Banach-Mazur distance and B-convex Banach spaces

岡山県立大学・情報工学部 高橋 泰嗣 (Yasuji Takahashi)

Department of System Engineering, Okayama Prefectural University

九州工業大学・工学部 加藤 幹雄 (Mikio Kato)

Department of Mathematics, Kyushu Institute of Technology

Abstract. A Banach space X is said to be B-convex if it is B_n -convex for some $n \geq 2$. As is well-known, B-convexity is an isomorphic invariant, but B_n -convexity is not so. In this short note, we are concerned with the stability of B_n -convexity under norm perturvations. It is known (cf.[7]) that X is B_n -convex ($n \geq 2$) if and only if the n-th von Neumann-Jordan constant $C_{NJ}^{(n)}(X)$ is less than n. We show that for isomorphic Banach spaces X and Y it holds $C_{NJ}^{(n)}(Y) \leq C_{NJ}^{(n)}(X)d(X,Y)^2$, where d(X,Y) denotes the Banach-Mazur distance between X and Y; and this implies that if X is B_n -convex, then there exists $\lambda_n > 1$ such that all Banach spaces Y satisfying $d(X,Y) < \lambda_n$ are B_n -convex. In the case $X = l_p$ or $L_p[0,1]$, 1 , it is also shown that all Banach spaces <math>Y satisfying $d(X,Y) < n^{1/r}$ are B_n -convex, where $r = \max\{p,p'\}$ and 1/p + 1/p' = 1. Moreover, if $X = l_p^n$ or $L_p[0,1]$, 1 , then there exists a Banach space <math>Y with $d(X,Y) = n^{1/p'}$ such that Y is not B_n -convex.

同型なバナッハ空間 X,Y に対し、Banach-Mazur distance d(X,Y) は X と Y の近さを表すと考えられる。 X,Y が isometric であれば X のもつ幾何学的性質 (狭義凸性、一様凸性等) はすべて Y に遺伝する。 X,Y が isometric のとき d(X,Y)=1 であるが、一般にその逆は成立しない。 d(X,Y)=1 のとき、狭義凸性は遺伝するとは限らないが、一様凸性等の超性質はすべて遺伝する。 バナッハ空間論では局所的性質、とりわけ超性質 (super property) の研究が重要である。一様凸性、一様平滑性、uniform non-squareness、type p, cotype p, p0 の研究が重要である。 一様凸性、一様平滑性、uniform non-squareness、type p1 のは関する。 無限次元バナッハ空間に関する自明でない任意の超性質を p2 とするとき、無限次元ヒルベルト空間と p3 isometric な空間は性質 p5 を有し、また、性質 p6 有する任意の空間は有限の p6 cotype をもつ。 つまり、ヒルベルト空間と p7 isometric である

ことは最強の超性質であり、有限の cotype をもつことは最弱の超性質である. ここで素 朴な疑問が生ずる:X,Yが近い(d(X,Y)が小さい)とき,Xの超性質はYに遺伝するで あろうか? 可分なヒルベルト空間しは、すべての超性質を有する. Yがしと同型であれ ば、 $1 \le d(l_2, Y) < \infty$ である. $d(l_2, Y) = 1$ ならば. 当然, Y はすべての超性質を有する. では、 $d(l_2, Y) < \lambda$ となるすべての Y が超性質 P をもつような $\lambda > 1$ は存在するであろ うか? 超回帰性あるいは B-convexity のような位相的性質については、当然、存在する $(\lambda > 1$ は任意でよい). しかしながら,一様凸性あるいは一様平滑性のような幾何学的性 質については事情が異なる.実際,任意の $\lambda>1$ に対し, $d(l_2,Y)<\lambda$ となるYで一様 凸(あるいは一様平滑)でないものがある. ところで,一様凸性(あるいは一様平滑性)と 超回帰性との間にある重要な概念として uniform non-squareness (B_2 -convexity あるい は J_2 -convexity と同値) がある. (超回帰的な空間は,一様凸空間が有するすべての位相 的性質を共有することが知られている (Enflo [1])). 最近, uniformly non-square である ような空間は不動点性 (fixed point property) をもつことが示され、 また、 $d(l_2, Y) < \lambda$ であるようなすべてのYが不動点性をもつような最良の λ も研究されている(cf.[2],[8],[9]). ところで、 $d(l_2, Y) < \lambda$ であるようなすべての Y が uniformly non-square となる λ の最大値は $\lambda = \sqrt{2}$ である (cf.[11]).

