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REPRESENTATION PROPERTY OF WEIGHTED
HARMONIC BERGMAN FUNCTIONS ON THE UPPER
HALF-SPACES

KYESOOK NAM

1. INTRODUCTION

Let H denote the upper half space R*! x R, where R, denotes the set
of all positive real numbers. We will write points z € H as z = (Z/, z,) where
Z € R"! and 2, > 0. |

Fora > —1 and 1 < p < o0, let 62 = b2 (H) denote the weighted harmonic
Bergman space consisting of all real-valued harmonic functions u on H such

that '

lullz = ( [ 2P dva(z))”p <o

where dV,(z) = 28dz and dz is the Lebesque measure on R". Then we can
-see easily that the space b? is a Banach space. In particular, b2 is a Hilbert
space. Hence, there is a unique Hilbert space orthogonal projection I, of L2
onto b2 which is called the weighted harmonic Bergman projection. It is known
that this weighted harmonic Bergman projection can be realized as an integral
operator against the weighted harmonic Bergman kernel R,(z, w). See section
2.

The purpose of this paper is to survey [8] concerning the representation
property of b2-functions and the interpolation by b2-functions.

In the holomorphic case representation and interpolation properties of Berg
man functions have been studied in [5] and [11]. In [5], the representation
properties of harmonic Bergman functions, as well as harmonic Bloch func-
tions, were also proved on the unit ball in R™. See [2] for the interpolation
properties of holomorphic (little) Bloch functions. On the setting of the half-
space of R", Choe and Yi [6] have studied these two properties of harmonic
Bergman spaces. In [6], the harmonic (little) Bloch spaces are also considered
as limiting spaces of 7.

2. PRELIMINARIES

First, we introduce the fractional derivative. Let D denote the differentia-
tion with respect to the last component and let u € %2. Then the mean value
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property, Jensen’s inequality and Cauchy’s estimate yield
(2.1) |DFu(z)| < ¢z (nta)/p=k

for each z € H and for every nonnegative integer k.

Let Fp be the collection of all functions v on H satisfying |v(z)| < cz7* for
B > 0 and let F = UgsoFp. If v € F, then v € Fp for some 8 > 0. In this
case, we define the fractional derivative of v of order —s by

1 ° |
2.2 D%u(z) = ——-/ (2, 2, + 1) dt
(22 O=g5 ) T+
for the range 0 < s < 3. (Here, I' is the Gamma function.)
If u € b5, then for every nonnegative integer k, D*u € F by (2.1). Thus for
s > 0, we define the fractional derivative of u of order s by

(2.3) Doy = D=3 plély,

Here, [s] is the smallest integer greater than or equal to s and D° = DV is the
identity operator. If s > 0 is not an integer, then —1 < [s] — s -1 < 0 and

[s] > 1. Thus we know from (2.1) that, for each z € H and for every u € b2,
the integral

1 o0
Du(z) = / tlel=s=1plslyy (2! 2, + t) dt

I'([s] —s) Jo
always makes sense.

Let P(z,w) be the extended Poisson kernel on H and put P, = P(z ).
More explicitly,

P,(w) = P(z,v) = nV2( B

where z,w € H and W = (v, —w,,) and B is the open unit ball in R". It is
known that the weighted harmonic Bergman projection II, of L2 onto b2 is
given by

2) = /H £ (w)Ra(2, 1) dVa(w)

for all f € L2. Here Ro(z,w) denotes the weighted harmonic Bergman kernel
whose explicit formula is given by

(2.4) Ra(z,w) = CoD** P, (w)
where C, = (—1)lI+129+1 /T 4+ 1). Also, it is known that
C
s <
(25) ’Dz,,Ra(za ’bU)I = Iz - —wln+a+[3

for all z,w € H. Here, 8 > —n — a and the constant C is dependent only on
n,co and B. Using (2.5), we know R,(z,-) € b2 for all 1 < q < oo. Thus, IT,
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is well defined whenever f € LP for 1 < p < co. Also, for 1 < p < o0, u €
b, z € H, we have the reproducing formula

(2.6) u(z) :/Hu(w)Rg(z,w) dVs(w)

whenever 3 > a. Furthermore, we have a useful norm equivalence. If o > -1,
1<p<ooand (1+a)/p+vy >0, then

