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On Orlicz-Morrey spaces

KERBEKRE HEEH P H— (Eiichi Nakai)
Department of Mathematics
Osaka Kyoiku University

1. INTRODUCTION

In this paper we state basic properties of Orlicz-Morrey spaces and a definition
of its predual without proofs. This is an announcement of my recent works.

Orlicz spaces are generalization of Lebesgue spaces L?. They are useful tools to
study harmonic analysis and its applications. For example, the Hardy-Littlewood
maximal operator is bounded on L? for 1 < P < o0, but not bounded on L.
Using Orlicz spaces, we can investigate the boundedness of the operator near p = 1
precisely (see Kita [5, 6] and Cianchi [3]). It is known that fractional integral
operators I, is bounded from LP(R™) to L¢(R™) for 1 < Pp<g<ooand —n/p+
o = —n/q as the Hardy-Littlewood-Sobolev theorem. Trudinger [29] investigated
the boundedness of I, near ¢ = co. The Hardy-Littlewood-Sobolev theorem and
Trudinger’s result are generalized by several authors, [20, 26, 27, 4, 3, 15, 16, 17,
etc. For the theory of Orlicz spaces, see (10, 7, 24].

On the other hand Morrey spaces was introduced by [11] to estimate solutions
of partial differential equations. After that there are many papers about Morrey
spaces. For the boundedness of the Hardy-Littlewood maximal operator and frac-
tional integral operators, see [23, 1, 2, 12].

The author introduced Orlicz-Morrey spaces in [18] to investigate the bounded-
ness of generalized fractional integral operators. Orlicz-Morrey spaces unify Orlicz
and Morrey spaces. Recently, using Orlicz-Morrey spaces, Sawano, Sobukawa and
Tanaka [25] proved a Trudinger type inequality for Morrey spaces.

Our definition of Orlicz-Morrey space is different from one in Kokilashvili and
Krbec [7, p.2].
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We recall the definitions and several properties of Orlicz and Morrey spaces in
the next section. We state a definition of Orlicz-Morrey spaces in Section 3. In
Section 4, we give generalized Holder’s inequality and inclusion relations for Orlicz-
Morrey spaces. In Section 5 we give a definition of preduals of Orlicz-Morrey spaces.

2. DEFINITIONS AND PROPERTIES OF ORLICZ AND MORREY SPACES

A function 6 : (0,+00) — (0,+00) is said to be almost increasing (almost de-
creasing) if there exists a constant C' > 0 such that

6(r) < Cb(s) (6(r) > Ch(s)) for r<s.

A function 6 : (0, +00) — (0, +00) is said to satisfy the doubling condition if there
exists a constant C > 0 such that

_ 0(7') 1 _r
- - < 2.
c! 6 TOR <C for =< 5 < 2
For functions 6, : (0,+00) — (0,+00), we denote 8(r) ~ (r) (8(r) = (r)) if

there exists a constant C > 0 such that

C™0(r) < k(r) < CO(r) (6(C7*r) < K(r) < 0(Cr)) for r>0.

N

First we recall the definition of Young functions. A function ® : [0, +00] —
[0,+00] is called a Young function if & is convex, left-continuous, hm <I>(r)
®(0) = 0 and hm 1_®(r) = $(+00) = +00. Any Young function is nelther identi-
cally zero nor 1dent1cally infinite on (0, +00). From the convexity and ®(0) = 0 it
follows that any Young function is increasing.

If there exists s € (0,400) such that ®(s) = +o0, then &(r) = +oco for r > s.
Let ro = inf{s > 0 : ®(s) = +o0}. Then r, > 0, since hm <I>(r) = ®(0) = 0.
If ®(ro) < +o00, then @ is absolutely continuous on [0, ro] by the convexity and
increasingness. If ®(ry) = +o0, then ® is absolutely continuous on any closed
interval in [0, 7o) and Lim,_,,,_o ®(r) = 400 by left-continuity.
~ Let ) be the set of all Young functions & such that

(2.1) 0<®(r) <+oo for 0<r<+oo.