小論の目的は、uniform non-squareness あるいはより一般の B_n -convexity について、その性質の遺伝性を Banach-Mazur 距離との関係で考察すること、更に、 B_n -convex であるような具体的な空間 X に対し、 $d(X,Y) < \lambda_n$ であるすべての Y が B_n -convex となるような最良 (最大) の λ_n を決定することである.

- 1. Definitions (i) For isomorphic Banach spaces X and Y, the Banach-Mazur distance between X and Y, denoted by d(X,Y), is defined to be the infimum of $||T|| ||T^{-1}||$ taken over all bicontinuous linear operators T of X onto Y.
- (ii) A Banach space Y is called *finitely representable* (f.r.) in a Banach space X if for any finite dimensional subspace F of Y and for any $\epsilon > 0$ there exists a finite dimensional subspace E of X with dim $E = \dim F$ such that $d(E, F) < 1 + \epsilon$.
- (iii) Let P be a property for Banach spaces. We say X has super P if any Banach space Y f.r. in X has P. P is called super property if P = super P. Of course, X is super-reflexive if any Banach space Y f.r. in X is reflexive.
- 2. Definitions (i) X is called uniformly non-square (James, 1964) if there exists $\delta > 0$ such that

$$\min(\|x+y\|, \|x-y\|) \le 2(1-\delta)$$
 if $\|x\| = \|y\| = 1$.

(ii) The James constant of X is defined by

$$J(X) = \sup \{ \min(\|x+y\|, \|x-y\|) : \|x\| = \|y\| = 1 \}.$$

It is obvious that X is uniformly non-square if and only if J(X) < 2.

(iii) The von Neumann-Jordan constant of X is defined by

$$C_{NJ}(X) = \sup \left\{ \frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} : x, y \in X, \text{ not both zero} \right\}.$$

It is known that X is uniformly non-square if and only if $C_{NJ}(X) < 2$ (cf.[5],[10]).

3. B-convexity and B_n -convexity X is said to be B_n -convex (or uniformly $non-\ell_1^n$) provided there exists ε ($0 < \varepsilon < 1$) such that for all $x_1, ..., x_n \in B_X$ there exist ε_j ($\varepsilon_j = \pm 1$) satisfying

$$\|\varepsilon_1 x_1 + \ldots + \varepsilon_n x_n\| \le n(1-\varepsilon),$$

where B_X denotes the closed unit ball of X. X is called B-convex if X is B_n -convex for some $n \geq 2$. It is well-known that X is B-convex if and only if l_1 is not finitely representable in X; and if and only if X is of type p for some p > 1.

4. Theorem Let $1 . Suppose that there exists <math>\varepsilon$ $(0 < \varepsilon < 1)$ such that for all $x_1, ..., x_n \in B_X$ there exist ε_j $(\varepsilon_j = \pm 1)$ satisfying

$$\|\varepsilon_1 x_1 + \ldots + \varepsilon_n x_n\| \le n^{1/p} (1 - \varepsilon).$$

Then X is of type r for some r > p.

