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1 Introduction

Let G be a finite group and Y a compact, connected, oriented, smooth G-manifold of even
dimension n = 2k > 6. .

C. T. C. Wall ([8]) formulated surgery obstruction groups L,(Z[G]) in terms of quadratic
modules and automorphisms. In Wall’s surgery theory, it is assumed that the G-action is free.
A. Bak ([1]) generalized the notion of quadratic module by introducing form parameters. A.
Bak and M. Morimoto ([4], [2]) generalized surgery theory, and defined surgery obstruction
groups (Bak groups) WQ,,(4,A). Wall calculated L,(Z[G]) (= WQ,(A, min)), in the case
where G is a finite cyclic group or a dihedral group ([7]). We will use the result to study the
Bak groups WQ,,{4, A).

A morphism of form ring f : (4, —,A,A) = (4, —, A, T) induces a K-group’s exact sequence
(See §2)

KQ,(4,4) — KQ; (4,T) — KQo(f) — KQo(4,A) — KQy(4,T) — 0.

Bak has shown that KQg(f) is isomorphic to Abelian group S(I'/A) calculated easily. Addi-
tionally, surgery obstruction groups WQ,,(A, A) are the quotient group of KQ,(A,A). So we
study the group S(I'/A) in this paper.

In the study of G-manifold, it is important to judge whether a given surgery obstruction is
zero or not. Because of difficulty in calculation of K-groups, it is effective to evaluate the images
of induction homomorphisms and restriction homomorphisms of the surgery obstruction. That
is, the induction theory of Dress’s type is effective. This motivates to prove the next theorem.

Theorem 1.1. H — S(T'y/Axg) is a Mackey functor.

We study the groups S(T'g/Ag) in the case G = As, the alternating group on the five letters
{1,2,3,4,5}, and S, the symmetric group on the five letters.

A complete set of representatives for conjugacy classes of subgroups of G = A; is
RA!S = {{8}7 02: C3s D4: C5a DG: DlOa A41 A5}1

where {e} is the unit group, C, (n = 2, 3, 5) are the cyclic groups of order n, D,, are the
dihedral groups of order 2n, and Ay is the alternating group on the four letters {1,2,3,4}.
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Figure 1: the representativeé for conjugacy classes of subgroups of 4s

Let A = —1 and let w be trivial. Then the following hold.
Theorem 1.2.

S(Qp,/minp,) = (la1 @ b1])z, = Z,,

S(QDo/minDs) = ([(12 ® b2]7 [02 ® d2]>22 =3 Z22,
S(nDlo/mian) = <[0.3 ® b3]; [33 ® f3])22 = Zzz,
S(Q4s/ming ) = ((aa ®bs], [ca ®da], (€4 ® fal)z, =Z,°.

where (a;,b;) = Cs, Dy, {(ci,d;) = D, {e;, fi) = D1o. The natural homomorphism
Ind : 8(Q2p, /minp,) ® S(Qp, /minp, ) & S(Up,,/minp, ) — S(Qa,/miny,, )
ts surjective. Moreover,

b] if {a,b) = Cy, Dy,
R As = [a’ ®
D, le®t]) {0 otherwise.

Rest (o & b)) = {[w b if (a,b) = D,

0 otherwise.

®b] if (a,b) = Dy

Re Ag b)) = [a ) )
°D 10([a® D {0 otherwise.

and the natural homomorphism
Res : 5(Q4,/min,,) — S(Qp,/minp, ) ® S(Qp, /minp, ) & S(Rp,,/miny, )

18 injective.

A complete set of representatives for conjugacy classes of subgroups of G = Ss is

Ras = {{e}, C2(=((1,2))), Ca(=((1,2)(3,4))), Cs, C4,
D4(=((1,2),(3,4))), Da(=((1,2)(3,4),(1,4)(2,3))), Cs,
Cz2 x Cs, Dg(=((1,2),(1,2,3))), De(=((1,2)(3,4),(1,2,5))),
Dg, Diyo, D1z, Fpo, A4, Sa, As, S5},
where Fyg Frobenius group of order 20,
Fyo = (s,t| s* = t° = e, ts = st?).

