
Smoothed GPY Sieve
Talk Report

BY YOICHI MOTOHASHI

Hereby I shall give a report of the contents of my talk delivered on October 18, 2005 at
the workshop on Analytic Number Theory held at RIMS, Kyoto University. I first gave
an account of my recent joint work with M. Jutila $[6][7]$ on uniform bounds for Hecke L-
functions and the Rankin-Selberg L–functions, explaining the methodological connection
between these subjects and the issue of small gaps between prime numbers, as I envisage
that the investigation on the latter should eventually lead us to a refined treatment of the
additive divisor sums either in the original ((4) below) or in a variety of extended senses
via the reasoning represented by Linnik’s dispersion method [8]. At the end of my talk I
introduced, without proof, a smoothing device into the now famous sieve procedure [3] of
D.A. Goldston, J. Pintz, and C.Y. Yildmm combining the arguments developed in [2] and
[11] (see also [9]). EYom my assertion (Lemma 4 below), it transpires that the bounded
differences between prime numbers, i.e., the existence of an absolute constant $B$ such that

$\lim\inf(p_{n+1}-p_{n})<B$ (0)

should follow from any improvement of the $\mathrm{B}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{i}-\mathrm{F}\mathrm{Y}\mathrm{i}\mathrm{e}\mathrm{d}\mathrm{l}\mathrm{t}\mathrm{d}\mathrm{e}\mathrm{r}-\mathrm{I}\mathrm{t}4^{f}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{e}\mathrm{c}$ prime number
theorem [1] that admits varying residue classes, the number of which is relatively small.

1. Thus, let $\Gamma=\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{Z})$ and $G=\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{R})$ . Let $V$ be a Hecke invariant irreducible
cuspidal $\Gamma$-automorphic representation occurring in $L^{2}(\Gamma\backslash G)$ such that $T(n)|_{V}=\tau v(n)\cdot 1$ ,
and $\Omega|_{V}=(\nu_{V}^{2}-\frac{1}{4})\cdot 1$ , where $T(n)$ and $\Omega$ are Hecke and Casimir operators, respectively.
The Hecke $L$-function attached to $V$ is defined by

$H_{V}(s)= \sum_{n=1}^{\infty}\tau_{V}(n)n^{-\epsilon}$ , ${\rm Re} s>1$ . (1)

With this, the main assertion of [6] is the uniform bound

$H_{V}( \frac{1}{2}+it)<<(t+|\nu_{V}|)^{1/3+\epsilon}$ , $t\geq 0$ , (2)

where the implied constant depends on $\epsilon$ at most. This is a wide extension of the classical
bound

$\zeta(\frac{1}{2}+it)\ll t^{1/6}\log^{2}t$ , $t\geq 2$ . (3)

The implements that were employed in the proof of (2) are the Voronoi formula, the
Spectral-Kloosterman sum formula of Bruggeman and Kuznetsov, and the spectral decom-
position [10] of

$\sum_{n=1}^{\infty}\sigma_{\alpha}(n)\sigma_{\beta}(n+f)\mathrm{W}^{\gamma}(n/f)$ , (4)

where $\sigma_{\alpha}(n)=\sum_{d|n}$ ”, and $lV$ is a smooth function supported compactly on the positive
reals. It should be noted that the proofs of (3) depends on an idea of Weyl and van der
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Corput, and on the harmonic analysis over the unit circle or the Fourier analysis. The sum
(4) can be considered as an extension of the basic idea (i.e., a lifting of a one-dimensional
sum to a two-dimensional) of Weyl and van der Corput; and the Fourier analysis is replaced
by the spectral theory of sums of Kloosterman sums. The last is, in fact, equivalent to the
harmonic analysis on $\Gamma\backslash G$ or the theory of $\Gamma$-automorphic representations of $G$ .