5. n-th von Neumann-Jordan constant In [7] the authors introduced the n-th von Neumann-Jordan constant $C_{NJ}^{(n)}(X), n \geq 2$, by

$$C_{NJ}^{(n)}(X) := \sup \Big\{ \sum_{\theta_j = \pm 1} \Big\| \sum_{j=1}^n \theta_j x_j \Big\|^2 \Big/ 2^n \sum_{j=1}^n \|x_j\|^2; \ \sum_{j=1}^n \|x_j\| \neq 0 \Big\}.$$

It was shown in [7] that X is B_n -convex, $n \geq 2$, if and only if $C_{NJ}^{(n)}(X) < n$; and for $1 , <math>C_{NJ}^{(n)}(l_p) = C_{NJ}^{(n)}(L_p) = n^{2/p-1}$ for all $n \geq 2$, where dim $L_p = \infty$. Note that for $2 , <math>C_{NJ}^{(2)}(l_p) = C_{NJ}^{(2)}(L_p) = 2^{2/p'-1}$, but $C_{NJ}^{(n)}(l_p) = C_{NJ}^{(n)}(L_p) < n^{2/p'-1}$ for some n > 2, where l/p + 1/p' = 1.

6. Remark Let 1 and <math>1/p + 1/p' = 1. If (p, p')-Clarkson inequality holds in X, then $C_{NJ}^{(n)}(X) \le n^{2/p-1}$ for all $n \ge 2$; and if l_p is finitely representable in X, then $C_{NJ}^{(n)}(X) \ge n^{2/p-1}$ for all $n \ge 2$. In general, if Y is f.r. in X, then $C_{NJ}^{(n)}(Y) \le C_{NJ}^{(n)}(X)$.

The following result was proved in Kato-Maligranda-Takahashi [5].

7. Theorem Let X and Y be isomorphic Banach spaces. Then:

$$J(X)/d(X,Y) \le J(Y) \le J(X)d(X,Y) \tag{1}$$

$$C_{NJ}(X)/d(X,Y)^2 \le C_{NJ}(Y) \le C_{NJ}(X)d(X,Y)^2$$
 (2)

8. Remark There exist Banach spaces X and Y such that

$$J(Y) = J(X)d(X,Y)$$
 and $C_{NJ}(Y) = C_{NJ}(X)d(X,Y)^2$.

Of course, if both X and Y are not uniformly non-square, then equalities hold if and only if d(X,Y)=1. On the other hand, if $X=l_2^2$ and $Y=l_p^2$, $1 \le p \le \infty$, then both equalities hold (cf.[12]). Let us mention that there are infinite dimensional uniformly non-square Banach spaces X and Y such that both equalities hold. Hence the inequalities (1) and (2) in Theorem 7 are sharp.

We shall extend the inequalities (2) in Theorem 7 to n-th von Neumann-Jordan constants.

9. Theorem Let X and Y be isomorphic Banach spaces. Then for all $n \geq 2$, we have

$$C_{NJ}^{(n)}(X)/d(X,Y)^2 \leq C_{NJ}^{(n)}(Y) \leq C_{NJ}^{(n)}(X)d(X,Y)^2$$

10. Corollary (cf.[12]) Let $1 \le p \le q \le \infty$. If $1 \le p \le q \le 2$ or $2 \le p \le q \le \infty$, then $d(l_p^n, l_q^n) = n^{1/p-1/q}$.

Using Theorem 9, we easily have

- 11. Proposition For each B_n -convex Banach space X, there exists $\lambda_n > 1$ such that all Banach spaces Y satisfying $d(X,Y) < \lambda_n$ are B_n -convex.
- 12. Theorem Let 1 , <math>1/p + 1/p' = 1 and $r = \max\{p, p'\}$. Then all Banach spaces Y satisfying $d(l_p^n, Y) < n^{1/r}$ are B_n -convex. In the case that $X = l_p$ or L_p (dim $L_p = \infty$), all Banach spaces Y satisfying $d(X, Y) < n^{1/r}$ are B_n -convex. (For n = 2, if X is one of the spaces l_p^2 , l_p and $L_p[0, 1]$, then there is a Banach space Y with $d(X, Y) = 2^{1/r}$ such that Y is not B_2 -convex.)

For a B_n -convex Banach space X, we denote by $\lambda_n(X)$ the best value of λ_n in Proposition 11, that is, all Banach spaces Y satisfying $d(X,Y) < \lambda_n(X)$ are B_n -convex. whereas there exists a Banach space Z with $d(X,Z) = \lambda_n(X)$ such that Z is not B_n -convex.

