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ON A NON-LOCAL EQUATION DESCRIBING THE RICCI FLOW

NIKOS I. KAVALLARIS AND TAKASHI SUZUKI

ABSTRACT. A non-local parabolic equation desribing the normalized Ricci flow is studied. The equation
applies on a two-dimensional compact Riemannian manifold £ without boundary, e.g. flat torus T2,
and contains a nonlinearity of the form X (e* / [, e“de — 1/0]) . Global existence for every A > 0 and
convergence to a steady state for 0 < A < 8w, under some additional assumptions for the initial data,
are proved. .
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1. INTRODUCTION-BACKGROUND AND DERIVATION OF THE PROBLEM

If (2, go) is & compact Riemannian surface then the normalized Ricci flow describes the evolution in
time of the metric g = g(t) on Q satisfying the initial condition g(0) = go. More precxsely gis gwen as
the solution of the problem

%~ (r-Rg >0 o (1.1)
- 90) = @, . (12)
where R = R(t) stands for the scalar curva.ture while r = »(t) represents the average sca.la.r curvature

which is given by the form .

. fn dl—‘t
where = ju is the volume element. Due to Gauss-Bonnet’s theorem there holds -
/ R(t) due = 47x() | (14)
q .

where x(Q) stands for the Euler characteristic of the surface Q and is given as x(2) = 2 — 2 k() where
k(€2) is the genus of £, i.e. the number of holes existing in the surface 2. Now by (1.3), taking also into
account (1.4), we conclude that r is independent of the metric g and remains a constant in txme since the
volume is preserved along the Ricci flow.
Let now suppose that €2 is a two-dimensional surface with positive scalar curvature, then by virtue of
(1.4) the hypothesis R > 0 implies that k(Q) = 0 and uniformization theorem guarantees that

N=25% and g=eYgo,

for a smooth function w, where go is the standard metric on the two dimensional sphere $2. It is known,
see Lemma 5.3 in (8], that the scalar curvatures R, and Ry corresponding to metrics g and go respectivelly
are related by

Ry = e ¥(-Aw + Ry), (1.5)
where A = Ag,. In view of (1.4) ‘
and setting dz = du,, we obtain . '
87 - 8w

"= Jor g~ Jgaevdz’ N



Furhermore integrating (1.5) over S? we derive

|S%|Ry = 8. ‘ (1.8)
Now by pluging (1.5) into (1.1) and usihg (1.7), (1.8) we end up with the non-local equation
0" _ Aw + 87 (———e—w— - L) z€8%, t>0 (1.9)
ot Jaevdz |S?) ’

describing the normalized Ricci flow in-the two-dimensional sphere S2. Along with (1.9) the initial con-
dition ' :
w(z, 0) wo(z) z €S2 (1.10)
is considered.

The first attempt to be studied the long-time behaviour of ¢(t) was by Hamilton. He proved, see [13],
using also some geometri¢ arguments the following convergence result -

g(t) > geo in C™(S?) as t— oo, ) (1.11)

“where goo i8 a'sinooth metric on S? of constant curvasure, under the hypothesis R > 0, which eventually
removed by Chow, [7]. Hamilton’s proof is very complicated since it involves some geometric arguments,

" like Harnack’s inequality for the scalar curvature, along with- monotonicity of an awkward geometric

quantity called “entropy” and soliton solutions of the Ricci flow. Bartz et al, [4], gave a simpler proof
of (1.11) working on the equivalent problem (1.9)-(1.10). Actually, they first proved the global-in-time
exlstence of solutions of problem (1.1)-(1. 2) and then the convergence result (1.11) based on a gradient
estimate of the form
lV,gaw’ <C, (1.12)
with C depending only on wo. The proof of estimate (1. 12) follows the lines of an argument exisiting in
[23] and is based on the Harnack’s inequality for solutions of the Yamade ﬂow although a more elementary
argument is used for the uniqueness of the asymptotic limit in [4].
Our aim is to study the global existence and long-time behaviour of the initial value non-loca.l problem

