sile/da+ Daa,
where

= Ay /A = /1.

By Proposition 12 with D =d and a =0, and D = d and a = 1, we obtain

IL(1,x)] < Resg=: {Fl(;s)(l + _1__)(ds-1 +d"’")}

1

= -;—(2logd—/\) (2logd A) < (2logd—A)=-1-(logf—A),

where A = 2 + v — log(4r) = 0.04619--- (for d? = f > 3 > e* = 1.04727 ..
This is precisely the bound obtained in [Lou04a, Theorem 1] and [Lou04b, The-
orem 1] for § = 0.

8.2 First bound on |L(1, x)| taking into account the behav-
ior of the prime 2

Now, let us try to obtain an upper bound for |(1 — 5%2-2)L(1, x)|- Setting

x(2)

L(s,x) =1 -Z)L(s,x) = 3 x(n)n~,

n>1
n odd

A(s, x) == A;F(s/2)I:(s, x) and

- 1 c+ioco .
S@x)=gg [ Mexeds= 3 x(m)Hi(na/dy),

Cc—100 n>1
n odd

for R(s) > 1 and for any a > 0 to be suitably chosen below, we have
. % dz (> - dz = [®1.1 dz
A ’ = . ’ f— = S s f— —O\ 1—8_____.
0= [ S@xe T = [ 8w E o+ [~ 256 00 L
Now, A(s,x) = As, x) - ¥ A(s, x) yields $(z, x) = S(z, X) ~ x(2)S(2z, x) and

%é(%, x) = S(-, o - X2 (2) 5(- = W, (S(z, 7) - X2 )S(z/2 2)-
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Hence, for any complex s we have
d
A= [ 3@ E ey [ (S0 - s 0)et T
In particular, we obtain (to be compared with (25))

A, X) = /00 5’(1:, x)dz + W, = (S(m, X) — X—(zg-)-S(:z;/Z )2)) d_a: (31)
a 1/a x
Since |S(z, x)| < S1(z/d) and .
8@, x)| = 18(z, %) < Y Hi(nz/Ay) = Si(z/d) = Si(z/d) - S1(2z/d),

n>1
n odd

by (26), using Proposition 12, we obtain (to be compared with Proposition 27):

- ¥2)50,5] = Liaa, 0l

< & /1 $1(0a/d)dz ~ 2 /1 $: (2az/d)dz

1 [ dz 1 [* dz

SN (Y0 e L B B ) P

TP YA (S B P Ra(d)

= %(2logd+'y —logm + 8a—2loga)
1
-ZE(Glogd + 3logm — 3y — 4log2) + R.(d)

where

1 [ dr 1 1 [*
Ry(d) = - d/a.Sl m)—-— §L/2a51(w)—;—2 S1(z)d T 5o 2adSl(;z:)da:.

Choosing a = 1/4, we have

R1/4 a)_ 4d_/ Sl w)d:v-——/ Sl(m)dm<0
and
|1~ x(2) )LL) < logf +24~—logm+4log?2),

for f > 2. However, this bound is not as good as the one (33) below obtained
in [Lou04a, Theorem 1] and [LouO4b, Theorem 1] for S = {2}.
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8.3 Second bound on |L(1, x)| taking into account the be-
havior of the prime 2

However, we can obtain a better result. Assume that the conductor f of x is
odd. Then x(2) # 0 and

S0 - s = Y xmBine/A) - X2 Y xmHina/24)
n>1 n>l
— 1Y nEna/a) - X2 Y x(m)H(na/24)
n>1 n21

yields (by (26))
5@, %) - X2 5(0/2,0) < (51(e/) + Bu(a/20)/2 = 5S:(0/20), (32
instead of the trivial bound |S(z, X) — KL—S(x/2 x)| < Si(z/d)+ 151 (z /2d) we

have previously used. Plugging this bound in (31) and using Proposition 12, we
end up with the bound

- X2 10,] = SR, %)
< g /1 Sl(am/d)dx—-% /1 ” Sl(zaz/d)dx+2id /1 = Sl(z/2ad)fif
— Resis {Fl(s)(l"(l—?") +asz-'—l) d,_l}

s—1 s

N R S

= i—(mogd +~ —log 7 + 4a — 2loga)
-212(2108d—'7+10g7r+4log2+2loga) + Ro(d)

where

R =~ Ts@E g B " 5@ —513 Si@)is

Choosing a = 1/2, we have

R]_/z < 2 f 31(27)— - —/ S]_(.’l‘)dx <0

and
|(1 X( VL1, x)] (logf+2+’y log 7 + 2log 2), (33)

which is the bound obtamed in [Lou04a, Theorem 1] and [Lou04b, Theorem 1]
for § = {2}. Notice that we recover this previously known upper bound, but
without making use of the technical Lemmas [Lou0O4a, Lemma 3] or [Lou04b,
Lemma 2]. We simply apply the machinery developed in sections 5 and 7.
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8.4 An improvement on Theorem 29

