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Extended Abstract

This article is an excerpt of the full version paper|[1] with the other references omitted, and its purpose
is to show an algebraic proof of the method for solving cubic equations by origami (paper folding).

In the early 1980's, H.Abe solved the construction problems using origami that are unsolvable in
Euclidean geometry, such as angle trisection and doubling cubes. This paper expands H.Abe’s methods
to general cubic equations and shows the main results in three propositions. For an algebraic proof, we
solve the radical membership problem in polynomial ideals computing a Grébner basis together with
constraints of parameters, which correspond to geometrically degenerate cases. Consequently, cubic
equations are clearly solved as construction problems.

First, we expand H.Abe’s angle trisection method(1980) to the case with obtuse angles, and prove it
by a Grobner basis. Assuming a semi-transparent sheet of origami, we can trisect an arbitrary obtuse
angle as shown in Fig. 1.

Proposition 1 (Trisection of an obtuse angle by origami)
Let points A(0,1), B(0,0) and C(c,0) (3c > 0) be fixed, and E(a,1) be chosen with an arbitrary a(< 0).
Then the trisection of LEBC is constructed as follows.
(i) Mark two points H(0,b), F(0, 2b) with a proper length b (> 0).
(ii) Draw the horizontal line y = b through H. _
(iii) Fold the paper to place simultaneously F onto BE and B ontoy = b.
(iv) If we let the point B be mapped to point B', then we have /B'BC = (LEBC)/3.

Proof Let the points F and B be mapped to F'(ay,y) and B'(z, b) respectively. ;From the symmetry
by folding with the crease PQ, we have an isosceles trapezoid F'BB'F.

(1) Since F'B = FB', we have f; = (ay)? + y2 ~ (2% + b?).
(2) Since F'F || BB’ means (2b— y)/(—ay) = b/z, we have f3 := (2b — y)z + b(ay).

(3) The slopes of BB’, BF' and B'F are k = b/z, k1 = 1/a and k; = b/(—z) respectively. Then we have
ki—k z—ab v k—ka 2z

1+kk,  az+b’ ten LFBB =Tk~ o -0
Therefore, from /B'BF' = LFB'B, it is deduced that f3 := (z — ab)(z® ~ b?) — 2bx(az + b).

“moritsug@slis.tsukuba.ac.jp

tan /B'BF’ =
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Fig. 1: Trisection of an obtuse angle (a < 0)

(4) The conclusion to be proved is ZEBC = 3/B'BC. Substituting tané = tan /B'BC = b/z and
tan 30 = tan ZEBC = 1/a to the formula for triple angle, we obtain

tan30_3ta.n0—ta.n39 —_ 1 32?4
" 1-3tan?4 o z3—3b2z °

Hence we put p := (z® — 3b%z) — (3622 — b*)a .

(5’) We regard J = (f1, f2, f3,1— zp) as an ideal in Q(a, b) [z, v, z]. Computing its Grébner basis with the
total degree lexicographic order (z > y > 2), we obtain J = (1), namely, p € /(f1, f2, f3). Hence the
conclusion p is correct and the point B'(z,b) trisects an arbitrarily given angle ZEBC.

(6) Collecting all denominators during the computation of the Grébner basis, we also obtain subsidiary
conditions for geometrical nondegeneracy. The constraint for parameters is {a #0,a2+1#0, b 0}
and it shows that this proposition holds for any obtuse angle ZEBC > 90° (a < 0).

Remark 1

H.Abe's original method is proved for acute angles (a > 0). For the rectangular case (a = 0), two points
F and F' in Fig. 1 coincide, and they do not form an isosceles trapezoid. Though the same polynomials
f1, f2, f3 do not hold, AFBB’ forms a regular triangle instead and we obtain ZB'BC = 30°. Therefore,
arbitrary angles (0° < 6 < 180°) can be trisected by origami.

Second, we show an origami solution to general cubic equations 3 + at? + bt + ¢ = 0 (a,b,ce R). If
we restrict {a = 0, b = 0, ¢ = —2} in the following formulation, it coincides to H.Abe’s solution(ca.1981)

for the duplication of cubes. Since then, some authors including H.Huzita(1989) have also discussed this
problem.
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Fig. 2: A solution RP for the cubic equation t3 + at? + bt +¢c=0

Proposition 2 (Construction for cubic equations - 1)

Given a cubic equation t* + at? + bt + ¢ = 0, we arrange the points A(—1, a), B(—b, c) on a square origami
as Fig. 2, where ¢ < 0 is assumed. Then a real solution to the equation is constructed as follows.