Let A = —1 and let w be trivial. Then the following hold.
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Figure 2: the representatives for conjugacy classes of subgroups of Ss

Theorem 1.3.

S(Qps/minp,) = (a1 @ b1])z, 2 Zs,
S(Qp,, /minp ) = ([az @ by], [c2 ® da])z, % 7,7,
S(Qp,, /mlnD ) =(las ® bs], [es ® f3))z, > Z,°%,
S(Qs,/minsb) = ([a4 ® by), [ca ® d4), [e4 ® fal)z, = Z3.

where, (a;,b;) = Ca, Dy, Dg, (¢;,d;) = Dg, Dya, {e;, fi) = D1o. The natural homomorphism
Ind : §(Qp,/minp, ) & S(Qp,, /miny, . ) & S(2p,,/minp, ) — S(Qs,/ming,)
is surjective. In addition,

Res%as([a® b]) - {[a®b] 3f (aa b) = CZ1D4aD81

0 otherwise.

a®b 1 a,b g«D ’D k]
S XCTI S At

a®b] if (a,b) = Dy,
ResDw([a®b])={g | oftl(zerw>iae. N

and the natural homomorphism

Res : $(Qs, /ming, ) — S(Qp,/minp, ) & S(p,, /miny, ) & S(2p,, /minp, )

18 tnjective.



2 Form parameter

We recall the definition of form parameter ([1, p.5]). Let A be a ring with identity and — : 4 —
A an involution on A, namely — is a bijection such that

(1) a=aq,
(2) a+b=a+Dd,
(3) ab = ba,
4 1=1 :
for all a,b € A. Let X be an element of Center(A4) such that AX = 1. This element ) is called

a symmetry of A. Then a form parameter A on A is defined to be an additive subgroup of A -

such that
(Al) {a—Xajac A} CAC{a€ Ala=-)a},
(A2) aAa C A (Va € A).
A quadruple A = (A4, —, A\, A) is called a form ring.

Let A and I' denote form parameters on A such that A°'C I'. A morphism of form ring
f:(A, =, )\ A) > (4, -, \T) induces an exact sequence

KQ;(4,A) — KQ,(4,T) — KQo(f) — KQy(4,A) — KQy(4,T) — 0.

For the details, see {1, Theorem 6.20).

Let A be the integral group ring Z[G] of a finite group G, w : G = {—1,1} a homomorphism,
and - : Z[G] — Z[G] the involution associated with w, namely

Sorgg = wlgryg™t,

g€qG g€G
forrg € Z. Let A=1or —1, and

X={9e€G|g’=19=-)3)

Let Y C X be a G-invariant subset with respect to conjugations. Let A be the form parameter
of R[G] given by

A={Yrglr, €2} +{z- 7|z € Z(G]}.
geY

We know the Burnside ring Q(G) acts on the groups
KQ,(Z[G], A), KQ,(Z[G],T), KQo(Z[G], A), and KQo(Z[G],T).

In this article, we prove the Burnside ring Q(G) also acts on KQq(f).

Let a — gag (resp. a — gag) be a left (resp. right) action of A on I'/A. A. Bak defined the
group

S(T/A) = (T/A®4T/A)/{a®b—-b®a,a®b— a® bab} ([1, p.191]).
We quote the following lemmas from {1].
Lemma 2.1. S(I'/A) is a Zz-module.
Lemma 2.2 ([1] Corollary 6.22, Throem 11.2). KQ,(f) = S(I'/A).

Let H be a subgroup of G and Yy =Y N H. We pay our attention to the form parameters
on Z[H]

Ag ={x—A§|z€Z[H]}+{Z"‘gﬂ"gez}’
9€Yn

maxy ={z -7 |z € Z[H]} +{ Z "'gglryez}v
9€XH

ming = {z - A% |z € Z[H]},

Qg ={z——A§|x€Z[H]}+{ Z rgg|rg€Z}.
9€X i ,gFe
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3 w-Mackey Functor

We begin this section with recalling several concepts related to w-Mackey functor. Let G be a
finite group and let S(G) denote the set of all subgroups of G. We define a category &(= &(G))
as follows. The set Obj(®) is S(G). Morphg(H, K) is the set of all triples (H, g, K) where
g € G such that gHg™! C K. The composition of morphisms is given by (K, ¢',L)o(H,g,K) =
(H,¢'g,L). Let % denote the category whose objects are Abelian groups and whose morphisms
are group homomorphisms.