Assume that K is a totally real cubic number field in which (2) =

P;[Pz. Then,

Hq(2, s)/IIK(Z 5) =1-2"2 ¢y =1, ¢ =0 and ¢ = —1. Noticing that
0 or 1 according as k is odd or even, we obtain ag,q(4n) =

ak/q(2*) =

ax/q(n), ax/q(n) =0ifn=2 (mod 4) and

3 2~ Sk /q(e/2") = Sk/qla) - %sK/Q(z/4)

k=0

n>1

=Y axqln

Z ax/Q(n)Hm-1(nx/Axk/q) — % > ak/q(n)Hm-1(nz/4AK/Q)

n>1

n>1

1

Hp-1(nz/Ak/q) — 1

> ak/Q(n)Hm-1(nz/4AK/q)

n>1
n¢0 (mod 4)

23 axsq(n)Hn- i(na/Ax/a) = g 1 Y axsa(n)Hn1(n3/44x/)

n>1

ZSK/Q(f‘) - ng/o(x/‘*)-

n>1
n odd

Hence, instead of simply using (25) and the trivial bound

X a2 Skra@/2)| < 3 iska(e/2)] < IS/a@)] + SiSk/ale/a)
k=0

k=0

to obtain (28), we now use the better bound

1> ek27%Sg q(z/2%))|

k=0

<

<

2|5K/Q($)I + ‘Z"SK/Q(x/‘i)l

g Sa(z/d) — ZSQ(Zm/d) + %32(36/4@

Sa(e/d)  382(20/d) + 352(z/4d) - 5 5:(2/2d)

(by (20), and since in our situation we have m = 3 and g = l = 2, by {27), and
by (26)). Hence, instead of (29) we obtain

Nq(2)
Ik(2)

which in using IIq(2)/Ilx(2) = 3/4 and Proposition 12 yields (compare with
Proposition 27)

with

p(d)

dl‘&K

a/w(Sg(ax/d) — 25;(2az/d) + S2(4az/d))dzx
1

+ /1 ” (S2(w/ad) - %Sg(2m/ad) + %Sg(x/4ad) - -;—Sg(a:/flad))%,

Res,—; {Fz (s)

1 1
§bﬁd+zh—

Zhk < p1(d) + pa(d) ~ R(@)

(1-3272 - 122+

(

1—81_2-—82 a®
(e 0

-1

log 7+ 5a/2 —

S

loga)logd + &,

i228 )da—l}
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where K = —0.54977 - - -,

s(1 _ 9s—1\2 1—-s 1-— _§23-1 — ;_21_3 + _1_22(1_,)
p2(d) = ReSs=1 {FQ(S)(G (1 2 ) +a ( 4 2 4 ))d-—s

L s—1

31032(10gd—'y+10g7r+Elog?-f-loga),
4d 6
and
oC
Ra) = [ S@S- f (=2 + 5 / @)
d/a
+1 Sg(z:)d:c—--i Sa(z)dz + — sz(x)dz-i ” Sa(2)dz
d ad 4d ad/2 4d dad 2d 2ad
2a+3/4+1/2 [® T avd
— —————— > ma
> - y . da.Sg(a:)dx_ (2a+3/4-{-1/2)18 ol ,

by Lemma 22, where a* := min(1/2a,a/2,2a). Now, we choose a = 2/5. We
obtain

~(logd + 1+~ —logm +log(5/2))% + O(1),

O:I'—‘

and

Theorem 31 Let K be a totally real cubic number field. Assume that‘(2) =
P1P; in K. Set A3 =2+ 2y — 2logm + 2log(5/2) = 2.69755 - - -. Then,

ki < (logdy + A3)%/24.

This bound is better than the first one given in Theorem 28 for dg > exp((As —

V3/2)2)/(1/3/2 — 1)), hence for dg > 3-107.

In conclus';cm, using integral representations of Dedekind zeta functions of
number fields is a powerful tool for obtaining good upper bounds on the residues
at s = 1 of these Dedekind zeta functions.
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