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ABSTRACT. On the setting of the unit ball, we characterize compact
Toeplitz operators on the pluriharmonic Bergman spaces $b^{\mathrm{p}}.1<p<\infty$ ,
in terms of the boundary vanishing conditions of the Berezin transform
and certain differential quantity of the symbol. As a consequence, we
characterize $\mathcal{M}$ -harmonic and radial symbols of compact Toeplitz oper-
ators.

1. INTRODUCTION

Let $B$ be the open unit ball of the complex $n$-space $\mathbb{C}^{n}$ and $V$ denote
the normalized Lebesgue volume measure on $B$ . For 1 $\leq p<\infty$ , let
$L^{p}=L^{p}(B, V)$ be the usual Lebesgue space and put

$||u||_{p}=( \int_{B}|f|^{\mathrm{p}}dV)^{\frac{1}{p}}$

for $f\in L^{p}$ . The Bergman space $A^{p}$ is a subspace of $L^{p}$ consisting of all
holomorphic functions on $B$ . A function $u\in C^{2}(B)$ is said to be plurihar-
monic if its restriction to an arbitrary complex line that intersects the ball is
harnonic as a function of single complex variable. So, every pluriharmonic
function is just harmonic on the unit disk. The pluriharmonic Bergman
space $b^{\mathrm{p}}$ is the subspace of $L^{p}$ consisting of all pluriharmonic functions on
$B$ . It is known that $A^{p}$ and $b^{l}$’ are closed subspaces of If and hence are
Banach spaces. Clearly, $A^{p}\subset b^{p}$ .

We let $P$ : $L^{2}arrow A^{2}$ and $Q$ : $L^{2}$ —
$b^{2}$ be the Hilbert space orthogonal

projections respectively. As is well known, $P$ is the well known Bergman
projection given by

$P \varphi(z)=\int_{B}\frac{\varphi(w)}{(1-z\cdot\overline{w})^{n+\iota}}dV(w)$
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for functions $\varphi\in L^{2}$ . Here, $z$ . $\overline{w}=z_{1}\overline{w}_{1}+\cdots$ $+z_{n}\overline{w}_{n}$ denotes the
Hermitian inner product on $\mathbb{C}^{n}$ . Also, it turns out that $Q$ is an integral
operator represented by

$Q \varphi(z)=\int_{B}(\frac{1}{(1-w\cdot\overline{z})^{n+1}}+\frac{1}{(1-z\cdot\overline{w})^{n+1}}-1)\varphi(w)dV(w)$

for functions $\varphi\in L^{2}$ . These integral formulas for $P$ and $Q$ allow us to
extend the domains of $P$ and $Q$ to $L^{1}$ . Note that $Q$ can be rewritten as
(1) $Q(\varphi)=P(\varphi)+\overline{P(\overline{\varphi})}-P(\varphi)(0)$

for functions $\varphi\in L^{1}$ .
Let $u\in L^{1}$ . The (Bergman space) Toeplitz operator $T_{\mathrm{u}}^{a}$ : $A^{p}arrow A^{p}$ with

symbol $u$ is the linear operators defined by

$T_{u}^{a}f=P(uf)$

for $f\in A^{p}$ with $uf\in L^{1}$ .
Also, the (pluriharmonic Bergman space) Toeplitz operator $T_{u}$ : $b^{\mathrm{p}}arrow b^{\mathrm{p}}$

with symbol $u$ is defined by

$T_{u}f=Q(uf)$

for functions $f\in b^{\mathrm{p}}$ with $uf\in L^{1}$ . Clearly, $T_{u}^{a}$ and $T_{u}$ are densely defined
and not bounded in general.

For $z\in B$ , we let $k_{z}$ be the normalized holomorphic Bergman kernel
given by

$k_{z}(w)= \frac{(1-|z|^{2})^{\frac{n+1}{2}}}{(1-w\cdot\overline{z})^{n+1}}$ $(w\in B)$ .

Given a bounded operator $T$ on $A^{p}$ or $b^{p}$ , the Berezin transform $\tilde{T}$ is a
function on $B$ defined by

$\overline{T}(z)=<Tk_{z},$ $k_{z}>$ $(z\in B)$ .

Here and else where, we use the usual pairing

$<f,$ $g>= \int_{B}f\overline{g}dV$

whenever $f\overline{g}\in L^{1}$ . Given $u\in L^{1}$ , we note $\tilde{T}_{u}^{a}=\tilde{T}_{u}$ . Thus we let a denote
the Berezin transform of $T_{\mathrm{u}}^{a}$ or $T_{\mathrm{u}}$ . Note that

$u( \sim z)=\int_{B}u|k_{z}|^{2}dV$ $(z\in B)$ .

In this paper, we are concerned with a characterization problem of com-
pact Toeplitz operators on the pluriharmonic Bergman spaces $b^{\mathrm{p}}$ of the ball.
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Recently, this problem has been studied on the Bergman spaces and har-
monic Bergman spaces of the unit disk.

Axler and Zheng ([1]) proved that if $T$ equals a finite sum of the form
$T_{u\iota}^{a}\cdots T_{u_{k}}^{a}$ where each $u_{i}$ is bounded on the unit disk, then $T$ is compact

on $A^{2}$ of the unit disk if and only if the Berezin transform $\tilde{T}$ vanishes on
the boundary of the unit disk. Later, this result was extended to the unit
ball and bounded symmetric domains in [9] and [4] respectively. Recently,
Miao and Zheng ([7]) considered the same problem for bounded operators
on $A^{p},$ $1<p<\infty$ , of the unit disk with certain integrable conditions and
proved that the operator under consideration is compact if and only if the
Berezin transform of the operator vanishes on the boundary of the unit disk.
As a consequence of the result, they extended the result of Axler and Zheng
([1]) to all $A^{p},$ $1<p<\infty$ , and more general symbols in the class $BT$ (see

the below for the definition).
The corresponding problem has been also considered for Toeplitz oper-

ators on the pluriharmonic Bergman spaces. Stroethoff ([11]) proved that
a Toeplitz operator with bounded radial symbol is compact on $b^{2}$ of the
unit disk if and only if the Berezin transform of the symbol vanishes on the
boundary of the unit disk. In [2], the same was proved for positive symbols
in $L^{1}$ . Recently, K. Guo and D. Zheng$([5])$ characterized compact Toeplitz
operators with bounded symbol on $b^{2}$ of the unit disk in terms of the the
boundary vanishing condition of the Berezin transform and certain differ-
ential quantity of the symbol.