A partial extension of (2) to Rankin-Selberg $L$-functions is given in [7]. Thus, let

$L(s, V \otimes V_{0})=\zeta(2s)\sum_{n=1}^{\infty}\tau_{V}(n)\tau_{V_{0}}(n)n^{-\epsilon}$ (5)

be the Rankin-Selberg $L$-function associated with irreducible representations $V,$ $V_{0}$ as above.
Then, a special case of the main assertion of [7] is

$L( \frac{1}{2}+it, V\otimes V_{0})\ll|\nu v|^{2/3+e}$ , $0\leq t\leq|\nu v|^{2/3}$ , (6)

where the implied constant depends on $V_{0}$ and $\epsilon$ at most. This time, the sum (4) is replaced
by

$\sum_{n=1}^{\infty}\tau_{V_{0}}(n)\tau_{V_{0}}(n+f)W(n/f)$ , (7)

on which investigation corresponding to [10] is developed in [5], for instance (see the latter
for the history on this problem).

Turning to the subject indicated by the title of our talk, it should be stressed again
that the above should have a basic relevance to such an extension of the main result of [1]
as needed in the expected proof of (0), as far as one tries to apply the dispersion method.
A typical instance was treated in [8] based on Estermann’s result on the sum (4) with
$\alpha=\beta=0$ . Indeed, it was later extended by A.I. Vinogradov, and resulted in the Mean
Prime Number Theorem, independently established by Bombieri. Hence, it appears natural
to surmise that (4), (7), and their further extensions should be relevant to the investigation of
the distribution of primes in arithmetic progressions of large moduli, which is most probably
needed in the proof of (0).

2. Let $N$ be a parameter increasing monotonically to infinity. There are four other basic
parameters $H,$ $R,$ $k,$ $\ell$ in our discussion. We impose the following conditions to them:

$H\ll\log N\ll\log R\leq\log N$, (8)

and
integers $k,\ell>0$ are sufficiently large but bounded. (9)

Let
$\mathcal{H}=\{h_{1}, h_{2}, \ldots, h_{k}\}\subseteq[-H, H]\cap \mathbb{Z}$ , (10)

with $h_{i}\neq h_{j}$ for $i\neq j$ ; and put, for a prime $p$,

$\Omega(p)=$ {different residue classes $\mathrm{a}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{g}-h(\mathrm{m}\mathrm{o}\mathrm{d} p),$ $h\in \mathcal{H}$ } (11)

and write $n\in\Omega(p)$ instead of $n$ (mod $p$) $\in\Omega(p)$ . We call $\mathcal{H}$ admissible if $|\Omega(p)|<p$ for all
$p$ , and assume this unless otherwise stated. We extend St multiplicatively, so that $n\in\Omega(d)$

with square-free $d$ if and only if $n\in\Omega(p)$ for all $p|d$ . We put, with $\mu$ the M\"obius function,

$\lambda_{R}(d;\ell)=\{$

$0$ if $d>R$ ,

$\frac{\mu(d)}{(k+\ell)!}(\log\frac{R}{d})^{k+\ell}$ if $d\leq R$ , (12)
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and
$\Lambda_{R}(n;\mathcal{H},\ell)=\sum_{n\in\Omega(d)}\lambda_{R}(d;\ell)$

. (13)

Also, let
$E^{*}(y;r,q)= \theta^{*}(y;r,q)-\frac{y}{\varphi(q)}$ ,

$\theta^{*}(y;r, q)=n\equiv r\mathrm{m}\mathrm{o}\mathrm{d} q\sum_{y<n\leq 2y}\varpi(n)$

, (13)

where $\varphi$ is the Euler totient function; and $\varpi(n)=\log n$ if $n$ is a prime, and $=0$ otherwise.
In all accounts $[2]-[4]$ of the GPY sieve, it is assumed that

$\sum_{q\leq x^{\theta}}\max_{(r,q)=1}\max_{v\leq x}|E^{*}(y;r,q)|\ll\frac{x}{(\log x)^{C}}$
, (14)

with a certain $\theta\in(0,1)$ and an arbitrary fixed $C>0$ .

