goooboooobgon
1528 0 2007 O 12-35

Decay Rates of the Derivatives
of the Solutions of the Heat Equations
and Related Topics

B AR AEGEEEHER AE fI5A (Kazuhiro Ishige)

Mathematical Institute,
Tohoku University

KBRFFIIAZ AR TRl B4  E#k (Yoshitsugu Kabeya)
Department of Mathematical Sciences,
Osaka Prefecture University

1 Introduction

In this apaer, we consider the initial-boundary value problem of the heat
equation in the exterior domain of a ball,

( gzu = Au — V(lxl)u in Q_L x (0, 00),

pu+ (1 — p,)—(%-u =0 on 09 x (0,00),
L u(-0) = ¢() € LP(Q),

where 0< p<1,p>1, Q ={z RN :|z|>L}, N>2,L >0, and v
is the outer unit normal vector to 0€2r. Throughout this paper, we assume
that V = V(|z|) satisfies the following condition (V) for some w > 0 and

(L1)

A\

£eN:
((0) V=V(z|) e C*(RN), V>0in R,
. . 2 _
(i) rl_lfglo r“V(r) = w,
(VE) S (ii) / 'er(r) - %‘dr < 00,
L r
(iii)  sup |r?* —c—i-j—V (r)| < j=1 ¢
1 sup e , yoeos L
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The purpose of this paper is to study the decay rates of the derivatives of
the solution of (1.1) under the condition (V), as t — oo.

Now, we introduce some notations. For any set A and B, let f = f(A,v)
and g = g(A, 1) be maps from A X B to (0,00). Then we say

fApu) 2g(Ap) forallde A

if, for any p € B, there exists a positive constant C such that f ()\, ) <
Cg(A, p) for all A\ € A. Furthermore, we say

FOu) < ghp) forall e A
if f(\ ) X g\ p) and g(A, u) < f(A,p) for all A € A. We put
No=NU{0}, N¥={(n,...,nn):ni€Noi=1,...,N}
Furthermore, for any j = (j1,...,jn) € NY, we write |j] = Zﬁiiji and
Vi =Wl /o - .- 82Ty

To state historical remarks, let Q be an unbounded domain in R¥. Then,
under the suitable assumptions on Q and V, for any j € N}, the solution u
of (1.1) in the domain Q satisfies

(1.2) 1(F38)C, )]l ooy = £ 1] 2oy

for all sufficiently large t. (See Theorem 10.1 of Chapters 3 and 4 in [6].)
On the other hand, for the case when @ = RY (or @ = R¥) and V = 0,
the explicit representation of the fundamental solution of the heat equation
implies that, for any j € N¥,

N

: _N_ il
(1.3) 1(V30) (., )| poogmrry < £ 2 (| Locmm)

for all ¢t > 0. Furthermore, for the case when 2 is a convex domain in RY
and V =0, Li and Yau [7] studied the behavior of the nonnegative solution
of (1.1) with u = 0, and obtained the inequality

|Vzuf2 _ 8tu

(14) u? u

< % (2,£) € Q x (0,00).

Then, by the standard arguments in the parabolic equations, we see that,
for any j € N’ with |j| < 1, the inequality (1.3) holds for all ¢ > 0.

On the other hand, Grigor’yan and Saloff-Coste [2] studied the asymp-
totic behavior of the Green function G}, = GL’(a;,y,t) of (1.1) for the case
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when Q is the exterior domain of a compact set, 4 = 1, and V = 0. They
proved that, for any fixed z,y € Q,

w|2

GY (2,y,t) = t~

for all sufficiently large ¢t if N > 3. This together with the mean value
theorem, the Dirichlet boundary condition, and (1.2) implies that

N
“(VIGY)(>7t)”L°°(QXQ) <tz

for all sufficiently large t. So we see that the solution of (1.1) with p =1
does not necessarily satisfy the inequality (1.3) even for the case |j| = 1. The
first author of this paper studied the asymptotic behavior of the solution of
the heat equation under the Neumann boundary condition in the exterior
domain of a ball in [3]. His results imply that, for the case p =0and V =0
on Q, the inequality (1.3) does not necessarily hold for the case |j| = 2.
Recently, Shibata and Shimizu [8] studied the decay properties of the Stokes
semigroup in the exterior domain of a compact set, under the Neumann
boundary condition. Their results are applicable to the heat equation, and
we see that the inequality (1.3) holds for the case when N > 3, Q is the
exterior domain of a compact set, V = 0 on 2, and x = 0. Our motivation is
how the decay rate is affected in the presence of V under various boundary
conditions.

