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The Smith Problem and a Counterexample to Laitinen’s Conjecture
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1. INTRODUCTION

In this article, we describe current study of ‘the Smith problem. Let G be a finite
group. P. A. Smith [24] asked

whether the tangential G-representations U and V' at two fixed points of an arbi-
trary smooth G-action on a sphere with exactly two fixed points are isomorphic

to each other.

So it has been referred to as the Smith problem. We say that U and V above are

S-equivalent. Important breakthroughs on the problem came in

e Atiyah-Bott-Milnor [1], [8]: Affirmative in semi-free actions,
e Cappell-Shaneson [2]-[4]: Negative for G = Cy, m > 2, and
o T. Petrie [15]-[19]: Negative for G = Cpy, X Cper Where p, g, r are distinct odd

primes.

Surveys of relevant study so far are given in [22], [21], [7] and [13]. In case where
G is an Oliver group, E. Laitinen [7] lighted the problem again with an conjecture
which would guarantee existence of nonisomorphic S-e(juivalent G-representations U
and V. Laitinen-Pawalowski [7] and Pawalowski-Solomon [13] showed that Laitinen’s

conjecture is true for most Oliver groups G:

(1) perfect groups G

(2) Oliver groups G of odd order

(3) Oliver groups G with N <« G such that G/N 2 C,,, where p and ¢ are distinct
odd primes,

(4) nonsolvable gap groups G ¥ PXL(2,27).
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A finite group G is called a gap group if there exists a (finite dimensional) real G-

representation V' such that

(1) dim V¥ > 2dim V¥ for any subgroup P C G of prime power order and any
subgroup H C G with P C H, and |
(2) VN =0 for any normal subgroup N C G such that |G/N| is a prime power.

Although various affirmative evidences have been found, it turns out that there is an
counterexample [9] to Laitinen’s conjecture. That is, the conjecture is invalid in the
case G = Aut(As). We remark that Aut(Ag) is not a ‘gap group’. The counterexample
indicates that the notion ‘gap group’ may be crucial to Laitinen’s conjecture and hence
relevant to the Smith problem. As for gap groups, readers can refer to [6], [11], [10],
and [25].

2. S-, D-EQUIVALENCES AND LAITINEN’S CONJECTURE

Let G be a finite group. For a smooth G-manifold X and a G-fixed point z in X,
the tangent space T(X) of X at z is regarded as a real G-module, namely a real G-
representation space. Thus T,(X) is referred to as the tangential G-representation of
X at z. Let U and V be (finite dimensional) real G-modules. We say that U and V
are S-equivalent, in symbol U ~g V, if there exists a homotopy sphere ¥ with smooth
G-action such that £¢ = {a,b}, T,(X) & U and T,(X) = V. Such a homotopy sphere
with smooth G-action is called a 2FP sphere (two-fixed-point sphere) for U and V. It
is easy to show that res§U 22 resgV holds if U ~s V and |P| = 2, 4. Sanchez further
showed that resGU = res§V holds if U ~g V and P is a p-subgroup of G for an odd
prime p.

Let P(G) denote the set of all subgroups of G of prime power order, where the trivial
subgroup {e} lies in P(G). Define P(G)* by

P(G)* = P(G) \ {P < G | 8 divides |P|}.
Let RO(G) denote the real representation ring. Define the Smith set Sm(G) to be

{{U1-[V1eRO(G) | U ~s V}.
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Let Irr(G)* denote the set of all irreducible real G-modules of dimension > 2. Then
Sm(G) is a subset of the submodule RO(G)* of RO(G) generated by Irr(G)*.
Define the homomorphism dg : RO(G)* — Z by

de([U] = [V]) = dimU® - dim VE,
and the Petrie kernel P*RO(G)* to be

n Ker[res$ : Ker(dg) = RO(P)].
PeP(G)*

Then we have
Sm(G) ¢ P*RO(G)*.

There exists a disk A with smooth G-action such that A€ consists of exactly two
points if and only if G is an Oliver group. We remark that a finite group G is an Oliver

group if and only if G never admits a normal series
PaHaG

such that |P| and |G/H| are prime powers and H/P is a cyclic group. We say that
U and V are D-equivalent, in symboly U ~p V, if there exists a disk A with smooth
G-action such that A = {a,b}, T,(A) = U and T}(A) = V. Such a disk with smooth
G-action is called an 2FP disk for U and V. Define the Oliver set Oli(G) by

OLi(G) = {[U] - [V] e RO(G) | U ~p V},
and the kernel PRO(G)* by

PRO(G)* = (] Kerlres$ : Ker(dg) — RO(P)].
PeP(G)

B. Oliver [14] proved the equality
Oli(G) = PRO(G)".

Thus the Oliver set is an additive subgroup of RO(G)*.
For an element g € G, let (g) denote the conjugacy class of g in the group G and
let (g)* denote the real conjugacy class of g in G, namely (g)* = (g) U (¢™'). Let ag
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denote the number of real conjugacy classes (9)*, g € G, such that the order of ¢ is not

a power of a prime. Laitinen-Pawalowski [7] showed that if ag # 0 then
ag — 1 = rank PRO(G)*

and hence
Theorem 2.1. If Oli(G) # 0 then ag > 2.

The next conjecture has been referred to as Laitinen’s conjecture.
Conjecture. Let G be an Oliver group. If ag > 2 then Sm(G) N Oli(G) # 0.

3. NEW OBSERVATIONS ON 2FP SPHERES

Recall a classical lemma.

Lemma 3.1. Let M be a connected, closed smooth Cy-manifold of dimension > 1. If

the C,-fized point set F of M is nonempty then |F| > 2.

A simple proof of the lemma is given in [9].

Let G be a finite group. The lemma above implies the next proposition.

Proposition 3.2. Let £ be a 2FP sphere for U and V. If K is a subgrodp of G with
indez 2 then dim UK = dim VX.

For each [W] € Irr(G)*, we have an associated homomorphism fw : RO(G)* — Z; if
z € RO(G)* then fw(z) is the multiplicity of [W] in z. Thus, for z € RO(G)*, we have
=) fw() W]
[Wielr(G)*
Define the subset RO(G); of RO(G)* by
ROG= () ((dim W*) fywyres) ™ (0),
[Wielr(G)*, PEP(G)
where (dim WF) fiwresg is a map RO(G)* — RO(P);

(dim WP) fryjresé(z) = (dim WF) fowy(z)res$(x)
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for z € RO(G)*. Further define the subset SRO(G) of RO(G)* by
SRO(G) = P*RO(G)* NRO(G);.

With this notation, we have the following results.

Theorem 3.3. The implication Sm(G) C SRO(G) holds for any finite group G.
Theorem 3.4. If G = Aut(As) then SRO(G) = 0 and hence Sm(G) = 0.

Note that if G = Aut(Ag) then ag = 2 and Sm(G) = 0, which disagrees with

Laitinen’s conjecture.

4. NEw CONJECTURES

At present, we have the following conjectures.

Conjecture 4.1. Let G be an Oliver gap group. If ag > 2 then Sm(G) N Oli(G) # 0.
Conjecture 4.2. Let G be an Oliver group. If SRO(G) # 0 then Sm(G) # 0.

The author wishes that readers are interested in the conjectures above.
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