We let $BT$ be the set of all functions $f\in L^{1}$ for which

$||f||_{BT}= \sup_{z\in B}|\overline{u}(z)|<\infty$ .

Note that $L^{\infty}\subset BT$ .
In this paper, we consider the same characterizing problem of compact

Toeplitz operators with symbols in $BT$ on the unit ball. In Section 2, we
first show that symbols in $BT$ induce bounded Toeplitz operators on $A^{p}$

and $b^{p}$ respectively for $1<p<\infty$ (see Theorem 4). In Section 3, we will
extend the result of Miao and Zheng ([7]) to the ball (see Theorem 7). As
an application, we characterize the compactness of Toeplitz operators with
symbols in $BT$ on $A^{p}$ . In Section 4, we will use the result in Section 3
to obtain a characterization of compact Toeplitz operators with symbol in
$BT$ on $b^{\mathrm{p}},$ $1<p<\infty$ , in terms of the boundary vanishing condition of
the Berezin transform and certain differential quantity of the symbol (see

Theorem 17). This result extends the result in [5] where $p$ is assumed to
be 2 and all symbols are assumed to be in $L^{\infty}$ . As applications, we obtain
characterizations of $\mathcal{M}$ -harmonic and radial symbols in $BT$ for which the
corresponding Toeplitz operators are compact. See Corollaries 18 and 19.
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2. TOEPLITZ OPERATORS WITH SYMBOLS IN $BT$

Throughout this paper, we will often abbreviate inessential constants in-
volved in inequalities by writing $A<B\sim$ for positive quantities $A$ and $B$ if
the ratio $A/B$ has a positive upper bound. Also, we write $A\approx B$ if $A<B\sim$

and $B\sim<A$ . Given $p\in(1, \infty)$ , we let $p’$ be the conjugate exponent of $p$ ,
i.e., $1/p+1/p’=1$ .

For $z,$ $w\in B,$ $z\neq 0$ , define

$\varphi_{z}(w)=\frac{z-|z|^{-2}(w\cdot\overline{z})z-\sqrt{1-|z|^{2}}[w-|z|^{-2}(w\cdot\overline{z})z]}{1-w\cdot\overline{z}}$

and $\varphi_{0}(w)=-w$ . Then each $\varphi_{z}$ is a biholomorphic self-maps of $B$ and
$\varphi_{z}\circ\varphi_{z}$ is the identity on $B$ . We also have

(2) $1-| \varphi_{z}(w)|^{2}=\frac{(1-|z|^{2})(1-|w|^{2})}{|1-z\cdot\overline{w}|^{2}}$ $(z,w\in B)$ .

See Section 2 of [8] for details. The pseudo hyperbolic ball $E_{r}(z)$ with
center $z\in B$ and $r\in(0,1)$ is defined by $E_{r}(z)=\varphi_{z}(rB)$ . It is well
known that

(3) $V(E_{r}(\approx))\approx(1-|z|^{2})^{n+1}$

for every $z\in B$ .
Proposition 1. Let 1 $\leq p<\infty,$ $r\in(0,1)$ and $\mu$ be a positive Borel
measure on B. Then the following quantities are all equivalent.

(a) $\sup_{0\neq f\in A^{\mathrm{p}}}\frac{\int_{B}|f|^{p}d\mu}{\int_{B}|f|^{p}dV}$ .

(b) $\sup_{z\in B}\int_{B}|k_{z}|^{2}d\mu$ .
$\mu(E_{r}(z))$

(c)
$\sup_{z\in B}\overline{V(E_{r}(z))}$

.

$\int_{B}|f|^{p}d\mu$

(d)
$\sup_{0\neq f\in b^{\mathrm{p}}}\overline{\int_{B}|f|^{\mathrm{p}}dV}$

.

Proof. The equivalences of (a), (b) and (c) are well known. See [14] for
example. Note $A^{p}\subset b^{p}$ . So, to complete the proof, we only need to show
that

$\sup_{0\neq f\in b\mathrm{r}}\frac{\int_{B}|f|^{\mathrm{p}}d\mu}{\int_{B}|f|^{\mathrm{p}}dV}\leq\sup_{z\in B}\frac{\mu(E_{r}(z))}{V(E_{r}(z))}$.
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Let $f\in b^{\mathrm{p}}$ . By Proposition 10.1 of [10] and (3), we have

$|f(z)|^{p<} \sim\int_{E,.(z)}\frac{|f(w)|}{(1-|\mathrm{c}\iota f|^{2})^{n+1}}dV(w)$

$\sim<\int_{E,(z)}\frac{|f(w)|^{p}}{V(E_{\mathrm{r}}(w))}dV(w)$

for all $z\in B$ . Note that $xE_{r}(z)(w)=\chi_{E_{r}(w)}(z)$ for all $z,w\in B$ . Here, the
notation $\chi_{F}$ denotes the characteristic function of $F\subset B$ . It follows from
Fubini’s theorem that

$\int_{B}|f|^{\mathrm{p}}d\mu_{\sim}<\int_{B}\int_{B}\frac{xE_{r}(z)(w)|f(w)|^{p}}{V(E_{r}(w))}dV(w)d\mu(z)$

$= \int_{B}\int_{B}\frac{\chi_{E_{r}(w)}(z)|f(w)|^{p}}{V(E_{r}(w))}d\mu(z)dV(w)$

$= \int_{B}\frac{\mu(E_{r}(w))|f(w)|^{p}}{V(E_{r}(w))}dV(w)$

$\leq\sup_{w\in B}\frac{\mu(E_{r}(w))}{V(E_{r}(w))}\int_{B}|f|^{p}dV$.

This completes the proof.