Let u}] = u), (z,t : ¢) be a solution of the initial-boundary value problem
(1.1) in the exterior domain Q7. For any p > 1 and t > 0, put

IVEGY () llp—co = sup { (VU )t : D)llz(ay) © [llzei@) =1},

where j € NYY.
Let Agn-1 be the Laplace-Beltrami operator on SN-1 and {wr}32, the
eigenvalues of

(1.5) ~Agn-1Q =wQ on SN QerL*sSNTY,
that is,
(1.6) wg = k(N +k —2), k € No.

Furthermore, let {Qk;}%, and I be the orthonormal system and the di-
mension of the eigenspace corresponding to wy, respectively. Let U, X 7(r) be
a solution of the initial value problem for the ordinary differential equation,

r

{ 2+ YN lov_vyr=0 i (I )
(Ov)
QU)LY =p, UL)=1-y,

14



15

where 0 < < 1. Put

a(w)

(1.7) git:w)=(1+t)""2 .

Here a = a(w) is a nonnegative root of the equation a(a+ N —2) = w, that
is,

(1.8) a(w) =

—(N=2)+ /(N -2)24 4w
5 :
Then, under the condition (V.}), we see that

g(t:w) < UYLV
for all sufficiently large t (see Proposition 2.1).
Now, we give the main results of this paper for the case N > 3.

THEOREM 1.1 Let N > 3 and consider the initial-boundary value problem
(1.1) under the condition (V%) withw > 0 and £ € N. Let p > 1. Assume
either

2n/ Waon!
(1.9) b # vy A V(r) # —r—;— on |L,00)
for any n' € Ng with 2n/ < £+ 1. Then, for any j € NY with |j| < £+1,
0

- Nl . .
(1.10) IVZGY (Dlp—oe =X 72 2 if || < a(w),

; _N_alw) .
(1.11) IVEG, Bllp—ce =< 727 7 if |j]|>a(w)

for all sufficiently large t.

If, for some n’ € Ny, the equalities hold in (1.9), we have another decay
property. ’

THEOREM 1.2 Let N > 3 and consider the initial-boundary value problem
(1.1). Assume that there ezists a natural number n’ such that

(1.12) n=2n/, Vir)= % on [L,o0), p= n:l-L'
Let p > 1. Then, for any j € NY',
113)  IVIG Ol = tHE i i <n,
, a(wn+wy)
(1.14) ViGY (Olhne = B T o if |jl>n
> u p

for all sufficiently large t.



Here we remark that, under the condition (1.12), V satisfies the condition
(V) for all £ € N and a(w) = a(wp) = n. Furthermore, as a corollary of
Theorems 1.1 and 1.2, we have

COROLLARY 1.1 Let N > 3 and u), = uy, (z,t : ¢) be a solution of the
initial-boundary value problem (1.1) with ¢ € LP(Q), under the condition
(VE) withw >0 and £ € N. Letp > 1 and j € N with |j| < £+ 1. Then
there exist positive constants C and T such that

; _N il
[(VEul ) (-t 2 @)l peey) < Ot % 2 8]l Lr(ay)
for allt > T and all ¢ € LP(Q1) if and only if, either w > wy; or
ljl = 1, V(r)=0 on [L,o00), u = 0.

According to Corollary 1.1, we may say that results in [7] and [8] are excep-
tional cases.

For the decay rates of the derivatives of the solution for case N = 2,
similar results and peculiar results are both obtained although we will not
give any proofs to the results for N = 2.

We first consider the cases either

(1.15) N=2 and w>0
or
(1.16) N =2, u=0, and V=0 on [L,00).

THEOREM 1.3 Assume either (1.15) or (1.16). Then Theorems 1.1 and
1.2 hold true.

Next, we consider the cases either

(1.17) (N,w)=(2,0) and u>0
or |
(1.18) (N,w,u)=(2,0,0) and V#0 on [L,00).