If @ € ), then & is absolutely continuous on any closed interval in [0, +00) and
bijective from [0, +00) to itself.
A Young function ® is said to satisfy the Ay-condition, denoted & € A, if

®(2r) < Co(r), r=>0,
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for some C > 0.
A Young function @ is said to satisfy the V,-condition, denoted ® € V,, if

1
<
o(r) < 5 8(kr), 120,

for some k > 1. If p > 1, then ®(r) = r? satisfies both the A,-condition and the
Va-condition. If p = 1, then ®(r) = r? satisfies the Aj,-condition, but does not
satisfy Vs-condition.

For a Young function ®, the complementary function is defined by

&(r) = sup{rs — ®(s) : s > 0}, r>0.
Then & = @, and, & € A, if and only if & € V,.

Example 2.1. (i) If &(r) = r?/p, 1 < p < 00, then &(r) =7 /p/, 1/p+ 1/p = 1.
(ii) If &(r) = r, then B(r) = 0(0 < r < 1), = +oo(r > 1).
(iii) If ®(r) = (r + 1)log(r + 1) — r, then $(r) = " —r — 1.

For a Young function ® and for 0 < s < +o0, let
®!(s) =inf{r >0: ®(r) > s} (inf@ = +o0).
If ® € ), then ®~! is the usual inverse function of ®. We note that
(@ (r)) <r < Y®(r)), for 0<r < +oo.
For a Young function ® and its complementary function ®, we have
r<®Ir)®r)<2r, 0<r < +o0.

Using this relation, we have the following.
Example 2.2. (i) Let 1 < p; < 00, 1/pi+1/pi=1, —00 < f; < 00 (i =1,2). If

P (log r)P1A for large 7,
o(r) ~
2(1/log(1/r))**#  for small r,
then

5(1") . rPi (log r)—P'll’l for large T,
~ 1r*a(1/ 1og(1 /r))"P2#2  for small r.



(ll) Let 0 < p1,p2 < 00. If
B(r) r(logr)}/m for large r,
1 r(1/log(1/r))?*  for small r,
then

3 (r) ~ exp(rP) for large r,
1/exp(1/r??) for small r.

(iii) Let 0 < py,pa < 00. If
8(r) ~ r(loglog r)¥/m for large r,
~ ) r(1/oglog(1/7))P2  for small r,
then

s (r) ~ exp exp(r™) for large r,
~ 11/ expexp(1/r®2) for small r.

We note that, for Young functions ® and W, if there exist C > 1 and R > 1 such
that

$(C7'r) SU(r) S ¥(Cr) for 1€ (0, R U(R,+00),
then & ~ .

Definition 2.1 (Orlicz space). For a Young function &, let

L*(R™) = {f e L} (R"): /nn (k| f(z)|) dz < +oo for some k > O} ,
I fllze =inf{,\>o:/“q>(|-f—(;ﬂ)dxs 1}.

® rmpny __ P rmpny .
M (]R)—{feL (R)./R"Q(Vk|f(z)|)dx<+oo}.

Let

Then || f||ze is a norm and L®(R") is a Banach space. This norm is introduced
by Nakano [19] and Luxemburg [9]. M®*(R™) is a closed subspace of L*(R"). If
®(r) =r?, 1 < p < 0o, then L¥(R") = LP(R™). If &(r) =0(0 < r < 1),= +oo(r >
1), then L¥(R") = L*®(R"). If ® ~ ¥, then L*(R") = LY(R") with equivalent
norms.

|£ ()|
foo (i) =

We note that



Theorem 2.1 ([24, p.77, Corollary 5 and Propositopn 6]). Let & be a Young
function. Then the following are equivalent.

(1) ® € A,.

(2) L*(R™) = M*(R™).

(3) For all f € L¥(R™) with f #0,

L2 (h’}ﬁf") do=1

Theorem 2.2 ({7, Theorem 1.2.1]). Let ® € Y. Then the following are equivalent:

(1) d e V,.
(2) The Hardy-Littlewood mazimal operator is bounded on L®(R™).