Given 1 $<p<\infty$ , it is well known that $P$ is a bounded projection
from $L^{p}$ onto $A^{p}$ . We let $A_{0}^{p}$ denote the space of all functions $f$ in $A^{\mathrm{p}}$ such
that $f(\mathrm{O})=0$ . As is well known, every pluriharmonic functions $u$ on $B$

has a unique decomposition $u=f+\overline{g}$ where $f,$ $g$ are holomorphic and
$f(\mathrm{O})=0$ . Furthermore, if $u\in b^{\mathrm{p}}$ then both $f,$ $g\in A^{\mathrm{p}}$ ; this is clearly a
consequence of the $L^{p}$-boundedness of the Bergman projection $P$ . So, we
have a decomposition $b^{\mathrm{p}}=A_{0}^{p}+\overline{A^{p}}$ .
Proposition 2. For $1<p<\infty,$ $Q$ is a bounded projection form $L^{p}$ onto
$b^{\rho}$ .
$\underline{Proof}$. First note that $|F(0)|\leq||F||_{p}$ for every $F\in A^{p}$ . Since $Qf=Pf+$
$P(\overline{f})-P(f)(\mathrm{O})$ for every $f\in L^{p}$ by (1), we have by the $L^{p}$-boundedeness
of $P$ ,

$||Qf||_{p}=||Pf+\overline{P(\overline{f})}-P(f)(0)||_{p}$

$\leq||Pf||_{p}+||P(\overline{f})||_{p}+|P(f)(0)|$

$\sim<||Pf||_{p}$

$\sim<||f||_{\mathrm{p}}$

for every $f\in L^{p}$ . Hence $Q$ is bounded form $L^{p}$ into $b^{\mathrm{p}}$ .
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Using the fact that $P$ is a projection from $L^{p}$ onto $A^{p}$ and the decompo-
sition $b^{p}=A_{0}^{p}+\overline{\mathrm{A}^{p}}$ , we see $Q$ is a projection from $L^{p}$ onto $\mathcal{U}$). The proof is
complete. $\square$

It is known that the dual of $A^{p}$ is $A^{p’}$ under the pairing $<,$ $>$ . Also, we
have the analogous dualities for harmonic Bergman spaces.

Proposition3. For $1<p<\infty$ , the spaces $b^{\mathrm{p}}$ and $b^{\mathrm{p}’}$ are dual to each other
under the pairing $<,$ $>$ .
Proof. This follows from the Hahn-Banach extension theorem and the $L^{p_{-}}$

boundedness of $Q$ . This completes the proof.

The next theorem says that symbols in $BT$ induce bounded Toeplitz op-
erators on both $A^{p}$ and $\Psi$ for $1<p<\infty$ .
Theorem 4. Let $u\in BT$ and $1<p<\infty$ . Then $T_{u}^{a}$ : $A^{p}arrow A^{p}$ is bounded
$and||T_{u}^{a}||<\sim||u||_{BT}$ . Also, $T_{\mathrm{u}}$ : $b^{p}arrow b^{p}$ is bounded and $||T_{\mathrm{u}}||_{\sim}<||u||_{BT}$ .
Proof. Let $f\in b^{\mathrm{p}}$ and $g\in b^{p’}$ . By H\"older’s inequality and Proposition 1,

$|<T_{u}f,$ $g>|=|<uf,$ $g>|$

$\leq\int_{\leq(}B|ufg|dV\int_{B}|f|^{p}|u|dV)^{1/p}(\int_{B}|g|^{p’}|u|dV)^{1/p’}$

$\leq||u||_{BT}||f||_{p}||g||_{p’}$ .
Hence, by Proposition 3, $T_{\mathrm{u}}$ is bounded on $b^{\mathrm{p}}$ .

Since the dual of $A^{p}$ is $A^{p’}$ , the similar argument can be applied to prove
the boundedness of $T_{u}^{a}$ on $A^{p}$ . The proof is complete.

3. COMPACT TOEPLITZ OPERATORS ON $A^{p}$

In this section, we characterize compact Toeplitz operators with symbol
in $BT$ on $A^{p}$ in terms of the boundary vanishing property of the Berezin
transform of the symbol. In fact, we generally characterize the compactness
of bounded operators on $A^{p}$ with some integrable condition in terms of the
boundary vanishing property of its Berezin transform. Our method will be
based on a recent result of [7] where J. Miao and D. Zheng proved the same
characterization on the unit disk.

For each point $z\in B$ , let $U_{z}$ be the operator defined by $U_{z}f=(f\circ\varphi_{z})k_{z}$ .
Then, one can prove that each $U_{z}$ is bounded on $A^{p}$ for $p>1$ . Given a
bounded operator $T$ on $A^{p},p>1$ , we define an operator $T_{z}$ by $T_{z}=U_{z}TU_{z}$ .
Note that
(4) $\tilde{T}0\varphi_{\approx}=\overline{T}_{z}$ $(z\in B)$ .
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This was proved in Lemma 3 of [9] for $p=2$ . But, the same proof works
for all $p$ .

Lemma 5. For $z\in B,$ $c$ real, $t>-1$ , we define

$I_{c,t}(z)= \int_{B}\frac{(1-|w|^{2})^{t}}{|1-z\cdot\overline{w}|^{n+1+t+c}}dV(w)$ $(z\in B)$ .

If $c<0$ , then $I_{c,t}$ is bounded on B. If $c>0$ , then $I_{c,t}(z)\approx(1-|z|^{2})^{-\mathrm{C}}$ as
$|z|arrow 1$ .

Proof. See Proposition 1.4.10 of [8]. $\square$

For $z\in B$ , we let $K_{z}$ be the holomorphic Bergman kernel given by

$K_{z}(w)= \frac{1}{(1-w\cdot\overline{z})^{n+1}}$ $(w\in B)$ .

Using Lemma 5, we see for each $1<p<\infty$ ,

(5) $||K_{z}||_{p}\approx(1-|z|^{2})^{-\frac{n+1}{p}}$’

for $z\in B$ .
Using the power series representation of $I\mathrm{f}_{z}$ , we can write $\tilde{T}$ for a bounded

operators $T$ on $A^{p}$ as a power series:

(6)
$\tilde{T}(w)=(1-|w|^{2})^{n+1}\sum_{\alpha,\beta}C_{\alpha}C_{\beta}<Tw^{\alpha},$

$w^{\beta}>z^{\alpha}\overline{u}^{\beta}|$ $(w\in B)$

where $C_{\gamma}=(n+1+|\gamma|)!/n!\gamma!$ .