The following asymptotic formulas are the fundamental implements in the GPY sieve:

Lemma 1. Provided (8), (9), and $R\leq N^{1/2}/(\log N)^{C}$ hold with a sufciently $la\prime geC=$

$C(k, l)$ , we have

$\sum_{N<n\leq 2N}\Lambda_{R}(n;\mathcal{H},\ell)^{2}$

$= \frac{\mathfrak{S}(\mathcal{H})}{(k\neq 2\ell)!}N(\log R)^{k+2\ell}+O(N(\log N)^{k+2l-1}(\log\log N)^{c})$ , (15)

where $c=c(k, l)$ is a certain constant, and

$\mathfrak{S}(\mathcal{H})=\prod_{p}(1-\frac{|\Omega(p)|}{p})(1-\frac{1}{p})^{-k}$ (16)

Lemma 2. Provided (8), (9), and (14), we have for $R\leq N^{\theta/2}/(\log N)^{C}$ with a sufficiently
large $C=C(k, l)$ ,

$\sum_{N<n\leq 2N}\varpi(n+h)\Lambda_{R}(n;\mathcal{H},\ell)^{2}$

$= \frac{6(\mathcal{H})}{(k+2\ell+1)!}N(\log R)^{k+2\ell+1}+O(N(\log N)^{k+2\ell}(\log\log N)^{\mathrm{c}})$ , (17)

whenever $h\in \mathcal{H}$ .

3. It is known that the combination of (15), (17), and (14) with a $\theta>\frac{1}{2}$ gives rise to the
assertion (0). The principal aim of my talk was to show a smoothed version of (15) and (17)
to look into the possibility of replacing (14) with a $\theta>\frac{1}{2}$ by any less stringent hypothesis.

With this in mind, we shall hereafter assume that

$H=H(k, \ell)$ is bounded. (18)
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We begin with a smoothing of (15); and to this end, we follow $[9][11]$ . Thus, let us put

$R_{0}= \exp(\frac{\log R}{(\log\log R)^{1/5}})$ , $R_{1}= \exp(\frac{\log R}{(\log\log R)^{9/10}})$ , $\tau=(\log\log R)^{1/10}$ . (19)

We divide the interval $[R_{0}, R_{0}R^{J})$ into intervals $[R_{0}R_{1}^{j-1}, R_{0}R_{1}^{j})(j=1,2, \ldots, J)$ , denoting
them by $P$ , with or without suffix; and further put

$J=\xi$ . $($ log log $R)^{9/10}$ , (20)

with a sufficiently $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\xi>0\cdot$, it appears that the choice $\xi=1/\sqrt{k}$ is appropriate. Let $D$ be a
generic element of the commutative semi-group generated by all $P’ \mathrm{s}$ . When $D=P_{1}P_{\mathit{2}}\cdots P_{f}$ ,
the notation $d\in D$ indicates that $d$ has the prime decomposition $d=p_{1}p_{2}\cdots p_{r}$ with $p_{j}\in P_{j}$

$(1\leq j\leq r)$ . Note that we use the convention that $1\in D$ if and only if $D$ is the empty
product. Further, we put $|P|=R_{0}R_{1}^{j}$ if $P=[R_{0}R_{1}^{j-1}, R_{0}R_{1}^{j})$ ; and $|D|=|P_{1}|\cdots|P_{r}|$ if
$D=P_{1}P_{2}\cdots P_{r}$ . Naturally, $|D|=1$ if $D$ is empty. We put

$\Delta(D)=\prod_{P|D}(\sum_{\mathrm{p}\in P}\frac{|\Omega(p)|}{p})$ , (21)

and

$\Phi(D)=\prod_{P|D}(\sum_{\mathrm{p}\in P}\frac{|\Omega(p)|}{p}(1-\frac{|\Omega(p)|}{p}))(\sum_{\mathrm{p}\in P}\frac{|\Omega(p)|}{p})^{-2}$ (22)