(i) Draw the linesz =1 andy = —e¢.

(ii) Fold the paper to place simultaneously A onto =1 and B onto y = —c.

(ili) If we let P be the midpoint of the segment AA’, then RP gives a real solution to the equation.

Proof Let the point A(—1,a) be mapped to A’(1,a + 2y), and B(~b,c) to B'(z,~c). Then, the
midpoints of AA’ and BB’ are P(0,a + y) and Q((z ~ b)/2, 0) respectively.

(1) From the symmetry by folding with the crease PQ, we deduce the following polynomials:

AB=A'B’ = fii=-224+2c -4y - 4(a+c)y+ b — 2b - dac,
AA'|| BB’ =  for=zy+by+2e,
AA'LPQ = fa=-z+2%+2ay+b.

(2) The conclusion to be proved is that 1}—1:" (= ) is a solution to the given equation. Hence, we let
pi=y’+a’ +by+e _

(3) We regard J = (fi1, f2, f3,1 — zp) as an ideal in Q(a, b, ¢) [z,y,2]. Computing its Grobner basis with
the total degree lexicographic order (z > y > z), we obtain J = (1) and the conclusion p is correct.

(4) Subsidiary condition for parameters is empty and it shows that this proposition holds for any real

coefficients a, b, c.
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Remark 2
If the given cubic equation has three real zeros, there exist three ways of folding.

For the case ¢ > 0, Fig. 2 should be turned upside down. If ¢ = 0, this construction essentially gives a
real solution to quadratic equations. Therefore, given cubic equations t3 + at? + bt + ¢ = 0 with arbitrary
real coefficients, its real zero(s) can be constructed by origami.
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Fig. 3: Solutions for the cubic equation 4¢3 -3t —a =0 (ja|<1)

Finally, we show another origami solution to cubic equations t3 + at? + bt + ¢ =0 (a,b,c € R) with

three real zeros. The following proposition is based on a classical formula, but it cannot be constructed
within Euclidean geometry because angle trisection is necessary.

Proposition 3 (Construction for cubic equations - 2)
A cubic equation 23 + 3pz + 29 = 0 has three real zeros, iff p° + g2 < 0 (p < 0) from its discriminant. If
we let z = 2,/=p- t, then the above equation is transformed into

-3t-a=0 q=—2

\/ _pa
Compared with the triple angle formula cos30 = 4cos®0 — 3cosd, let a = cos36 as 0° < 30 < 180°.
Then, we obtain the three real zeros for (1) :

(-l1<a<1). @

t=cosf, cos(8+120°), cos(6+ 240°) 1Y)

The third one is rewritten as cos(6 +240°) = cos(d — 120°) = cos(120° — §) = cos((180° — 6) — 60°). Since
0° < 8 < 60°, all the zeros (II) are found in the upper semicircle.

In Fig. 3, we show an example of construction for a given equation 4t3 -3t +1/2=0 (a= -1/2).

(1) Mark the point E on the upper semicircle whose orthogonal projection is £ = a. In this example,
36 = 120°,
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(ii) Trisect ZEBC by Prop. 1 using origami, and we obtain the trisector BB'. Then, mark the point B;
on the semicircle.

(iii) The orthogonal projection of B_I-':“l gives the first zero : ¢; = cos 6 = cos 40°.

(iv) Using a compass, construct 6+ 120° (= 6 + 2 x 60°), and we obtain Bp. Then, the projection of BB,
gives the second zero : tp = cos 160°.

(v) Using a compass, construct (180° — #) — 60°, and we obtain B3. Then, the projection of BB;; gives
the third zero : t3 = cos 80°.
|

In summary, constructing real zeros for cubic equations by origami is discussed in this paper, and two
methods are proposed together with algebraic proofs using Grobner bases. Those are respectively related
to classical origami construction problems as follows.

e Prop. 2 : Expansion of the method for doubling cubes.
e Prop. 3 : Application of the method for angle trisection.

In future work, following problems should be studied to expand the present results.

e How to represent complex solutions using origami,

o How to solve quartic equations by origami. In principle, it is reduced to solving auxiliary equations
with degrees two and three, but its clear representation is not known yet.
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