Lemma 6. Let $1<p<\infty$ . Suppose $T:A^{p}arrow A^{p}$ is boundedfor which

$\sup_{z\in B}||T_{z}1||_{m}<\infty$

for some $m>1$ . Then $\overline{T}(z)arrow 0$ as $|z|arrow 1$ if and only iffor every
$t\in[1,m),$ $||T_{z}1||_{t}arrow 0as|z|arrow 1$ .

Proof. First suppose that for any $t\in[1, m),$ $||T_{z}||_{t}arrow 0$ as $|z|arrow 1$ . In
particular $||T_{z}1||_{1}arrow 0$ as $|z|arrow 1$ . Hence

$|\tilde{T}(z)|=|<Tk_{z},$ $k_{z}>|$

$=<U_{z}TU_{z}1,1>|$

$\leq||T_{z}1||_{1}$ .

Thus, we have $\tilde{T}(z)arrow 0$ as $|z|arrow 1$ .
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Now suppose $\overline{T}(z)arrow 0$ as $|z|arrow 1$ . Fix $t\in[1, m)$ and show $||T_{z}||_{t}arrow 0$

as $|z|arrow 1$ . By (5), we note that

$|<T_{z}w^{\alpha},$ $w^{\beta}>|=(1-|z|^{2})^{n+1}|<T[w^{\alpha}\circ\varphi_{z}K_{z}],$ $w^{\beta}\mathrm{o}\varphi_{z}K_{z}>|$

$\leq(1-|z|^{2})^{n+1}||T||||I\mathrm{f}_{z}||_{p}||K_{z}||_{p’}$

$\sim<||T||$

for any $z\in B$ and multi-indices $\alpha,$
$\beta$ . Hence $|<T_{z}w^{\alpha},$ $w^{\beta}>|$ is uniformly

bounded for $z\in B$ and multi-indices a, $\beta$ . By (4) and (6),

$\overline{T}(\varphi_{z}(w))=\tilde{T}_{z}(w)$

$=(1-|w|^{2})^{n+1} \sum_{\alpha,\beta}C_{\alpha}C_{\beta}<T_{z}w^{\alpha},$

$w^{\beta}>z^{\alpha}\overline{w}^{\beta}$ $(z,w\in B)$ .

Since $|\varphi_{z}(w)|arrow 1$ as $|z|arrow 1$ for each $w\in B$ , by the same argument of the
proof of Lemma 14 of [7], we can show that $<T_{z}1,$ $w^{\alpha}>arrow 0$ as $|z|arrow 1$

for every multi index $\alpha$ . For $w\in B$ , we note that

$(T_{z}1)(w)=<T_{z}1,$
$K_{w}>= \sum_{\alpha}C_{\alpha}<T_{z}1,$

$w^{\alpha}>w^{\alpha}$ .

Also, the same method as in the proof of Lemma 14 of [7] can be applied
to show that $||T_{z}||_{t}arrow 0$ as $|z|arrow 1$ .

The following is the main result of this section.

Theorem 7. Let $1<p<\infty$ and $p_{1}= \min\{p,p’\}$ . Suppose $T$ is bounded
on $A^{p}$ for which

$\sup_{z\in B}||T_{z}1||_{m}<\infty$ and $\sup_{z\in B}||T_{z}^{*}1||_{m}<\infty$

for some $m> \frac{n+2}{p_{1}-1}$ . Then $T$ is compact on $A^{p}$ if and only if $\tilde{T}(z)arrow 0$ as
$|z|arrow 1$ .

Proof. First suppose $T$ is compact on $A^{p}$ . By (5), we note that
$\tilde{T}(z)=<Tk_{z},$ $k_{z}>$

$=(1-|z|^{2})^{n+1}<TK_{z},$ $K_{z}>$

$\approx<T\frac{K_{z}}{||K_{z}||_{p}},$ $\frac{IC_{z}}{||K_{z}||_{p’}}>$

for every $z\in B$ . Since $K_{z}/||K_{z}||_{p}arrow 0$ weakly in $A^{p}$ as $|z|arrow 1$ , we have
$\tilde{T}(z)arrow 0$ as $|z|arrow 1$ .

Suppose $\tilde{T}(z)arrow 0$ as $|z|arrow 1$ . By Lemma 6, we have $||T_{z}||_{t}arrow 0$ as
$|z|arrow 1$ for every $t\in[1, m)$ . Fix $t$ such that $\frac{n+2}{p\iota-1}<t<m$ in the rest of the
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proof. To prove the compactness of $T$ , we first note that
(7)
$(T^{*}IC_{w})(z)=<T^{*}K_{w},$ $K_{z}>=<K_{w},$ $TIC_{\sim},$ $>=\overline{(TK_{z})(w)}$ $(z, w\in B)$ .

It follows that
$(Tf)(w)=<Tf,$ $IC_{w}>$

$=<f,$ $T^{*}K_{w}>$

(8) $= \int_{B}f(z)\overline{(T^{*}K_{w})(z)}dV(z)$

$= \int_{B}f(z)(TK_{z})(w)dV(z)$

for every $f\in A^{p}$ . For each $0<r<1$ , define an operator $T_{r}$ on $A^{p}$ by

$T_{r}f(w)= \int_{rB}f(z)(TK_{z})(w)dV(z)$ $(w\in B)$ .

By (5), we have

$\int_{B}(\int_{B}|TK_{z}(w)\chi_{rB}(z)|^{p}dV(w))^{p’-1}dV(z)$

$\leq\int_{rB}(\int_{B}|TK_{z}|^{p}dV)^{p’-1}dV(z)$

$\leq\int_{rB}||T||^{p’}||K_{z}||_{p}^{p’}dV(z)$

$\leq||T||^{p’}\int_{rB}\frac{1}{(1-|z|^{2})^{n+1}}dV(z)$

$\leq\frac{||T||^{p’}}{(1-r^{2})^{n+1}}$

for each $r$ . Using Exercise 7 on Page 181 of [3], we see that each $T_{r}$ is
compact on $A^{p}$ . Hence, to prove the compactnes of $T$ , we only need to
show that $||T-T_{r}||arrow 0$ as $rarrow 1$ . Note that

$[(T-T_{r})f](w)= \int_{B}f(z)T(w, z)dV(z)$ $(w\in B, f\in A^{p})$

where T$(w, z)=(TK_{z})(w)\chi_{r}(_{\sim}\iota")$ and $\chi_{r}=\chi_{B\backslash \mathrm{r}B}$ . Let $h(z)= \frac{1}{(1-|z|^{2})^{\alpha}}$

where
$\alpha=\frac{(n+1)(p_{1}-1)}{(n+2)p_{1}}$ .