The Holder’s inequality is generalized to Orlicz spaces as follows.
Theorem 2.3 ([30]) For a Young function ® and its complementary function ®,
[ 1@g@)l ds < 20 flze ol .
Theorem 2.4 ([20, Theorem 2.3)). If there ezists a constant ¢ > 0 such that
d7(r)®3(r) < c®;(r) forallT >0,
then
[£9llzea < 2¢] fllzo1lgll Los-
Theorem 2.5 ([24, p. 110, Theorem 7]). Let ® € Y. Then
(M*®) = L3R, llgllaere ~ llgl5-

Next we recall the definition of Morrey spaces. Let B(a,r) be the ball {z € R :
|z — a] < r} with center a and of radius r > 0. '

Definition 2.2 (Morrey space). For 1 <p<ooand 0 < A< n, let

IPARY) = {f € L& (R") : ||fllzoa < +00},

| fllzer = sup (;1; A lf(:c)l"da:)llp,

B=B(a,r)

Then LPA(R") is a Banach space. If A = 0, then LP*(R") = LP(R™). If A = n,
then LPA(R") = L™(R").



If 1/p1 + 1/ps = 1/p; and A;/py + A3/p3 = Ag/pe, then we can get by Holder'’s
inequality

(2.2) 1 £9llzrara < || fllLerra gl o5

It is known that, if 1 < p < ¢ < 0o and 0 < A < n, then there exists a function
f € [P*(R") such that f ¢ L¥*(R") for all 0 < p < n. For preduals of Morrey
spaces, see [8].

Let G be the set of all functions ¢ : (0,4+00) — (0,+00) such that ¢ is almost
decreasing and ¢(r)r is almost increasing. If ¢ € G, then ¢ satisfies doubling
condition.

Proposition 2.6. If ¢ € G, then there ezists ¢ € G such that ¢ ~ ¢ and that @ is
continuous and strictly decreasing.

Definition 2.3 (generalized Morrey space). For 1 <p < oo and ¢ € G, let
LPIR") = {f € L, (R") : || fllzo < +00},

' 1 » 1/p
Il = sup (TBWES [ 1@ dz) .
Then L®9)(R") = LP*(R™) for ¢(r) = r*™.

3. ORLICZ-MORREY SPACES

Now we define Orlicz-Morrey spaces. For ® € ), ¢ € G and a ball B, let

: 1 |f (m)l) }
—inf{A>0: /@( dr<1}.
s =it {3 >0 s [0
Definition 3.1 (Orlicz-Morrey space). For ® € Y and ¢ € G, let

LOOR") = {f € Li(R") : |lflusr <+00},

fllce.s = sup I flle.6,5-

Then || - ||p@.» is a norm and L®%)(R") is a Banach space, since ||flle.¢8 =
| Il z#(B,dz) is & norm on the Orlicz space L*(B, dz) where dx = dz/(| B|¢(|Bl)))-
By the definition we have the following.

Proposition 3.1. If ¢(r) = 1/r, then L& (R") coincides with the Orlicz space

L¥R"). If ®(r) = 1 and ¢(r) = r~17¥» (0 < X < n), then LED(R™) coincides
with the Morrey space LP*(R™).
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Proposition 3.2. Let &, ¥ be Young functions and let ¢,9 € G.
(1) If ®(r) < ¥(Cr), then

LR > LYIR™),  |Iflzes < Clflree-
(2) If ¢(r) < Cy(r), then
LEO®Y) C LR, max(1, )l luwn = Il
Therefore, if ® ~ ¥ and ¢ ~ 1, then L&) (R") = LY (R").
Proposition 3.3. Let® € Yando€eg.

(1) If co = supy5p #(u) < +00, then

LEAR) C LR and |l < 3 Hao) g
(2) If ¢ = infyso p(u) > 0, then

L®OR") D> L®(R") and ||fllze 2 &7 (c)l|fllzeon-

Therefore, if ¢ ~ 1, then LI®#(R") = L*°(R") with equivalent norms.