o Aw+A( i ) zeq t>0 (1.13)
& = Tnevdz |n| 120 13)
w(z,0). = wo(z) z€N o (1.14)

whrere A is a positive para.meter and Q is assumed to be a two-dimensional compact Remannian surface
without boundary. Taking into account the above analysis, we might think of problem (1.13)-(1.14) as
_destibing the normalized Ricci flow in a more general Remannian surface than the two-dimensional sphere
and coincides with (1.9)-(1.10) for A = 8. .
Under the cha.nge of variables v = Ae¥ and t = A' T problem (1.13)-(1.14) is transformed to

Up = Alogu+u lm/udw, z€R, 7>0 (1.15)

u(z,0) = ug(z)=Are", z € Q, , ‘ ' (1.16)

where - '
/ u(z, 7)dz = A, . (2.17)

coming out by integration of equation (1.15) over 2, see also next section. '

In the next section we prove that the non-local perturbation term in (1.15) has a smoothing effect,
in fact for every 0 < A < oo (1. 17) permits the solution u of (1.15)-(1.16) to remain positive for every
0<t<oo. Combmmg this result with an upper estimate which guarantees that u remains also bounded
for every time, so logu term does, and we are able to prove the global-in-time existence of problem
(1.15)-(1.16) and hence of the equivalent problem (1.13)-(1.14). Section 3 is devoted to the study of the
stability of problem (1.15)-(1.16). ‘More precisely, for every 0 < A < 8 using the Luapunov functional
of problem (1.13)-(1.14) we obtain & gradient estimate of the form (1.12) for w and taking advantage of -
the special structure of the problem we finally prove that w and hence u converges to a steady state.



2. GLOBAL EXISTENCE

In this section we study the global-in-time existence of the problem

u = Alogu+u—l—§1ﬂ/nudx, z€9, 0<t< Thaz, (2.1)
w(z,0) = wuo(z), z € ‘ O (22)

For the initial data we assume that .
up(z) > 0, ie. ménuo( z) > ¢ >0, with yo(z) € L=(Q). ' (2.3)

Local existence of problem (2.1)-(2.3) can be proved using some classical parabolic estimates exisiting in
[16). |

By integrating equation (2.1) over {, taking also into account that € is compact manifold w1thout
bounda.ry, we derive the total mass conservatmn condition

/ u(z,t)dz = / uo(z)dz = A, for 0<t < Tomae, (24
(in case Tipae = 00 (2.4) holds only for 0 <t < 00) hence finally problem- (2.1)-(2.2) becomes '
I';\TI" 2€9, 0<t < Tnas, (2.5)
u(z,0) = buo(x) z€q, ‘ (2.6)

where A > 0 is the parameter of the problem.
To prove global-in-time existence for the solution of the problem (2. 5) (2.6) we use comparison techiques.
First we set without a proof a compariosn result will be used a lot in the following. Actually, using the

maximum principle holding in compact manifolds, see [2] page 130, it is not difficult to prove the fol]awmg
comparison result. For similar results, see also 11, 9.

Lemma 2.1. Let Q be a compact Rzemanman and w € C(Q x [0,T]) U Cc?1(Q x (0,T)), for some
0 < T < o0, be a classical .salutwn of .

w, > Y(z,t,w)Aw+ f(w), in Qx(0,T)
- w(z,0) = wy(z), z€Q, :
and let z € C(Q x[0,THu (0 x (0,T)), be o classical solution of
z < Y(z, t,,.)A~ +f(z), in Q% (0, T),
z(z,0) = z(z), z€Q,

where ¢ € C?(Q x [0, T} x [-N, N]), N = max(||w||eo; ||12{|cc)s ¥ = k > 0 for some constant k > 0, and
f € C3(R). If wo(z) > z0(z), then w(z,t) > z(z,t) in Q x [0, T .