Note that

$TK_{z}(w)= \frac{T_{z}1(\varphi_{\approx}(w))k_{z}(w)}{(1-|z|^{2})^{\frac{n+1}{2}}}$ $(z, w\in B)$ .
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Using (2), we see

$\frac{|k_{z}(w)|}{(1-|z|^{2})^{\frac{n+1}{2}}(|1-|\varphi_{z}(w)|^{2})^{\alpha p}}=\frac{h(\sim 7)^{p}(1.-|w|^{2})^{-\alpha p}}{|1-\sim \mathit{7}\overline{w}|^{n+1-2\alpha p}}$ $(z, w\in B)$ .

Since the real Jacobian of $\varphi_{z}$ is $|k_{z}|^{2}$ and $k_{z}(\varphi_{z}(w))k_{z}(w)=w$ for every
$z,w\in B$ , we have by a change of variables and H\"older’s inequality,

$\int_{B}|T(w, z)|h(w)^{p}dV(w)$

$= \int_{B}\frac{|(TK_{z})(w)\chi_{r}(z)|}{(1-|z|^{2})^{\alpha \mathrm{p}}}dV(w)$

$= \frac{\chi_{B\backslash tB(_{\sim}\prime)}}{(1-|z|^{2})^{\frac{n+1}{2}}},\int_{B}\frac{|T_{z}1(\varphi_{z}(w))k_{z}(w)|}{(1-|w|^{2})^{\alpha p}}dV(w)$

$= \frac{xB\backslash rB(z)}{(1-|z|^{2})^{\frac{n+1}{2}}}\int_{B}\frac{|T_{z}1(w)k_{z}(\varphi_{z}(w))||k_{z}(w)|^{2}}{(|1-|\varphi_{z}(w)|^{2})^{\alpha p}}dV(w)$

$= \chi_{B\backslash rB}(z)h(z)^{p}\int_{B}\frac{|T_{z}1(w)|(1-|w|^{2})^{-\alpha p}}{|1-z\cdot\overline{w}|^{n+1-2\alpha p}}dV(w)$

$=xB \backslash rB(z)h(z)^{p}(\int_{B}|T_{z}1|^{t}dV)^{\frac{1}{t}}(\int_{B}\frac{(1-|w|^{2})^{-\alpha pt’}}{|1-z\cdot\overline{w}|^{t(n+1-2\alpha p)}},dV(w))^{t}\urcorner 1$

On the other hand, since $\frac{n+2}{p_{1}-1}<t<m$ , one can easily check $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-\alpha pt’>$

$-1$ and $t’(n+1-2\alpha p)>n+1$ –apt’. It follows from Lemma 5 that

$\sup_{z\in B}\int_{B}\frac{(1-|w|^{2})^{-\alpha pt’}}{|1-z\cdot\overline{w}|^{t(n+1-2\alpha p)}},dV(w)<\infty$ .

Hence

(9) $\int_{B}|T(w, z)|h(w)^{p}dV(w)_{\sim}<h(z)^{p}\sup_{\Gamma<|z|<1}||T_{z}1||_{t}$ $(z\in B)$ .

By (7), we note $(T^{*}IC_{w})(z)=TI\zeta_{z}(w)$ for all $z,$ $w\in B$ . The similar
method we have done above gives

$\int_{B}|T(w, z)|h(z)^{p’}dV(z)=\int_{B}\frac{|(TK_{z})(w)\chi_{r}(z)|}{(1-|_{\wedge}^{\mathrm{v}}|^{2})^{\alpha p}},dV(z)$

(10) $= \int_{B}\frac{|(T^{*}K_{w})(_{\sim})\chi_{r}(z)|}{(1-|z|^{2})^{\alpha p}},,dV(z)$

$\sim<h(w)^{p’}\sup_{w\in B}||T_{z}^{*}1||_{t}$ $(w\in B)$ .
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Now, the well known Schur’s test (see Theorem 3.2.2 of [13] for example),
together with (9) and (10), implies that

$||T-T_{r}|| \sim<(\sup_{r<|z|<1}||T_{z}1||_{t})^{1/p}(\sup_{w\in B}||T_{z}^{*}1||_{t})^{1/p’}$

Since $1< \frac{n+2}{p_{1}-1}<t<m\mathrm{a}\mathrm{n}\mathrm{d}||T_{z}||_{t}arrow 0$ as $|z|arrow 1$ , we $\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}||T-T_{r}||arrow 0$

as $rarrow 1$ . So, $T$ is compact on $A^{p}$ . The proof is complete. $\square$

As an immediate consequence of Theorem 7, we characterize compact-
ness of operators $T$ on $A^{p}$ where $T$ is a finite product of operators of the
form $T_{u_{1}}^{a}\cdots T_{u_{k}}^{a}$ where each $u_{i}\in BT$ . Before doing this, we first have a
couple of lemmas.

Lemma8. Let $u\in BT$ and $1<p<\infty$ . For each $z\in B,$ $T_{u\mathrm{o}\varphi}^{a}$ . is bounded
on $A^{p}$ . Moreover, $||T_{u\mathrm{o}\varphi_{z}}^{a}||\leq C||u||_{BT}$for some constant $Cin\tilde{d}ependent$ of
$z$ .

Proof. By Theorem4, we $\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}\underline{||T_{\mathrm{u}\mathrm{o}\varphi_{\approx}}^{a}}||\leq C||u\mathrm{o}\varphi_{z}||_{BT}$for some constant
$C$ independent of $z$ . Note that $u\mathrm{o}\varphi_{z}=\overline{u}0\varphi_{z}$ for all $z\in B$ . Hence

$||u \circ\varphi_{z}||_{BT}=\sup_{w\in B}|\overline{u\circ\varphi_{z}}(w)|$

$= \sup_{?l)\in B}|\overline{u}(\varphi_{z}(w))|$

$=||u||_{BT}$ .
The proof is complete.