Also, modifying [2, (1.21)] and [11, (6)], we put

$\tilde{\lambda}_{R}(D;\ell)=\frac{6(\mathcal{H})}{f!W(R_{0})}\frac{\mu(D)}{\Delta(D)}|K|<R\sum_{D|K}\frac{\mu(K)^{2}}{\Phi(K)}(\log\frac{R}{|K|})^{\ell}$
, (23)

where $\mu$ is a natural extension of the M\"obius function, $W(z)= \prod_{d<z}(1-|\Omega(p)|/p)$ ; and
the empty sum is to vanish, that is, $\tilde{\lambda}_{R}(D;\ell)=0$ for $|D|\geq R$ . Note that in (21) and (22)
we have $p\geq R_{0}$ , and thus $|\Omega(p)|=k$ always. We shall, however, keep the notation $|\Omega(p)|$ ,
because of a future purpose.

As to the interval $[1, R_{0})$ , which is excluded in the above, we appeal to the Fundamental
Lemma in the sieve method (see e.g., [12, Sections 3.2-3.5]). Thus, there exits a set of sieve
weights $\rho(d)$ such that $|\rho(d)|\leq 1$ for any $d\geq 1$ , and $\rho(d)=0$ either if $d\geq R_{0}^{\tau}$ with $\tau$ as
above or if $d$ has a prime factor greater than or equal to $R_{0}$ , and that

$\gamma(n;\mathcal{H})=\sum_{n\in\Omega(d)}\rho(d)\geq 0$
for any $n\geq 1$ (24)

as well as
$\sum_{d}\frac{\rho(d)}{d}|\Omega(d)|=W(R_{0})\{1+O(e^{-\tau})\}$ , (25)

with the implied constant being absolute.
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Lemma 3. A smoothed counterpart of (12) is defined to be

$\tilde{\Lambda}_{R}(n;\mathcal{H}, l)=\sum_{D}\tilde{\lambda}_{R}(D;l)$
$\sum_{d\in D,n\in\Omega(d)}1$

. (26)

Under (9), (18), we have

$\sum_{N<n\leq 2N}\gamma(n;\mathcal{H})\tilde{\Lambda}_{R}(n;\mathcal{H},p)^{2}$

$= \frac{6(\mathcal{H})}{(k+2\ell)!}N(\log R)^{k+2\ell}(1+O(e^{-k\xi}))+O(R_{0}^{\tau}R^{2}(\log R)^{c})$ . (27)

Lemma 4. Under (9), (18), we have, for any $h\in \mathcal{H}$ ,

$\sum_{N<n\leq 2N}\varpi(n+h)\gamma(n;\mathcal{H})\tilde{\Lambda}_{R}(n;\mathcal{H},\ell)^{2}$

$\geq\frac{6(\mathcal{H})}{(k+2\ell+1)!}N(\log R)^{k+2\ell+1}(1+O(e^{-k\xi}))+E$ , (28)

where

$E<<( \log N)^{c}\sup_{\alpha,\beta}*|\sum_{a<A,b<B}\alpha_{a}\beta_{b}\sum_{r\in\Omega(ab)}.E^{*}(N;r, ab)|$ , (29)

with $\Omega^{*}(p)=\Omega(p)\backslash$ { $-h$ mod $p$}. Heoe $AB=Ri^{R^{2}}i$ and a, $\beta$ are comp$lex$ vectors such that
$|\alpha_{a}|\leq 1,$ $|\beta_{b}|\leq 1$ , with the construction restricted by (19), (20), and (24) as indicated by
$\sup^{*}$ .
Behind the appearance of the factor $1+O(e^{-k\xi})$ in (27)$-(28)$ is a use of the Buchstab
identity; specifically a prototype of (27) with $l=0$ has been known to me since early $1980’ \mathrm{s}$ ,
together with the error term corresponding to (29) (i.e., without the twist by $\varpi$). Although I
have not checked it fully yet, the inequality (28) may be replaced by an asymptotic identity
as $k$ tends to infinity. The assertion (29) is proved as in [11, pp. 1063-1064] but with a
little more care, on noting the choice (20), which means that the set of sifting primes are
$\leq R_{0}R^{\xi}$ in place of $R$ in $[2]-[4]$ . We should note that (29) is not completely comparable
with Iwaniec’s error term for the linear sieve, but since $k$ can be assumed to be sufficiently
large, this blemish may turn out to be immaterial as far as the possible application to prove
(0). Details are to be published elsewhere under the title ‘ On the high dimensional Selberg
sieve’.