In the following we will need a Benilan-type estimate, i.e. an estimate of the form

us(z, t)
u(:c 1) <9(t)

uy = Alogu+u-

‘which is provided by the following.

" Proposition 2.2. Let u € C(§ x [0,T]) U C>1(2 x (0,T)), for some 0 < T < oo, be a solution of
(2.5)-(2.6) then u satisfies v ,

’;‘((::)) < —ti in 0% (0,T), - 27)

Jor every A > 0. Moreover there exists a constant Co dependmg only on ||uo(- )||°° such that
0 < u(z,t) S Coet in O x [O.T] (2.8)



Proof. Let v = logfd, then v satisfies

—v Ae”?
vo= € A’U +1- —-lﬁ—l—, in x (O,T) (29)
v(x,0) = wp(z) = log(ug(x)), = € . | (2.10)

Dlﬁerentlatmg now equation (2.5) with respect to t we obtain
utth( )+ut, in  x (0, T)
or equxvalently, since u(z,t) > 0 in Q x (0,T),
2 2
uuu—ut__ Uy Z‘L—t” E .
—_t = A(u)+ ( ) ,mQx(O‘,T),

: u? u u u
hence p = us/u sa,tlsﬁes the initial value problem
' p=eAp+p-p°, in Ox(0,T), p(z,0)=0, z€ - (2.11)
© We consider ‘

1
q(z, 1&)--1+—---——t_,_c.‘_1

where Cjs is a constant to be selected properly below, then it is easxly verified that g(z,t) satxsﬁes the

equation of (2.11). By chossing
1
Cs=1o (1+_-—-——) >0,
=T TG Ol — 11
we derive that g(z, 0) =141/ (ecﬂ - 1) > p(z,6) and in view of Lemma 2.1 we obtain
- <1+ tl_ in Qx (0, T]

et+Cs
Teking the limit as § — 0, in the above relation, we get that

" op(z,t+6) < gz t) =1+

u(z,t) _ et
D) p(z t)_t T mQx(OT] “ |
~ Inorder to obtain an estimate of the form (2.8) we try to construct an upper solutlon of problem (2. 5) (2.6)

or equivalently of problem (2.9)-(2.10). First we note that the solution of the problem '

Vi = VAV +1, in @x(0,T) | - (2.12)

| V(z,0) = w(z)=Ilog(uo(z)), z €. ‘ (2.13)

is an upper solution to (2.9)-(2.10). Therefore, to obtain an estimate of the form (2.8) it is sufficient to

construct an upper solution to problem (2.12)-(2.13). It is easily verified that z(z,t) = log(Coe*), where

Co = ||uo(*)]]oo, is an upper solution to- problem (2.12)-(2.13) and so an upper solution to (2.9)-(2.10).
Hence

g v(z,t) < log(C’oe‘) in Q2 x [0 T}, _

which implies estimate (2.8). - ' a

Remark 2.3. From the definition of Cp it is obvious that the constant C in (2.8) is independent of the

parameter ). Therefore, due to (2.8), which is a uniform estimate with respect to A, we conclude that

u(z,t) remains bounded for every 0 < ¢t < oo and for any A > 0, but this is not enough to permlt us
studying the long-time behaviour of u for any A > 0, see also Remark 2.8.

Remark 2.4. Relation (2.7), implies that the function u(z,t)/ (e —-1)is (monotone) decreasing as time t
increases to T = Ty Indeed, usmg (2. 7) we obtain

" - D o, o

In the followmg we prove & monotommty result with respect to the: pa.rameter A, more precisely there
holds.




Lemma 2.5. The solution of problem (2.9)-(2.10) is decreasing with respect to A.