Lemma 9. Let $1<p<\infty$ and $T$ be afinite sum of operators of the form
$T_{u_{1}}^{a}\cdots T_{u_{k}}^{a}$ where each $u_{i}\in BT$ . Then,

$\sup_{z\in B}||T_{z}1||_{p}<\infty$ and $\mathrm{s}\iota\iota \mathrm{p}z\in B||T_{z}^{*}1||_{p}<\infty$

for $ever\eta p\in(1, \infty)$ .
Proof. Let $p\in(1, \infty)$ and $z\in B$ . Without loss of generality, we may
assume $T=T_{u_{1}}^{a}\cdots T_{u_{k}}^{a}$ . We note that $U_{z}U_{z}$ is the identity and $U_{z}T_{u}^{a}$. $U_{z}=$

$T_{u_{i^{\mathrm{O}}}\varphi_{z}}^{a}$ for each $i$ . It follows from Lemma 8 that
$||T_{z}1||_{p}=||T_{\mathrm{u}_{1}\mathrm{o}\varphi_{z}}^{a}\cdots T_{u_{k}\mathrm{o}\varphi_{z}}^{a}||_{p}$

$\sim<||u_{1}||_{BT}\cdots||u_{k}||_{BT}$ .
Since $||\overline{u}_{i}||_{BT}=||u_{i}||_{BT}$ and $\tau*=T_{k1}\frac{a}{u}\cdots T\frac{a}{u}$ , we also have

$||T_{z}^{*}1||_{p}=||T_{k^{\circ}\varphi_{z1^{\circ\varphi_{z}}}} \frac{a}{u}\cdots T\frac{a}{\mathrm{u}}||_{p}$

$\sim<||u_{1}||_{BT}\cdots||u_{k}||_{BT}$ .
The proof is complete. $\square$
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As an consequence of Theorem 7, we have the following.
Theorem 10. Let $1<p<\infty$ and $T$ be a finite sum of operators of the
form $T_{u_{1}}^{a}\cdots T_{u_{k}}^{a}$ where each $u_{i}\in BT$ . Then $T$ is compact on $A^{p}$ ifand only

if $\overline{T}(z)arrow 0as|z|arrow 1$ .
Proof. This follows from Lemma 9 and Theorem 7. The proof is complete.

In particular, we have the following.
Corollary 11. Let $1<p<\infty$ and $u\in BT$ . Then $T_{u}^{a}$ is compact on $A^{p}$ if
and only if $u(\sim z)arrow \mathrm{O}$ as $|z|arrow 1$ .

4. COMPACT TOEPLITZ OPERATORS ON $b^{\rho}$

In this section, we consider the same characterization problem on the
pluriharmonic Bergman spaces. We will use Corollary 11 to characterize
$BT$-symbols of compact Toeplitz operators acting on $b^{p}$ for $1<p<\infty$ .
Before proceeding to this, we need to introduce certain Hankel operators.

Given $u\in L^{1}$ , the little Hankel operator $h_{u}$ : $A^{p}arrow A^{p}$ with symbol $u$ is
defined by

$h_{u}(f)=P(u\overline{f})$

for functions $f\in A^{p}\cap L^{\infty}$ . The operator $h_{u}$ is unbounded in general and
densely defined.

The Bloch space $B$ is the space of all holomorphic functions $f$ on $B$ for
which the quantities

$\sup_{z\in B}(1-|z|^{2})|\nabla f(z)|<\infty$

where V$f=$ $( \frac{\partial f}{\partial z_{1}}, \cdots , \frac{\partial j}{\theta z_{n}})$ is the complex gradient of $f$ . The little Bloch
space $B_{0}$ is the subspace of $B$ for which the additional boundary vanishing
condition

$, \lim_{|_{\vee}|arrow 1}(1-|z|^{2})|\nabla f(z)|=0$

holds.
The following lemma shows that the boundedness and compactness of

the little Hankel operator can be characterized by Bloch functions.
Lemma 12. Let $u\in L^{1}$ and $1<p<\infty$ . Then $h_{u}$ is bounded on $A^{p}$ if and
only if $Pu\in B$ . Moreover, $h_{u}$ is compact on $A^{p}$ ifand only if $Pu\in B_{0}$ .
Proof. In the case of $n=1$ , it has been proved in [12] that for holomorphic
$u,$ $h_{u}$ is bounded on $A^{p}$ if and only if $u\in B$ , and $h_{u}$ is compact on $A^{p}$ if
and only if $u\in B_{0}$ . But, this result can be easily extended to the ball. On
the other hand, since $h_{u}=h_{Pu}$ , we have the desired result. This completes
the proof. $\square$

122



We remark in passing that given $u\in BT$ , Proposition 3.2 in [6] implies
$Pu\in B$ . So, by Lemma 12, $h_{u}$ is bounded on $A^{p}$ for all $1<p<\infty$ . Also,
the same is true for $h_{\overline{u}}$ because $\overline{u}\in BT$ .
Lemma 13. Let $u\in BT$ and $1<p<\infty$ . Then the following statements
holdfor every $f\in A^{p}$ and $g\in A^{\mathrm{p}’}$

(a) $<T_{u}f,$ $g>=<T_{u}^{a}f,$ $g>$ .
(b) $<T_{\mathrm{u}}f,\overline{g}>=<g,$ $h_{\overline{u}}f>$ .
(c) $<T_{u}\overline{f},$ $g>=<h_{u}f,$ $g>$ .
(d) $<T_{u}\overline{f},\overline{g}>=<g,$ $T \frac{a}{u}f>$ .

Proof. Fix $f\in A^{p}$ and $g\in A^{p’}$ . We first note that $\overline{P(\overline{uf})}(0)=P(uf)(0)$ .
It follows that

$<T_{u}f,$ $g>=<Q(uf),$ $g>$

$=<P(uf),$ $g>+<\overline{P(\overline{uf})},$ $g>-P(uf)(\mathrm{O})<1,$ $g>$

$=<T_{u}^{a}f,$ $g>+\overline{P(\overline{uf})}(0)\overline{g}(0)-P(uf)(\mathrm{O})\overline{g}(0)$

$=<T_{u}^{a}f,$ $g>$

and hence we have (a). Similarly, we see
$<T_{u}f,\overline{g}>=<Q(uf),\overline{g}>$

$=<P(uf),\overline{g}>+<\overline{P(\overline{uf})},\overline{g}>-P(uf)(\mathrm{O})<1,\overline{g}>$

$=P(uf)(\mathrm{O})g(\mathrm{O})+<g,$ $P(\overline{uf})>-P(uf)(\mathrm{O})g(\mathrm{O})$

$=<g,$ $h_{\overline{u}}f>$ .
Hence (b) follows.