(2.7) lulle = [|lw)D Lz

as u ranges over bP. ‘
Set zo = (0,1). A harmonic function u on H is called a Bloch function if

llulls = sup wn|Vu(w)| < oo,
. weH

where Vu denotes the gradient of u. We let B denote the set of Bloch functions
on H and let B denote the subspace of functions in B that vanish at z. Then
the space B is a Banach space under the Bloch norm || ||

A function u € B is called a harmonic little Bloch function if it has the
following vanishing condition

2_1,1521{ zp|Vu(z)| =0

where 0°H denotes the union of H and {oo}. Let By denote the set_of all
harmonic little Bloch functions on H. It is not hard to verify that Bp is a

closed subspace of B. Let C, denote the set of all continuous functions on H
vanishing at oo.

Because R,(2,-) is not in L}, II, f is not well defined for f € L*. So we
need the following modified Bergman kernel. For z,w € H, define

Ro(z,w) = Ry(z,w) — Ra(z0,w).

Then, there is a constant C' = C(n, a) such that

09 Wl so (i L )

wvtelzy —wW| |z — Wl|zp — W|mHe

for all z,w € H. Thus, (2.8) implies that Ra(z,-) € L}, for each fixed z € H
and thus we can define II, on L™ by

of(2) = | f(u)Raleu) dVo(w)

for f € L*. It turns out that Il is a bounded linear map from L™ onto B.
Also, IT, has the following property: If v > 0 and v € B then

o~

(2.9) I, (wID)(2) = Cu(z)



where C = C(a, 7). The Bloch norm is also equivalent to the normal derivative
norm : If v > 0, then

(2.10) lulls = lwa D7l

as u ranges over B. (See [7] for details.)

3. TECHNICAL LEMMAS

We first introduce a distance function on H which is useful for our purposes.
The pseudohyperbolic distance between z,w € H is defined by

|2 — wl

p(z,w) = lZ-—-'LD"' :

This p is an actual distance. (See [6].) Note that p is horizontal translation
invariant and dilation invariant. In particular,

(31) p(z,w) = p(¢a(z)a ¢a(w))
for z,w € H where ¢,(a € H) denotes the function defined by

‘ (7 =d =z
0u) = (22, 2)
for z € H. Note that the Jacobian of ¢;' is a?. For z€ Hand 0 < § < 1, let

E5(z) denote the pseudohyperbolic ball centered at z with radius §. Note that

¢.(Es(z)) = Es(20) by the invariance property (3.1). Also, simple calculation
shows that

, 1462 26
(32) EJ(Z) =B ((Z ; i—:—g'z‘zn) ) —1—:—5—20'”)

so that B(z,02,) C Es(z) C B(z,26(1 — §)~'2,) where B(z,r) denotes the
Euclidean ball centered at z with radius 7. From (3.2), we have two lemmas.
For proofs of the following lemmas, see [6].

Lemma 3.1. Let z,w € H. Then

1-p(zw) o 2z 1400z w)
1+ p(z,w) ~ w, ~ 1—p(z,w)

This lemma implies the following lemma.
Lemma 3.2. Let z,w € H. Then

1-pew) _ le=3l _ 1+6(z,)
14 p(z,w) = lw—3 = 1-p(z,w)

for all s € H.

The following lemma is used to prove the representation theorem. If o is a
~ nonnegative integer, then it is proved in [6].
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Lemma 3.3. Let o > —1 and 3 be real. Then
B
z

|27 Ra(s, 2) — whRa(s,w)| < CP(Z’W)F?:ST!,‘,I};
whenever p(z,w) < 1/2 and s € H.

Let o > —1 and let 1 < p < co. Define Tl on the weighted Lebesque space
L% by

Maf(2) = [ f(u)Ro(z,w) dVs(w)
for f € L? and z € H. Then we have the following two lemmas from [7].

Lemma 3.4. Supposea > —1,1<p<oc anda+1< (8+1)p. ThenlIly is
bounded projection of LE, onto b%,.

Lemma 3.5. Forb < 0,—1 < a + b, there ezists a constant C = C(a,b) such
that
a+b b
<C
Js roape SO

Lemma 3.6. Let o > —1, 1 < p < oo and let (1 + a)/p+~v > 0. Suppose
0<d<1. Then

for every z,w € H.