" Proof. Let set k(z,t) = —vy(z,t), then by differentiating problem (2.9)-(2.10) with respect to A we obtain
that k satisfies

) -
ke—e P Ak— (A +-—) g
’ ( ] Tl <

k(z,0)=0, z €.
Since the function | Av + ]%[ e~? is bounded for a classical solution v, using the maximum principle,
see (1, 21], we derive that k > 0 and so v) < 0in 2 x [0,T). v a

The main result of this section is the following.

Theorem 2.6. Problem (2.5)-(2.6) has a global-in-time (classical) solution u € C(2 x [0 00))UC? (0 x
(0,00)), i.e. Trnax = 00, for every A > 0.

Proof. Since (2.8) holds, in order to prove global—m-tune exxstence of the solution u(r,t), i.e. Trmaz = -
T = oo, it is sufficient to show that

u(z,t) > C >0 in O fora.ﬁy t>0, ‘ (2.15)

where the constant C might depend on time t.

We assume that (2. 15) holds only in [0, T") for some T < oo and we will draw a contradiction. In the
following we proceed as in [14], but pointing out now that the continuity of u(z,T) cannot be obtained
by Dini’s theorem. By virtue of Proposition 5.18 in (8] we obta.m that

lwe] < Cr in 0 x [O T) : (2.16)

* or teking also ihto account(2.8), the estimate

lu| < Cp in Qx[0,T). - (2.17)
Relatxon (2.17) first ylelds the existence of
T .
u(a:,T) = u(z,t) + / ue(z,8)ds, te(0,T) (2.18)
; _ A :
and then
|u(z, T) — u(z’, T)I < Ju(z, t) — u(z', t)l + CH(T —t).

Now by choosing to(€) € (0,7) such that C(T —to) < €/2 and using also the fact that £ — u(z, o) is
unifromly continuous in (compact surface) §, we finally obtain,

for every € >0 there exists 6(6) >0 st |z—=z | < 6= |u(z,T) - u(:n T)l <€,
thus u(x T) = limyyr u(z, t) is (umformly) continuous in .
' u(z,t) 2 € >0, in 0 x[0,4]. A (2.19)

Also due to (2.3), (2.4) we have [, u(z,T)dz > 0 and since u € C(Q x [0,T7]), there exxsts Zo € Q and
constants €2 >0, 0< 83 < T — 6, such that B, (zo) C 2 and

u(z,t) > €2 > 0, in Bg,(zo) x [T - 63,T). (2-20)
Using again (2.14) we derive ’ |

v (et =Du(z,T —68) _ (e® - 1)eg . =
u(z,t) > e > e =t P >0 in B, (o) x [01,T — ). (2.21)
Combining now (2.19)-(2.21) we obtain
u(z,t) > e3> 0 in- By, (7o) X [0, T} U (Q\ Bs,(z0)) x {0}, (2:22)
where : -

o -~ (ef —1)e
€3 = 63(T) = mm{61,62, (eTﬁ__?_]%} >0.



Now we consider the problem

A
Az e — |Q_| =0, z€ Qéz.-"—'o = \ B52(w0)? (223)
z=loges, T € 00, z, = 0Bs,(Z0). (2.24)

Using maximum principle arguments we can obtain that problem (2.23)-(2.24) has, for every A > 0, a
minimal solution provided that ez is sufficiently small. Also, using maximum principle, see for example
Lemma, 1 page 519 in [10], for ¢ = log ez — z which satisfies the problem

"—Aw + p(z)y = |_Q—| -e20, z€ Q‘;MO?