Also, the remaining two cases can be proved by similar arguments. This
completes the proof. $\square$

Given $1<p<\infty$ and a pluriharmonic function $u=f+\overline{g}\in A_{0}^{p}+\overline{A^{p}}$ ,
we can see

$||f||_{p}+||g||_{p}\approx||u||_{p}$ .
Proposition 14. Let $1<p<\infty$ and $u\in BT$ . Then we have

$||T_{u}f||_{p}<|\sim|T_{u}^{a}f||_{p}+||h_{\overline{u}}f||_{p}$

and
$||T_{u} \overline{f}||_{p}<\sim||T\frac{a}{u}f||_{p}+||h_{u}f||_{p}$

for every $f\in A^{p}$ .
Proof. Fix $f\in A^{p}$ . By Lemma 13, we have

$<T_{u}f,$ $a+\overline{b}>=<T_{u}^{a}f,$ $a>+<b,$ $h_{\overline{\mathrm{u}}}f>$
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for every $a+\overline{b}\in b^{p’}$ . It follows that

$||T_{u}f||_{p}=||a+||_{p}, \leq 1\emptyset+\in b^{p’}\sup_{\overline{\frac{b}{b}}}|<T_{u}f,$

$a+\overline{b}>|$

$=||a+@||_{p}, \leq 1\sup_{a+\overline{b}\in b^{\mathrm{p}’}}|<T_{u}^{a}f,$

$a>+<b,$ $h_{\overline{u}}f>|$

$\leq||a|(_{\mathrm{p}},\leq c_{p}\sup_{a\in A^{\mathrm{p}’}}|<T_{u}^{a}f,$

$a>|+$
$\sup_{b\in A^{\mathrm{p}’},||b|\mathrm{I}_{p},\leq c_{p}}|<h_{\overline{u}}f,$

$b>|$

$\leq C_{p}(||T_{u}^{a}f||_{p}+||h_{\overline{u}}f||_{p})$

for some constant $C_{p}$ . Hence we have $||T_{u}f||_{p}\sim<||T_{u}^{a}f||_{p}+||h_{\overline{u}}f||_{p}$ for
every $f\in A^{p}$ . Using the similar argument, we also see that

$||T_{u}\overline{f}||_{p}\sim\square <$

$||T \frac{a}{u}f||_{p}+||h_{u}f||_{p}$ for every $f\in A^{p}$ . The proof is completes.

Proposition 15. Let $1<p<\infty$ . If a sequence $u_{n}=f_{n}+\overline{g_{n}}\in A_{0}^{p}+\overline{A^{p}}$

converges to $\mathit{0}$ weakly in $b^{\rho}$ , then $f_{n}$ and $g_{n}$ converge to $\mathit{0}$ weakly in $A^{p}$ .
Also, if a sequence $h_{n}\in A^{\prime p}$ converges to $\mathit{0}$ weakly in $A^{p}$ , then $h_{n}$ and $\overline{h}_{n}$

converge to $\mathit{0}$ weakly in $b^{\rho}$ .

Proof. Let $\varphi\in A^{p’}$ . Since $f_{n}(0)=0$ , we first have

$\overline{g_{n}(0)}=u_{n}(0)=<u_{n},$ $1>$

for each $n$ . It follows that

$<f_{n},$ $\varphi>=<u_{n}-\overline{g_{n}},$ $\varphi>=<u_{n},$ $\varphi>-\overline{\varphi}(0)<u_{n},$ $1>$

for each $n$ . Since $u_{n}arrow 0$ weakly in $b^{\mathrm{p}}$ , we have $<u_{n},$ $\varphi>\mathrm{a}\mathrm{n}\mathrm{d}<u_{n},$ $1>$

converge to $0$ as $narrow\infty$ . Hence $f_{n}arrow 0$ weakly in $b^{p}$ . Similarly,

$<g_{n},$ $\varphi>=<\overline{u_{n}}-\overline{f_{n}},$ $\varphi>=<\overline{u_{n}},$ $\varphi>-\overline{f_{n}}(0)\overline{\varphi}(0)=<\overline{\varphi},u_{n}>arrow 0$

as $narrow\infty$ . Hence $g_{n}arrow 0$ weakly in $b^{p}$ .
To prove the remaining part, let $a+\overline{b}\in b^{\mathrm{p}’}$ . Then

$<h_{n},$ $a+\overline{b}>=<h_{n},$ $a>+h_{n}(0)\overline{b}(0)$

for each $n$ . Since $h_{n}\in A^{p}$ converges to $0$ weakly in $A^{p}$ , we have $h_{n}arrow 0$

uniformly on every compact subsets. Note $a\in A^{p’}$ . It follows that $<$

$h_{n},$ $a+\overline{b}>arrow 0$ as $narrow\infty$ . Hence $h_{n}arrow 0$ weakly in $b^{\rho}$ . Similarly, we can
also see $\overline{h_{n}}arrow 0$ weakly in $b^{p}$ .
Lemma 16. Let $u\in BT$ and $1<p<\infty$ . Then $T_{u}^{a},$ $T \frac{a}{u},$ $h_{u}$ and $h_{\overline{u}}$ are
compact on $A^{p}$ ifand only if $T_{u}$ is compact on $b^{\mathrm{p}}$ .
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Proof. First suppose $T_{u}^{a},$ $T_{\frac{}{u}}^{a},$
$h_{\tau\iota}$ and $h_{\overline{u}}$ are compact on $A^{p}$ . Let $u_{n}=f_{n}+$

$\overline{g_{n}}\in A_{0}^{p}+\overline{A^{p}}$ be a sequence converging to $0$ weakly in $b^{p}$ . By Proposition
14, we see

$||T_{u}(u_{n})||_{p}<| \sim|T_{u}^{a}f_{n}||_{p}+||h_{\overline{u}}f_{n}||_{p}+||T\frac{a}{u}g_{n}||_{p}+||h_{u}g_{n}||_{p}$

for each $n$ . Since $T_{u}^{a},$ $T \frac{a}{u},$ $h_{u}$ and $h_{\overline{u}}$ are compact on $\mathrm{A}^{p}$ and $g_{n},$ $f_{n}arrow 0$

weakly in $b^{p}$ by Proposition 15, we see $||T_{u}u_{n}||_{p}arrow 0$ as $narrow\infty$ . Hence
$T_{u}$ is compact on $b^{p}$ .