D <

.
< oozt [, 1P d

for all z € H and for every u harmonic on H where k = [y] if v > ~1 and
k=0 ify < —1. The constant C = C(n,p,~) is independent of 4.

If «y satisfies the condition of Lemma 3.6, we can show D7y is harmonic on
H. If v is a nonnegative integer, then D?u is harmonic on H, because it is a
partial derivative of a harmonic furiction. If 7y is not a nonnegative integer, we
see also D"u is harmonic on H by passing the Laplacian through the integral.

The notation |E| denotes the Lebesque measure of a Borel subset E of H.
Let |E|, denote V,(E). The following lemma is proved by using the mean
value property and Cauchy’s estimates. The notation d(E, F') denotes the
euclidean distance between two sets E and F.

Lemma 3.7. Suppose u is harmonic on some proper open subset {1 of R™.
Leta> —1 and let 1 < p < co. Then, for a given open ball E C Q,

p |E|P/™|Ela _
/Elu(z)—u(a)l dVa(2) SCW/QIU(QU)I dw

for all a € E. The constant C' depends only on n,a and p.



4. REPRESENTATION THEORY

Let {zm} be a sequence in H and let 0 < § < 1. We say that {z,} is
d-separated if the balls Ejs(zn,) are pairwise disjoint or simply say that {z,,}
is separated if it is J-separated for some 0. Also, we say that {z,} is a é-
lattice if it is §/2-separated and H = | Es(2,,). Note that any “maximal”
d/2-separated sequence is a d-lattice.

From [4] and [6], we have the following three lemmas.

Lemma 4.1. Fiz a 1/2-lattice {am} and let0 < 6 < 1/8. If{zn} is a §-lattice,
then we can find a rearrangement {z;; 11 =1,2,...,5 =1,2,...,N;} of {zm}
and a pairwise disjoint covering {D;;} of H with the following properties:

(a) Es/2(zi) C D‘LJ C Es(z;)

(b) E1/4(a,) C U DzJ C Es/g(ai)

(c) 25 € El/g(az)

foralli=1,2,...,and j=1,2,...,N;.

Lemma 4.2. Letr >0 and let0 < rn < 1. If {zm} is an n-separated sequence,

then there is a constant M = M (n,r,n) such that more than M of the balls
Em(zm) contain no point in common.

Lemma 4.3. Let N; be the sequence defined in Lemma 4.1. Then
sup N, <Cé™

for some constant C' depending only on n.

Analysis similar to that for the proof of Lemma 3.4 shows the following
lemma which will be used in the proof of Proposition 4.5.

Lemma 4.4. Leta > -1, 1<p<owanda+1< (f+1)p. For f € L%,
define

®af(z) = [ Fw)—2
PR u |z — w|"*+A
for z € H. Then, &5 : LX, — LE is bounded.

23

Let {z,} be asequencein H. Leta > -1, 1<p<owand a+1 < (ﬁ+1)
For (Am) € I, let Qg(Am) denote the series defined by

(4.1) Qs(Am)(2) = Z )\ngz:ﬁ)(kl/p)f(ﬂ—a)/p}{ﬁ(z, Zm)

for z € H. For a sequence {z,} good enough, @z(\») will be harmonic on
H. We say that {z,} is a bf-representing sequence of order 3 if Q4(IP) =
Lemma 4.4 implies the following proposition which shows Qgz(I?) C % if the
underlying sequence is separated.

Proposition 4.5. Let o« > -1, 1 < p< o0 and a+1 < (8 + 1)p. Suppose

{zm} is a 8-separated sequence. Then Qg : IP — b8 is bounded.
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The following theorem is the bf-representation result under the lattice den-
sity condition. -

Theorem 4.6. Leta > -1, 1 <p< oo and a+1 < (B+ 1)p. Then there
exists g > 0 with the following property: Let {zn} be a d-lattice with 6 < &y
and let Qg : [P — W, be the associated linear operator as in (4.1). Then there
is a bounded linear operator Pg : b2 — [P such that QgPp is the identity on
Y. In particular, {z,} is a V- representzng sequence of order (3.

Since D"u is harmonic and we have (2.7), we can have similar result with
Proposition 4.8 of [6].