4. BASIC PROPERTIES

Theorem 4.1. Let ®; be Young functions and ¢; € G, i = 1,2,3. Assume that
there ezists a constant ¢ > 0 such that

&7 (rga()) 257 (r43(s)) < c @3 (ra(s)) for 71,5>0.
If f € L®1$)(R") and g € L®%)(R), then fg € L®29)(R™) and
fgllz@asn < 2¢||fllL@renllgllLes.sa-

Corollary 4.2. Let ®; be Young functions, i = 1,2,3, and ¢ € G. Assume that
there exists a constant ¢ > 0 such that

&71(r) @31 (r) < c®3'(r) for T>0.
If f € LED(R) and g € L®>9(R"), then fg € LE*$)(R") and

| f9llLeaer < 2¢||fllL@roligllL@s.e-



Corollary 4.3 ([13, 14]). Let 1 < p; < o0 and ¢; € G, i = 1,2,3. Assume that
1/p1 + 1/ps = 1/p; and that there erists a constant ¢ > 0 such that

9/ ()¢5 (r) < e (r) for >0,
If f € L) (R™) and g € L¥%)(R™), then fg € L&43)(R") and
£l a0 < 2| fll o100 |9]] Lo3.0-

Theorem 4.4. Let ®; € Y and ¢; € G, i = 1,2. Assume that

Qo(r)P2(s) < p®Py(rs) for 7>0, s>0,
and that there exists ®; € Y such that

@7 (r)25(r) < @3 (r) and 61(r)/22(257(41(r))) < caa(r) for 7 >0.

Then

L(‘l’l,du)(]Rﬂ) - L(@a,nﬂz)(mﬁ) and

1Fllztonen < 2max(1, co) ey max(L, c2)|flcos00-
Corollary 4.5. Let 1 <qg<p<ooand ¢ € G. Then
LEAR™) C LR and ||fllqewm < Illzoe-
Corollary 4.6. Let ® € Y and ¢ € G. Then ®1(¢) € G and
LEAR") C LY TR and ||f]l as-1en < IF Lo
Corollary 4.7 ([17]). Let ® € Y and ¢(r) = ®~1(1/r). Then ¢ € G and

L*R") c LY9[R™) and ||flz0e < Cllfllze-

Theorem 4.8. Let ,¢ € Y, ¢ € G and ¢(r) — +oo as+ — 0. If

limy 00 ®1(r)/¥~1(r) = +00, then there erists a function f € L®)(R™) with
compact support such that f ¢ LY¥)(R") for ally € G.

Coi-ollary 4.9. Let 1<p<q<oo,d €G and ¢(r) = +00 asT — 0. Then there
ezists a function f € LP#(R™) with compact support such that f ¢ L9 (R™) for all
Y EeG.
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5. PREDUAL
Definition 5.1. Let & € Y and ¢ € G. A function b on R is called a (@, ¢)-block
if there exists a ball B such that
((i) suppbC B,
@) / B(k|b(z)|) dz < +o00 for all k >0,
B .
1
(#9) |blles.s < Hirmn
\

|Bl#(|B)’

where B is the closure of B.
Let ®’ be the space of distributions on R".

Definition 5.2. Let ® € Y and ¢ € G. We define the space Bs 4)(R"*) C D' as
follows:

f € Ba 4 (R™) if and only if there exist sequences (%, ¢)-blocks {b;}
and positive numbers {);} such that

(51) f = ijbj in®’' and ZAJ < +-00.
J i

||f||3(¢,¢) = inf {Z Ajf= Z/\jbj in @'} ,
i j
Then Bs 4)(R") is a Banach space.

Theorem 5.1. Let & € ¥ and ¢ € G. Assume that € V. Then
(Ba.#(R™)" = LEDR").

More precisely, for g € L& (R™), there egists a linear functional L given by

(52 L) = [ f@a)ds for f € MEnp(®Y),
and satisfies

LN < cligll L@.o-

Conversely, every linear functional L on B 4)(R") can be realized as (5.2), with
g € L& (R"™), and with

"9”1,(3.4:) < C'”L”-
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Lemma 5.2. Let f € M3, (R") and f = 3 A\b; be any decomposition in
B(@#,)(R"). Then

63) | REIOEE Y RICFOPY

for all g € LEH(R")
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