Addendum (May 23, 2006): While attending the workshop ‘ Gaps between Primes’ (Novem-
ber 28-December 3, 2005) at the American Institute of Mathematics, I learnt that J. Pintz
had obtained essentially the same assertion as Lemma 4 above. Accordingly, a joint work
entitled ‘A smoothed $GP\mathrm{Y}$ sieve’ has been uploaded to $\mathrm{a}\mathrm{r}\mathrm{X}\mathrm{i}\mathrm{v}(\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}.\mathrm{N}\mathrm{T}/0602599)$ . Note
also that the references below are updated at this opportunity.

References
[1] E. Bombieri, J.B. Friedlander, and H. Iwaniec. Primes in arithmetic progressions to

large moduli. Acta Math., 156 (1986), 203-251.

93



[2] G.A. Goldston, S.W. Graham, J. Pintz, and C.Y. $\mathrm{Y}\iota \mathrm{l}\mathrm{d}\mathrm{l}\mathrm{r}\mathrm{l}\mathrm{m}$ . Small gaps between primes
or products of two primes. Preprint. arXiv: $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}.\mathrm{N}\mathrm{T}/506067$ .

[3] D.A. Goldston, J. Pintz, and C.Y. Yildirzm. Small gaps between primes II (Prelimi-
nary). February 8, 2005. See also 2005-19 of http: $//\mathrm{a}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}.\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}.\mathrm{h}\mathrm{t}\mathrm{m}\mathrm{l}$.

[4] G.A. Goldston, Y. Motohashi, J. Pintz, and C.Y. Ylldlrlm. Small gaps between primes
exist. Proc. Japan Acad., 82A (2006), 61-65.

[5] M. Jutila. Sums of the additive divisor problem type and the inner product method.
Zap. nauchn. sem. POMI 322 (2005), 239-250.

[6] M. Jutila and Y. Motohashi. Uniform bound for Hecke L–funct\’ions. Acta Math., 195
(2005), 61-115.

[7] M. Jutila and Y. Motohashi. Uniform bounds for Rankin-Selberg $L$-functions. To
appear in Proc. Workshop on Multiple Dirichlet Series, Proc. Symp. Pure Math., AMS.

[8] Yu. V. Linnik. The Dispersion Method. AMS, Providence 1963.
[9] Y. Motohashi. Sieve Methods and Prime Number Theory. Tata IFR LN, vol. 72,

Springer Verlag, Berlin etc 1983.
[10] Y. Motohashi. The binary additive divisor problem. Ann. Sci. \’Ecole Norm. Sup., (4)

27 (1994), 529-572.
[11] Y. Motohashi. On the remainder term in the Selberg sieve. Number Theory in Progress

-A. Schinzel Festschrift, Walter de Gruyter, Berlin . New York 1999, pp. 1053-1064.
[12] Y. Motohashi. An overview of the sieve method and its history. Preprint (to appear in

Sugaku Expositions, AMS). arXiv: $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}.\mathrm{N}\mathrm{T}/0505521$ .

Department of Mathematics, Nihon University,

Surugadai, Tokyo 101-8308, Japan
$\mathrm{E}$-mail: ymoto@math. $\mathrm{c}\mathrm{s}\mathrm{t}.\mathrm{n}\mathrm{i}\mathrm{h}\mathrm{o}\mathrm{n}-\mathrm{u}.\mathrm{a}\mathrm{c}$.jp

Web: $\mathrm{w}\mathrm{w}\mathrm{w}.\mathrm{n}\mathrm{e}.\mathrm{j}\mathrm{p}/\mathrm{a}\mathrm{s}\mathrm{a}\mathrm{h}\mathrm{i}/\mathrm{z}\mathrm{e}\mathrm{t}\mathrm{a}/\mathrm{m}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{h}\mathrm{i}/$

94