A bifunctor M = (M*,M,) : & = A is a pair consisting of a contravariant functor M* :
& — A and covariant functor M, : & — 2 such that M*(H) = M.(H) for all H € S(G).
Proposition 3.1 ([5] § 2). Let M : ® — 2 be a bifunctor satisfying M*((gHg™,97!,H)) =

M.,((H,g,9Hg™)) for all H € S(G) and g € G. The Burnside ring Q(G) canonically acts on
M(G) if and only if

M*((G,9,G))oM.((H,e,G))oM"((H,e,G)) = M.((H, e,G))oM"((H,e,G))o M*((G, 9, G)).

Definition 3.2 ([3] Definition 2.3). A bifunctor M : & — 2 is called a w-Mac functor if
the following conditions are fulfilled.

(1) M.((H,g,9Hg™')) = M*((gHg™*,g™", H)) for all H € S(G) and g € G,

(2) M.((H,h,H)) = w(h)idp sy (hence M*((H,h,H)) = w(h)idp ) for all H € S(G)
and h € H.

Definition 3.3 ([3] Definition 2.4). A w-Mac functor M : & — 2 is called a w-Mackey
functor if the following conditions are fulfilled.

M*((K,e,L))o M.(H,e,L))= @ M. (KNgHg™ eK))o
KgHEK\L/H
(w(g)M.((HNg ' Kg,9,KNgHg™"))) o M*((HN g™ Kg,e, H))
for any H, K € S(G). .
A w-Mackey functor for trivial w is called a Mackey functor.
Let ¢(s,9,x) : H = K be the map defined by ¢(m,o k)(h) = ghg™'. Let S = (S.,8") : H >
S(T'u/An) be the bifunctor given as follows. The map '
S.(H,9,K) : S(Tu/An) — S(T'k/Ak)
is defined by
[a ® b] — [@(a) ® G(B)]

where (3" mhh) = Y rao(m.g)(R), for T € Z. Let {ki,...,km}, m = |K|/|H]|, be a

heH heH
complete set of representatives of K/y(s,4,x)(H). The map

S*(H,9,K) : S(Tk /Ak) — S(Tu/An)

is defined by
la®@b] — > [(97* (k7 aks)g) ; ® (97" (ki bki)g) 4]
=1
where (E Te9)H = Z o9 for ry € Z. In particular,
9€G 9eH

IndX(a®b]) =S.(H,e, K)([a®b])) =[a ®b],

ResX(a® b)) =S*(H,e,K)([a® b)) = i[(kflake)ﬂ ® (ki 1bk:) ),

i=1

S.(H,g,gHy“)([a ®b)) =S*(gHg™*,97", H)([a ® b]) = [gag™" ® gbg™"].
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Theorem 3.4. The Burnside ring Q(G) canonically acts on KQq(f).

Proof. The theorem follows from Lemma 2.2 and Proposition 3.1. O

Proof of Theorem 1.1. This bifunctor clearly satisfies Conditions (1) and (2) in Definition 3.2.
In order to check the equality in Definition 3.3, let [a ® b] € S(T'y/Ag). Then

S*((K,e, L)) o S.((H,e, L))([a ® B])
=5"((K,e,L))([a ® b))

=310 ali) ke ® (17 "bli)x),

=1
where {l1,...,lm}, m = |L/K], is a complete set of representatives of L/K. Thus

P S.(KngHge,K))oS.(HNg 'Kg,9,KNgHg™"))
KgHeK\L/H

0o S*(HNg 'Kg,e, H))([a ® b))