_ P=0, z € %, ¢,
with p(z) = —e# o8 es+(1-1)2(2) € [(Q,, . ) and A > Ealﬂl we derive that ¢ > 0 or equivalently

z <loges in Q,s, o+ (2.25)
Taking into account (2.22) and (2.25) we have

Ae™* Ae”?

z—e fAz—1+4 " T -—0=v¢—e"’Av—1+—|-h|—, (z,t) € Qsy,zo % [0, T,

(x, t) <loges < U(z:t)’ (z’ t) € aQGn,:co X [01T]

. 2(z,0) <loges < v(x,0), = € Ny, 00

for every A > €3]] and 3 > O sufficiently smal] Therefore in view of Lemma 2.5 we obtain that

- v(z,t) 2 z(z) > m = min z(z) > —00 in Qg4 % [0,7T),
53,20

or.
u(z,t) > e™ >0 in Qgy,q x [0,T], - (2.26)

for every A > 0 and 0 < ¢3 sufficiently small.
Combining (2.22) and (2.26) we derive

u(z,t) > C = C(T) := min{es,e™} > 0 in 2 x [0,7]. (2.27)

Since now u(z,T) > 0 in €, by the same arguments as above we obtain a classical solution i(z, )
but with initial data u(x,T) in Q x [0,6] for some § > 0. Then by defining u(z,t) = 4(x,t — T) for
(z,t) € Q x [T, T + §] we extend u(z,t) to a classical solution, with initial data uo(z), in @ x [T, T + 4],
but this contradicts the fact that 7" = Tinee < 0o. This completes the proof. O

Remark 2.7. By relation (3.4) we conclude that the 1ower bound in (2. 15) is not uniform with respect to
time, i.e. the constant C depends on ¢. ,

Remark 2.8. Although by Theorem 2.6 we obtain global-in-time existence of problem (2.5)-(2.6) for every
A > 0, we can study the long-time behaviour of the corresponding solution only for 0 < A < 8. This
due to the fact that only for this.range of A we can obtain a uniform H*(2)—bound by Fontana-Moser's
inequality, see also section 3. '



3. STABILITY

~ In this section we study the stability of the corresponding to (2.5)-(2.6) steady-state problem. By
making the substitution u = Ae", problem (2.5)-(2.6) is transfomed to

- Oe? ev 1
e _ &L 1
5r Aw+)\<fnew IQ') (3.1)
w(z,0) = log 22, (3.2)
where also has been used the time-scaling T = A=t as well as that
/ =) gz = L / u(z,t)dz =1 ' (3.3)
Q AlJa : '

(in the following, for the sake of sxmphcxty we use t instead of 7); then the corresponding steady-state
problem takes the form . '
A¢ + A ( —) =0. 3.4)
. fn etdr |Qf) : '(
‘We consider the functional

1 1
vJ;\(w);EHVwH%—-/\{log/ne"’d:;—l—s-z-l-/nwdz};,

Using the fact that Q is compact Riemannian manifold it is easily seen that the semiflow defined by the
solution of (3.1)-(3.2) is gradient-like in X = H'(Q) in the sence that

t .
/; [le“ 2wy|2 ds = Jx(wp) — Ja(w(z,t)) for every t >0, (3.5)

i.e. Jy(w) is a Luapunov functional of this semiflow.
We also note that the functional Jy(w) can be written in the form

()= 90w - ) - > {iog [ e*-2as},

where B(t) = ¥ = fn w(z, t) dz Applymg Moser-Fontana's inequality, see [11], in the preceding
relation we obtam due to (3.5)
1
(o) 2 5w) 2 5 (1= g7 ) IVl + Aol =1 (3)
or

3 (1= 2 ) 7B < Jytwo) + X1 - g,
The latter, for 0 < A < 8, due to Poincare-Wirtinger’s mequahty, yields that
llw|lgrq) £ C = Clwo, A, |9]) < o0 ‘ - (3.7)

and hence by (3.6) we obtain
I(w) > -C. (3-8
Relation (3.5) implies

/ e[ ds < Jy (o) —
and via (3. 3), (3.7) and (3 8) we derive _
/0 el Bds < €1 < o,
which implies
plies - _ |
/o lle®/2w,||3 ds < oo, _ (3.9)



since the constant C; does not depend on time &.
Now for 1 < g < 2 by Holder’s inequality we have