Then we see that

US’L(T) =1—-pu+plog (-2—) :
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THEOREM 1.4 Let N = 2 and consider the initial-boundary value problem
(1.1) under the condition (V%) withw =0 and{ € N. Letp > 1, and R > L.
Assume either (1.17) or (1.18). Then, for any j € NY with |j| < £+1,

. . _.]; .
IVIGY )lpmoe = [VIGY ()] Repsoo =< £~ 7 (log )L,
S 13

I IVIGY (B)llpoe = £75 2

for all sufficiently large t.

In Section 2, we give fundamental lemmas and propositions without
proofs. For their proofs, readers consult Sections 2 and 3 of [5]. Section
3 is devoted to the large time behavior of a radial solution to (1.1) with a
radial initial value and its derivatives. Upper estimates for proofs of The-
orems 1.1 and 1.2 are given in Section 4 and their proofs are provided in
Section 5. As concluding remarks, some related topics are stated in Section
6.

2 Preliminaries

In this section, we give preliminary lemmas, whose proofs can be seen in
Section 2 of [5], in order to study the decay rates of the derivatives of the
solution (1.1) for the case N > 3.

For any 4 € [0,1], R> L, and w > 0, let Uy p be the solution of

o) { 82U + N; Lo.U - SU=0 i (Roo)
G U)R)=p, UR)=1-p.
Put
2.1) “(r) = (%)“(‘”), U“(r) = (%)"B “,

where B(w) = N — 2 + a(w). Then the functions U{(r) and U¥(r) are
solutions of the ordinary differential equation

(2.2) 82U + ET_—l-a,.U ~YU=0 in (0,00),

and UY(r) # U“(r) on (0,00). So, by the uniqueness of the solution of (O,),
there exist constants c¢; and cg such that

U9 p(r) = alU¥(r) + cU¥(r), 7>R.
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Therefore, by Uy p(R) = 1 — p and 6,U; y(R) = , we obtain

23 Uiat) = S ()L (R)

where o = a(w) and 8 = B(w). In what follows, we put

Upa(r) = U (r), ULH(r) = U™ (n), U2H(r) = V2P (),
for simplicity. Then we have the following lemma on U p.

LEMMA 2.1 Let L< R< S anda, b>0. Assume N > 3. Then
(2.4) Uk () = U ()
forallr € [R,S], p€ 0,1}, and k € No,

(2.5) “’R('r') {k i ] +1- } (%)a(a+wk)

forallT > S, u €10,1], and k € Ny, and

(2.6) Ugh(r) < U (r)

for all > R and k € Ngo. Furthermore

d ok p+ (k+1)(1 —p) (relates)-1
(27) 0< SURE(r) < = (%) ,
' a, n 3 .«,: a(atwy)

(2.8) 0 < UPE(r) = [_k+1 +1 u} (R) ,

forallr > R, 0< u<1, and k € Np.

Next we recall the following two lemmas on the decay rate of the solutions
of the initial-boundary value problem (1.1) under the condition (V£).

LEMMA 2.2 Let u), be a solution of (1.1) under the condition (V1) with
w>0. Let 1 <p<g<ooandi=12,.... Then there erists a positive
constant C, independent of V, such that

(2.9) 1Y () lze@g) < C TG 728l oy

for allt > 0.
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LeMMA 2.3 Let uZ{ be a solution of (1.1) under the condition (V) with
w >0 andf>1. Then, for any € € (0,1) and p > 1, there exists a positive
constant C' such that

(2.10) (@FViu))(z,t)| < Ct %2 _i”¢||LP(QL)a

for all (z,t) € Qp x (0,00) with |z| > et'/? > L +2 and all i € Ny and
j € NY with 2+ |j| < £+1.

Next, we study the behavior of the solution U Z 1.(r) of (Ovy’) under the
assumption (V). Put
Vi(r) =V (r) + %, k € No.

In what follows, for k € Ny and A € R, we put

: A
a=awtw), Bp=N-2+a h(r)=V()-;

for simplicity. We first prove the following lemma.

LEMMA 2.4 Let R> L, a >0, and k € Ng. For any g € C([R, 00)), put

ngk[ Udk(’”)/ Uak(s) -2 (/R TN_IU_‘f’k(T)g(T)dT) ds.

Then
(i) Hg’k[g] (r) is a solution of the ordinary differential equation

N -1 a—i-wk

r

with U(R) = U'(R) = 0. In particular,

U’ + U-——U=g in (R,00),
Uy (r) = UPL(r) + Hg [hora-w UL g] (r)

forallr > R, k€ Ng, and1=0,...,k.
(i) If g(r) >0 on [R, R1] with Ry > R, then

(2.11) Hy gl(r) >0, Hy*lgl'(r) >0, R<r<Ry
(iii) Assume that there ezists a positive constant A such that

(2.12) l9(r)| < Ala(r)[UZR(r), 7> R.