Proposition 4.7. Leta > —1,1<p < oo and let (1 +a)/p+~ > 0. If {zm}
is a O-lattice with & sufficiently small, then

lully =) et Dru(z,) [P

as u ranges over bf.
Let {z,} be a sequence in H and let 8> —1. For (Am) € I, let
(4.2) | Qs(Am)(2) = Y AmztP Ry (2, 2m)

for z € H. We say that {z,} is a B-representmg sequence of order 3 if
Qﬁ(l°°) = B. We also say that {z,,} is a By-representing sequence of order {3 if

' Qg(Co) = B,. Then we have the result which shows that a separated sequence
represents a part of the whole space.

Proposxtlon 4.8. Let B > —1 and suppose {zm} s a 0- sepamted sequence.
Then, Qﬁ 1° — B is bounded. In addition, Qg maps Cy into By.

If v is a positive integer, then the following lemma is proved in [6].
Lemma 4.9. Let v > 0. Then
- 12ID"u(z) - wiDMu(w)| < Cole, w)fulls
for all z,w € H and u € B.

The following theorem is the limiting version of the 8% -representation theo-
rem.

Theorem 4.10. Let 3 > —1. Then there exists a positive number & with the

following property: Let {z,,} be a é-lattice with § < &g and let Qs : I1*° — B be
the associated linear operator as in (4.2). Then there ezists a bounded linear

operator Pg : B — 1 such that QP is the : identity on B. Moreover, Ps maps

Bo into Co. In particular, {zm} is a both B- -representing and Bo representing
sequence of order (3.

Lemma 4.9 yields the following result for B analogous to Proposition 4.7.
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Proposition 4.11. Lety > 0. Let {z,} be a §-lattice with & sufficiently small.
Then

lulls & sup 27, Du(zm)]
m
as u ranges over B.

5. INTERPOLATION THEORY

Let {zm} be asequenceon H. Let a > -1, 1 <p< oo and (1+a)/p+v >
0. For u € b2, let T;u denote the sequence of complex numbers defined by

- (5.1) Tu = (0P DYy (z,,)) .

If T, (b5) = IP, we say that {zn} is a b2-interpolating sequence of order y.
The following two lemmas are used to prove that separation is necessary for
b2 -interpolation. ’

Lemma 5.1. Leta>—-1,1<p<ooand (1+a)/p+~>0. Let {z} be a
bE -interpolating sequence of order y. Then T, : & — [P is bounded.

The following lemma is a b2-version of Lemma 4.9 concerning B-functions. -

If v is a nonnegative integer, then the following lemma is proved in [6].
Lemma 5.2. Leta>—-1,1<p<ooand (1+a)/p+~>0. Then,

| 2P P DY (2) — wHPHIDTY(w)| < Cp(z, w)||ul s
forall z,w € H and u € b8,

Proposition 5.3. Leta > —1, 1 < p < o0 and (1+a)/p+v > 0. Every
b -interpolating sequence of order 7y is separated.

For interpolation, we need the sufficient separation condition.

Theorem 5.4. Let > -1, 1 < p < oo and (1+a)/p++v > 0. Then
there exists a positive number &y with the following property: Let {z,} be a
d-separated sequence with &6 > &g and let T, : b2, — [P be the associated linear
operator as in (5.1). Then there is a bounded linear operator S, : IP — b2
such that TS, is the identity on IP. In particular, {zn} is a b%-interpolating
sequence of order 7.

Let v > 0 and let {z,} be a sequence in H. For u € B, define
(5.2) T = (2, Du(zm)).

mn

Then (2.10) implies the operator
i, :B— 1™

is bounded. If T, (B) = I®°, {2} is called a B-interpolating sequence of order
7v. Also, if T(By) = Co, {2m} is called a By-interpolating sequence of order .
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The following proposition shows that separation is also necessary for Eg

interpolation. Since we have Lemma 4.9, the proof of the following proposition
is the same as that of Proposition 5.6 in [6].

Proposition 5.5. Let v > 0. Every g—’interpolatz’ng sequence of order vy is
separated. Also, every By-interpolating sequence of order -y ts separated.

Theorem 5.6. Let v > 0. Then there exists a positive number oo with the
following property: Let {2z} be a §-separated sequence with 6 > &y and let
T, : B — 1 be the associated linear operator as in (5.2). Then there ezists
a bounded linear operator .S' . 1° — B such that T S is the zdentzty on [*.
Moreover, S maps Cy into By. In particular, {zm} is a both B-interpolating
and Bg-znterpolatmg sequence of order ~y.
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