: q/2 (2-9)/2
/e"w]wthdms (/ eV w? dz) (/ et/ -9 dz> , (3.10)
0 Y] Q :

while using G11baxg-'I&'ud1nger s inequality,[12], since (3.7) holds, along with Young’s inequality we derive
that

/ P vdz < Cy |Q|eﬂ”“’“b" < oo forevery B > 0 (3.11)
o .
and using (3.9)-(3.11) we end up with '
o |l few |12 ' _
/o_ 5, 2o < 1)

Let now consider the w—limit set for problem (3.1)-(3.2),

wlwp) = {p € C2(92) : there exists tp — 00 S.t. ||w(, tnj o) — Y(- )ch(n) - 0}
‘a.nd setting _
E:= {¢e C?(Q) : ¢ satisfies (3.4) and /e¢=1},
then the following result holds. " .
Proposition 3.1. For every wo € H2 (Q) and 0 < A < 8 there holds w(wo) ;é 0 and w(wo) C E.

:‘ Proof. Due to (3. 7) there exists a sequence t, T 00 with tnt1 > iy + 6, for some § > 0 (taking &
subsequence if it is necessa.ry) and Wo, € H(R) such that

w(-,tn) = Wool") 88 m—o00 in H(Q). (3.13)
Moreover due to (3.12) we have ‘ :

tn+6 w |2
lim 0" I" 4s = o,
n—oo f ot 7
: a.nd so there should be some sequence tn € (t,.,tn + &) such that
M —0 as n-— oo (3.14)
ot . v
Relation (3.13), along with (3 11), yields ‘
e?(hin) . etDm() m Ll(Q) as 7T — 00 (3.15)
and )
e¥Cin) yevel) in L2(Q) as n— oo (8.16)

Going back to problem (3.1)-(3.2) we can prove that I|Aw( tn)llq < 00. Indeed, using (3.11) and (3.14)

we obtain via equation (3.1)
¢ 1/q :
d:z:) + ( / e

' (/ IAw(m,t'.,,)Iq d:r:) o < (/n

where constant K is independent of n, recaling that [, e¥(%%) dz = 1, hence w(-,f,) € W*9(Q) for
1 < g < 2. Using Morrey’s embedding for compact manifolds, see Theorem 2.20 in [2], we derive that.
w(-,Ea) € C7(Q) for some 0 < v < 1. Furthermore, via the parabolic regularity we obtain that w(:, t) e
C""”(Q) for t € (En'+ m1,tn + 72) and ||w|lg2+m A41/3(Qx (Enb 1 Enba)) < K; < oo forsome0<m <.
Therefore there exists & sequence T, € (fn + 71,%s + 72) such that

63‘”(1’:5'\)
ot -

w(xyt.n) - __]_.__

l/q .
) <oo, (3.17)

Tw(,Th) > We 8 n—oo in C*(Q).

- Then passing through the sequence 7, to the limit of (3.1), taking also into account (3.15)-(3.16), we
derive that we is classical solution to problem (3.1), hence the desired result.



Remark 3.2. Using the center manifold theory we can show
for any tx Too thereexists {t}} C {tx} st. w(.tx) @ wee € E in cH(Q), 0<b<1,
which implies the compactness of each orbit and hence w(wyp) is a compact connected set.

Remark 3.3. The hypothesis wy € H2(Q), via Sobolev’s imbedding gaurantees that wp is bounded and
$0 g is, hence we have the sufficient regularity assumed in relation (2.3).