= @ S((KngHg™ e,K) oS (HNg  Kg,9,K NgHg™)
KgHEK\L/H

(SoU(h5 ahs)ag-1x, ® (b7 bhs)mng1]) = ()
Jj=1

where {hy,...,hm}, n = |H/HNg ' Kg|, is a complete set of representatives of H/HNg~'Kg,

n

®= € Sd(KngHg e, K))(Z[(gh;'.lahjg_l)g}!g—iﬁk ® (gh;lbhjg_l)gﬁg"‘nk])
KgHeK\L/H j=1

= @ (Xleh; ahig™)em1nx ® (955 bhig ™ )gmg-1nx])
KgHEK\L/H j=1

= Z[(l:laz,-),( ® (I7'bl)k] where I; = hjg™".

i=1

4 The proof of Theorem 1.2

We can prove Theorem 1.3 completely analogous by to Theorem 1.2. So, we prove here only
Theorem 1.2.

Proof of Theorem 1.2.

Part 1.

(I) Proof of S(Qp, /minp, ) = Z,. Let Dy = (0,7 | 62 = 7% = (70)* = €). Then the elements
of order 2 in Dy are o, 7, and 7o. Thus S(Rp,/min) = (e ®0,0Q@ 7,070, TR T, TR T0,T0 Q®
70)z,. By definition of S(I'/A), we have the following equalities

TRe=TR0T0=TQT,
oRQT=0Q7T0T =080,
TRTO=TQTOTTC =TQT,
TORT=T0QRTTOT =70 ®TO,

oRTo=0QT00TO =0 Q0.

S(Qp,/minp, ) # 0 can be easily verified. Thus, S(©2p, /minp, ) & Z,.
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() Proof of S(Qp,/minp, ) = Zy®. Let Dg = (0,7 | 0® = 12 = (10)% = €). Then the
elements of order 2 in D¢ are 7, 7o, and 70, Thus, S(Qp,/minp ) = (T ® 7,7 @ 70,7 ®
10,70 ® 10,70 ® T0%,70% ® T0%)7,. By definition of S(I'/A), we have the equalities

T®TO=TQT0TTO =T ® T,

TOQT =T0 ® TTOT = T0 ® TO?,

and

T®T=0"'ro®0 10 = 10’ @ 707,

1

T0®T0 =0 to0®a oo =TQT.

Thus, Rankgz, (S(p, /min, )) < 2.
Let M = (r,70,70%)z,. Since X = {r, 70,702}, we define the homomorphism

SD:M@Z,M—)Zg@Zg,

> T(z,wmy'—*( Y tew 2 "(z,y))-

(z,9)EX XX z=y,(z,¥)EXX X s#y,(2.9)EXxX
Let R=(a®b-bRa,a®b—a® bab,gag ® b — a @ ghg)z,. By definition,
S(Qps /minp, ) = (M ®z, M)/R.
Since R C Ker ¢ holds, the homomorphism map
?: S(on/minDc) — 70 ® Zo

is well-defined. Clearly ¢ is surjective, then B is also surjective. Thus, S(2p,/minp, ) 2= Z;*.

(W) Proof of S(Rp,,/miny, ) = Z,>. Let Dyp = (0,7 | 6° = 72 = (70)? = €). Then the
elements of order 2 in Dg are 7, 70, 0%, 70°, T0*. Thus, $(Qp,,/miny, ) =(r®T,7®70,7®
102, 7®T03, T®T0%, To® 70, ToQT0%, To®T03, To® 704, 702 ®@T02, 70 @703, T0? ®@T0, T3 ®
10,70 ® T0*,70* ® T0*)z,. By definition of S(I'/A), we have the equalities

TR®TO=TQTOTTa =T®T0? =T @ T0°r70° = T Q@ T0* = T ® 1070t =T @ TP,

T6 QT = T0 @ TT0T = T0 ® T0* = 170 ® To*r0T0* = TO ® T0? = T0 @ TO*TOTO? = TO ® TO°,

10%®T = 10*°@170°T = 70%@70° = T0?@T0%r0% 0% = 70’ ®T0* = T0*®T0*r0?T0* = T0?®TO,

10°®7 = 10°@7170°T = T0%@70? = T0’®T0%10%10% = T0°®7T0 = T03@TOTI 0 = TP @1,

and

T®T=0"'r0®0 70 =10% ® 70?,

1 2

102 @ 70? = 0~ 10%0 ® 07 10%0 = 10* ® T0*,

1 4

rote @ o 1o
1

rot@rot =0~ oc=T170Q 70,

r0®710 =0 ‘700 ® 0" 100 = T0° ® T0°.