Now we shall consider the best values λ_n for some B_n -convex spaces X. Let 1 and <math>1/p + 1/p' = 1. If $X = l_p^n$, then by Theorem 12 we have $\lambda_n(X) \ge n^{1/p'}$, and so $\lambda_n(l_p^n) = n^{1/p'}$ since $d(l_p^n, l_1^n) = n^{1/p'}$ and l_1^n is not B_n -convex (cf.[12], see also Corollary 10).

The next example shows that if $X = L_p[0,1]$, $1 , then the best value <math>\lambda_n = \lambda_n(X) = n^{1/p'}$.

- 13. Example For $1 \leq p \leq 2$ and $\lambda \geq 1$ let $Y_{\lambda,p}$ be the space $L_p[0,1]$ with the norm $||x||_{\lambda,p} = \max\{||x||_p, \lambda ||x||_1\}$. Then $C_{NJ}^{(n)}(Y_{\lambda,p}) = \min\{n, \lambda^2 n^{2/p-1}\}$ and $d(L_p, Y_{\lambda,p}) = \lambda$. Hence $Y_{\lambda,p}$ is B_n -convex if and only if $\lambda < n^{1/p'}$; and if $\lambda = n^{1/p'}$, then $Y_{\lambda,p}$ is not B_n -convex and $d(L_p, Y_{\lambda,p}) = n^{1/p'}$. (Note that $Y_{\lambda,p} = L_p[0,1]$ if $\lambda = 1$.)
- 14. Theorem Let $1 . Then, <math>\lambda_n(l_p^n) = \lambda_n(L_p[0,1]) = n^{1/p'}$. In particular, $\lambda_n(l_2) = \sqrt{n}$.

Let X be a Banach space with dim $X \ge n$ and $1 . Define the constant <math>d_n^n(X)$ by

$$d_n^n(X) = \sup\{d(l_n^n, E) : E \subset X, \operatorname{dim} E = n\}.$$

15. Theorem Let X be a Banach space with dim $X \ge n$. Let 1 , <math>1/p + 1/p' = 1 and $r = \max\{p, p'\}$. If $d_p^n(X) < n^{1/r}$, then X is B_n -convex. In particular, if $d_p^2(X) < 2^{1/r}$, then X is uniformly non-square.

References

- [1] P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281-288.
- [2] J. García-Falset, E. Llorens-Fuster and E. M. Mazcuñán-Navarro, Uniformly non-square Banach spaces have the fixed point property for nonexpansive mappings, J. Functional Analysis, to appear.
- [3] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- [4] R. C. James, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896-904.
- [5] M. Kato, L. Maligranda and Y. Takahashi, On James, Jordan-von Neumann constants and the normal structure coefficients of Banach spaces, Studia Math. 144 (2001), 275-295.
- [6] M. Kato and Y. Takahashi, On the von Neumann-Jordan constant for Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 1055-1062.
- [7] M. Kato, Y. Takahashi and K. Hashimoto, On n-th von Neumann-Jordan constants for Banach spaces, Bull. Kyushu Inst. Tech. Pure Appl. Math. 45 (1998), 25-33.
- [8] P. K. Lin. Stability of the fixed point property of Hilbert spaces, Proc. Amer. Math. Soc. 127 (1999), 3573-3581.
- [9] E. M. Mazcuñán-Navarro, Stability of the fixed point property in Hilbert spaces, Proc. Amer. Math. Soc. 134 (2006), 129-138.
- [10] Y. Takahashi and M. Kato, Von Neumann-Jordan constant and uniformly non-square Banach spaces, Nihonkai Math. J. 9 (1998), 155-169.
- [11] Y. Takahashi and M. Kato, Banach-Mazur distance and super-reflexive Banach spaces, 北海道大学数学講究録 105 (2006), 86-90.
- [12] N. Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Longman Sci. & Tech. and Wiley, New York, 1989.