Using (2.16) we can prove that
/ eT|uy|8dz 0 85 ¢ — 00 (3.18)
a .

forl<g<2. . '
In fact (2.16) yields the estimate .
’ wy(z, t) > Ce™ in £ x [0,00) ‘(3.19)'

where r = )‘/fn e¥dz = ), see [8).
Differentiating (3.1) with respect to ¢, then taking the dual product with w; yields that

% / eYwldz +/ |Vw,|2dz = A/ widr +/ e wywydz
_ Q
and using again equation (3.1) we end up with

4 / evwidz + 2 f |Vw|®dz = 2\ / ePwids - / eYwidzr. (3.20)
dt Jg a ~a o
Relation (3.20) by virtue of (3.19) takes the form '
—d—/ eYwldz < (2X - Ce'\‘)/ e¥widr < —_Cg/ evwlidr, t>6
dt Ja | Ja a :
for some postive constant Cs depending on 4, which implies
/ e wzdz — 0 as t— 00,
o]
and hence '
a / e™|wy|%z —- 0 a8 t— o0
9] .

for 1<g<2
~ But relation (3.17) in view of (3.11) and (3.18) yields that w( ,t) € H1(Q),1 < ¢ < 2, and due to
Sobolev embedding for N = 2 we obtain w(-,t) € L>(f). Therefore the positive orbit 7+(wo) is uniformly

"~ bounded and in the case where the steady state set E is discrete we have that the time-dependent solution

w(z,t) tends to a stea.dy-state solution, see also Remark 3.2. Hence the following holds.

_ Theorem 3.4. For every wy € Hz(Q) satwfyzng (9.19) and 0 < X < 87 the solution of (8.1)-(5.2)
converges in C%(Q) to a steady state, i.e. a solution of problem (3.4 ), under the hypothesis that E is
discrete.

Considering now initial data wy which is an upper solution of the stea.dy-state problem (3.4), ie.

ewo 1 . .
Awg + A (———-fn T " I.ﬁi) s ,0 | | - (3.21)

we can prove that w(z,t) converges towards to a steady state. In fact, under hypothesis (3.21) we can
prove the following monotonicity result which is a key-result for the study of the asymptotic behaviour .
of w(z,1).

Lemma‘3.5é The solution w(z,t) of (3.1)-(8.2) is nonincreasing in time for every z € Q.



Proof. Differentiating equation (3.1) with respect to t, taking also into account (3.3), we derive

e’ 'wf + e¥ wy = Awy + Ae¥ wy

or
n—eYAr—v= -—'w? <0 (3.22)

for v = w;. Due to (3.21) we also have that
v(z,0) = w(x,0) £ 0. . (3.23)

Applying now the maximum principle, see [1], to problem (3.22)-(3.23) we derive the desired result. O

Now we are ready to prove the main result of this section.

Theorem 3.6. For every wo € H2(Q) satisfying (5.21) and 0 < A < 8 the solution of (3.1)-(8.2)
converges in C%(Q) to a steady state, i.e. a solution of problem (8.4).

Proof. Following the same steps as in the proof of Pr oposmon 3.1 we can find a sequence t, — 0 such
that :

w(yta) = Woo 88 n— o0 in CHQ)
where wq, is & steady-state solution. In view of Lemma 3.5 we conclude that
' wW(-t) S Wee 8 t— 00 ﬁointwise in Q, : (3.24)

which implies that the orbit 4 (wp) is umformly bounded in L*>® (Q) and consequently the desired result,
ie.

w(:t) > Weo- 88 t—00 in C(Q).
Otherwise there should be a sequence t, — 00 and w; € C?(f2), w; # Weo, such that
w(-,ty) > w; 8 n-—oo ‘in CQ(Q),
and hence
w(-,t,) > w; a8 n—oo in L%®(Q),
‘which contradicts (3.24). ‘ _ 0O

‘Remark 3.7. For the two dimensional sphere = §2, it is proven, 8, 6, 17], by usmg an Onofn-Hong
type inequality, that problem (3.4) for 0 < A < 8rhes only the trivial solution in

Hl( )= {¢eH1 Q) : /¢d:c— }

The same holds for two-dimensional torus T2 = R?/aZ x bZ where £ > 2, see (18], again for the
parameter-range (0, 8 ). Therefore, in view of Theorem 3.4 we derive '
w(-,t) >0 as t— oo uniformlyin H(Q),

for Q = §2, T2
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