Thus, Rankz, (S(f24,/min,,)) £ 2.
Similarly to (I), we can show S(Qp,,/minp, ) = Zy>.

(V) Proof of (04, /min ) = Z,®. By direct computation, we can show that S(f24, /min As)
is generated by the three elements [a®b], [c®d], and [f ® h], where (a,b) = C;, Dy, {c,d) = Ds,
(f,h) = Dyp. Thus, Rankg,(S(4,/min, )) < 3. Let M be the free Z;-module generated by
all elements of order 2 in As. We define the linear map o : M ®z, M = Z; & Z> & Z by

a®br— (z,9,2)
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where

r= 1 if (a,b) = Cy, Dy,
o otherwise,

1 if (a,b) = Ds,
0 otherwise,

o {1 if (a, b) & Dyo,
0 otherwise.
Let R=(a®b~b®a,a®b—a® bab,gag ® b — a ® gbg)z, C M ®z, M. By definition,
S(Q4, /miny ) = (M ®z, M)/R.

Since R C Ker ¢ holds, the homomorphism map

:S(Qu,/min) — Z, ® Zy @ Zy
is well-defined. Clearly ¢ is surjective, hence ¥ is also surjective. Thus, S(Q4, /min 4s) = Z,3.

By the arguments above, the map
Ind : S(Qp, /minp, ) & S(p,/minp,) & S(Qp,, /minp, ) — S(Ra,/min,,)

is surjective.

Part 2.
Ag - [a®b] tf (an b) = C2’D4’
(I) Proof of Resp([a ® b)) = {O stherwise .

The map Resf: : S(Q4,/min,,) = S(Qp,/minp, ) is defined by

[a®b — > [(97 ag:)p, ® (97 bg:)n,).

i=1
Direct computation shows that S(24, /min , ) is generated by the three elements [a®})], [c®d],
[f ® h] where (a, b) =3 Cz,D4, (C, d) o Ds, <f, h) o DlO-
(i) In the case {(a,b) = D,, there exists an element k € As such that k{a,b)k™* = Dy. Let
o' = kak™1, ¥ = kbk~*. Since [a®b] = [a' ®b'], it follows that Res}: ([o' ®b]) = Res? ([a®b)).
If [(9; ag:)p, ® (9:2bg:)p.] # 0, then 97 1a'gi,9; W g; € Dy. Thus @',b' € g,-D4g,~‘1. Besides,
a',b' € Dy, so0 g; € Na,(Dy) = Ay. Therefore,
Resp} ([a ® b)) = (|44l/IDs))a®@b] = 3{a @ b] = [a ® B].
(ii) In the case {c,d) & Ds, if [(9; " c9:)p, ® (9, dgi)p,] # 0, then c,d € g;Dag;". Therefore,
Resfi ([c®d]) = 0.

(iii) In the case (f,h) = Dio, if [(9;7 ' f9i)p. ® (97 'hgi)D,] # O, then f,h € g:Dyg; .
Therefore,

Resg‘:([f ® h]) = 0.
[a®b] if <aab) gDGa
0 otherwise
[a®b] if (a,b) = Dy,
0 otherwise

(IL) Proof of Resg:([a ®b) = { . 'We can prove it similarly to (I).

5 . We can prove it similarly to (I).

() Proof of Resf? ([a®b]) = {
By the arguments above, the map

S(4,/min,,) 2% S(Qp, /minp, ) & S(Qp, /miny,,) & S(p,, /miny, )

is injective. : O
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