Then there exist positive constants C1 and Ca, independent of R and k, such
that

(2.13) HEFg/(r)] < CLAr Uk (r) /er|ha(f)|d7,
219 |HPEO) < AU [ riha(r)lar
for allr > R.

In view of Lemma 2.4, we have the following proposition on the behavior

of UXE('I‘) as r — 00, by using the function U:I'f (r)=U, (L°’+“”°)(r-).

PROPOSITION 2.1 Assume (V!) withw > 0 and N > 3. Then

7\ og—1
(2.15) 0 < (BUR)N % (k+1)(T)
forallr > L,0< u<1, and k € Ng. Furthermore

(2.16) Ul (r) =< UZp(r), 0<p<l,
(2.17) Upk(r) = ULHr)

for all 7 > L and k € Ng. In particular,

M w,
(2.18) U (r) < [m +1- u] U
for all sufficiently large r, 0 < u <1, and k € Np.

Furthermore, by Proposition 2.1, we have the following proposition.

PROPOSITION 2.2 Assume (V) with w > 0 and N > 3. For any g €
C([L,00)), put

T S
() = U8(r) [ 8Nt ([0 u(natr) ar ) ds.
L L
Then, for any k € No, FX" [9)(r) is a solution of

N-1
(2.19) { U’ + ——7—_—U' —Vi(rVU=g in (L,00),

U(L) = U'(L) = 0.
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If there exist constants A > 0 such that
9(r)| < AU (r), r>L,

then there ezists a positive constant C, independent of k, such that

(2.20) [FLEGl(r)] < CA(k+1)"'r?Ugk (r),
(2.21) [FP*lgl(r)| < CArUgk(r),
forallr > L.

Next, we consider the case (1.12).

PROPOSITION 2.3 Assume (V%) with w > 0 and £ € N. Furthermore
assume that there exists a multi-indez J € N with |J| =n+1<£+2 such
that

TV . ) N _
(2.22) (VEUY ) (|2) % 0 in Qz, for all j € Ny with |j| < n,

(VIUY 1) (lal) = 0 in Qs

Then there ezists a nonnegative integer n' such that (1.12),

1- A N
(228) UYp(al) = —E£@}+--ak)” = Flal™  zey,
and
(2.24) (VIUY ) (z) =0 in Qf

hold for all j € NY with |j| > n+1.

3 Derivatives of the solutions of (P"f)

In this section, we consider the radial solution v of the initial—boundary
value problem

Ov = Av — Vi(|z|)v in Qp x (0,00),
(P"f) pwo— (1= p)orv=0 on 99 x (0,00),
v(-,0) = ¢(-) € LP(Qr),

where 0 < 4 <1, p > 1, k € Ny, and 9 is a radial function in Qr. For any
positive € and T, put '

D(T) = {(a:,t) €O x (T, ) : |z <e(1+t)1/2},
(@) = {(z.t) €0 x (T,00) : lo] = e(1+8)"2}
U {(:c,T) cx € Qp, 2] <€l +T)1/2} :
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We will construct a super-solution of (P[f) in D.(T) for some positive con-
stants € and 7, and give some estimates on the derivatives of the solution
vk of (Pl’f) in D(T). In what follows, under the assumption (V%), we put

Ur(r) = Uply(r),  on(t) = g(t: w +w)
for simplicity. We first construct a super-solution of (PF).

LEmMA 3.1 Assume N > 3 and (V) with w 2. 0 and k € Ng. Lety > 0.
Then. there exist positive constants T, €, and C, which are independent of
k, and a function W = W (z,t) in Qr x (0,00) such that

(3.1) OW 2 AW = Vi([z)W in  De(T),

(3.2) uW(x,t)‘—{— (1- p)-é%W(x,t) >0 on 0 x (T,00),
(3.3) W(z,t) > C**(1+¢t)™7 on T(T),

and |

(3.4) 0< W(z,t) < 1+1t)"ge(t)Ur(lz]) in D(T).