Now suppose $T_{u}$ is compact on $b^{\rho}$ . Let $f_{n}$ be a sequence converging to $0$

weakly in $A^{\mathrm{p}}$ . By Lemma 13, we have

$||T_{u}^{a}f_{n}||_{p}=||a||_{p}, \leq 1\sup_{a\in A^{\mathrm{p}’}}|<T_{u}^{a}f_{n},$

$a>|$

$=||a||_{p}, \leq 1\sup_{a\in A^{p’}}|<T_{u}f_{n},$

$a>|$

$\leq||a||_{p}\leq 1\sup_{a\in b^{p’}}|<T_{u}f_{n},$

$a>|$

$\leq||T_{u}f_{n}||_{p}$

for each $n$ . Since $f_{\mathrm{n}}$ converges to $0$ weakly in $b^{\mathrm{p}}$ by Proposition 15, we have
$||T_{u}^{a}f_{n}||_{p}arrow 0$ as n– $\infty$ . So, $T_{u}^{a}$ is compact. Also,

$||h_{\overline{u}}f_{n}||_{p}=||a||_{p}, \leq 1\sup_{a\in A^{\mathrm{p}’}}|<h_{\overline{u}}f_{n},$

$a>|$

$=||a||_{\mathrm{p}}, \leq 1\sup_{a\in Ap’}|<T_{u}f_{n},\overline{a}>|$

$\leq||a||_{P}\leq 1\sup_{a\in b^{\mathrm{p}’}}|<T_{u}f,\overline{a}>|$

$\leq||T_{u}f_{n}||_{p}$

for each $n$ , which gives the compactness of $h \frac{a}{u}$ .
By the similar arguments, we show the compactness of $h_{u}$ and $T \frac{a}{u}$ . This

completes the proof.

Now, we characterize compact Toeplitz operators with symbol in $BT$ on
the pluriharmonic Bergman spaces. On the unit disk, the following was
proved in [5] where the case $p=2$ and bounded symbols are assumed.

Theorem 17. Let $u\in BT$ and $1<p<\infty$ . Then $T_{u}$ is compact on $b^{p}$ if
and only if $u(\sim z)arrow \mathrm{O}$ as $|z|arrow 1$ and
(11) $\lim_{|z|arrow 1}(1-|z|^{2})(|\nabla U(z)|+|\nabla\overline{U}(z)|)=0$
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where $U=Qu$ is the pluriharmonic part of $u$ .

Proof. First suppose $T_{\iota}$ is compact on $b^{\rho}$ . By Lemma 16, we see that
$T_{u}^{a},$ $T \frac{a}{u},$ $h_{u}$ and $h_{\overline{u}}$ are compact on $A^{p}$ . Since $T_{u}^{a},$ $T \frac{a}{u}$ are compact on $A^{p}$

and $u\sim=\sim\overline{u}$ , we have by Corollary 11, $\overline{u}(z)arrow 0$ as $|z|arrow 1$ . Also, since $h_{u}$

and $h_{\overline{u}}$ are compact on $A^{p}$ , we have by Lemma 12,

$\lim_{|z|arrow 1}(1-|z|^{2})|\nabla Pu(z)|=0$

and
$\lim_{|z|arrow 1}(1-|z|^{2})|\nabla P\overline{\mathrm{c}\iota}(z)|=0$ .

On the other hand, since
$U=Qu=Pu+\overline{P\overline{u}}-Pu(\mathrm{O})$

by (1), we see $|\nabla U|=|\nabla Pu|$ and $|\nabla\overline{U}|=|\nabla P\overline{u}|$ . Hence we have (11).
Conversely, suppose $u(\sim z)arrow \mathrm{O}$ as $|z|arrow 1$ and (11) holds. Since $u\sim=\simeq u$ ,

we see $T_{u}^{a}$ and $T \frac{a}{\mathrm{u}}$ are compact by Corollary 11. As we see before, (11)
implies that

$\lim_{|z|arrow 1}(1-|z|^{2})|\nabla Pu(z)|=0$

and
$\lim_{|z|arrow 1}(1-|z|^{2})|\nabla P\overline{u}(z)|=0$

These two conditions above are in tum equivalent to the compactness of $h_{u}$

and $h_{\overline{u}}$ by Lemma 12. Now, by Lemma 16, we see $T_{u}$ is compact on $b^{p}$ , as
desired. The proof is complete.

As consequences of Theorem 17, we have the following corollaries. A
function $u\in C^{2}(B)$ is called $\mathcal{M}$ -harmonic on $B$ if its invariant Laplacian
vanishes on $B$ . An an application of the invariant mean value property
implies $u\sim=u$ . See Chapter 4 of [8] for details.

Corollary 18. Let $1<p<\infty$ and $u\in BT$ be $\mathcal{M}$ -harrnonic on B. Then
$T_{\mathrm{u}}$ is compact on $b^{\mathrm{p}}$ ifand only if $u=0$ on $B$ .
Proof. Suppose $T_{u}$ is compact on $b^{\mathrm{p}}$ . Since $u\sim=u$ , the compactness of
$T_{u}$ implies $u$ vanishes on the boundary of $B$ by Theorem 17. Now, the
maximum principle (see Theorem 4.3.2 of [8]), we have $u=0$ on $B$ .

The converse implication is clear. The proof is complete.

Given a radial function $u\in L^{1}$ , it is not hard to see

(12) $Pu= \int_{B}udV$.

The following is an extension of Theorem 4.1 of [11] where the case
$p=2$ and bounded symbols are assumed.
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Corollary 19. Let $1<p<\infty$ and $u\in BT$ be a radialfunction on $B$ .
Then $T_{u}$ is compact on $b^{p}$ if and only if $\overline{u}(z)arrow 0$ as $|z|arrow 1$ .

Proof. Since $u\in BT$ is radial, so is $\overline{u}$ . By (12),

$Qu=Pu+ \overline{P\overline{u}}-Pu(0)=\int_{B}udV$ .

Now, the result follows from Theorem 17 . The proof is complete. 口
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