PROOF. Let A and e be constants to be chosen later such that A > 0
and 0 < € < 1. Let T, be a positive constant such that (1 + T2 =L+1.
Put

Wia,0) = (1+1)"gw(t) [Tr(lal) = A+ K)(1 + O FL U] ()]

for all (x,t) € Qf x (T.,00). Then, there exists a constant C; = C1(y) such
that

(35)  &W > [-v(1+8)77 ge(®) + (1 +8)77gk(1)] Uk(lz!)
> —Ci(l+k)(1+1)7" " g(t)Uk(|2])

and by (2.19), we have

(3.6) AW — Vi(|z)W = —A(1 + k) (1 + )77 g5 (1) Uk(|])
in Qp x (T¢,00). Let A= Cj. Then, by (3.5) and (3.6), we have
(3.7) oW > AW — Vi(Jz)W in Qp x (T¢, 00).

On the other hand, by Proposition 2.2, there exists a positive constant Cj,
independent of €, such that

(3.8) 0 < A(L +k)(1 + ) F[Uk)(|=l) < C2AeUi(|)
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for all (z,t) € De(Te). Let 0 < € < min{1,1/2C3A}. Then we have

(39) 59 OUk(2) < (141 (2,1) < on()Vi(2])

for all (z,t) € D(T¢). Then, by the definition of W, we have

(3.10) ,uW+(1—,u)§;W=uW20 on 99 x (0,00).

By Proposition 2.1 and (1.7), we see that

(3.11) Uk(e(1 +8)2) < U(e(1+8¥2) = (b + )7 (£) ™ [gu@®)] ™

for all ¢ > T, and kK € Np. By (3.9) and (3.11), there exists a positive
constant C3 such that

(312)  (1+0W(0) 2 Za®Ui(al) = soOTME + )
> Cil(k+1)71 (-Z—)ak

for all (z,t) € I'¢(Te) with ¢ > T,.. Furthermore, by (2.15), (3.9), and
e(1+ Te)l/ 2 = L + 1, there exists a positive constant Cy such that

1 _or 1 _ € X
- - — Y

(B13) W(T) 2 ;0+T)7 FU(I) =;(1+T) ( P 1)

> CZO‘"(l +T)77

for all (z,T,) € Te(T.) and k € Np. By (3.7), (3.10), (3.12), and (3.13), we
have (3.1)-(3.4), and the proof of Lemma 3.1 is complete. [J

Next we give the following lemmas on the estimates of derivatives of vﬁ.
First, we estimate v and its time derivatives.

LEMMA 3.2 Assume that v is a radial function in Qg such that ||[¥|| r(,) =
1 withp > 1. Let N > 3 and v be a solution of (Pl’f) with v(-,0) = ¥(-)
under the condition (V%) with w > 0. Put

w(z,t) = F*[(8)(» ) (la))-
Then there exist positive constants T, €, and n, independent of k, such that
(3.14) Bu(,t)| < BBV (=),
(3.15) Buw(z,t)] < 1ot BT ()2 PUL (le])

for all (z,t) € D(T) and all i € Ny with 2i < £+ 1.



PROOF. Let i € Ng and put v; = 8%v. Let T and € be positive constants
given in Lemma 3.1. Let W be the function constructed in Lemma 3.1 with
v = N/2p+i. For any n1 > 0, we put

vi(z,t) = ny*W(z,1)

for all (z,t) € D (T). Then, taking a sufficiently large T and n, if necessary,
by Lemma 2.3, we have

lvi(z,t)| < Ui(z,t) on T(T).
So, by the comparison principle, we have ‘
lvi(z,t)| < Ti(z,t) in D(T).
This inequality together with (2.8), (2.16), and (3.4) implies
vi(e, )] < 72t F g () Un(lel) < ng*¢ ™% g (UL (J2])

for all (z,t) € D(T), and we obtain the inequality (3.14). On the other
hand, since

(3.16) (Bw)(@,t) = FL* 107 0) ()] (lz])

for all (z,t) € Qr x (0,00), by (2.17), (2.20) and (3.14), we have (3.15), and
the proof of Lemma 3.2 is complete. [J

Furthermore we have the following lemma on the time derivatives of 0,v and
Orw.

LEMMA 3.3 Assume the same assumptions as in Lemma 3.2. Then there

exist positive constants T, 1, and €, independent of k, such that
N

(3.17) 88, u(z, t)| < B g (t)|z T ULR (),
: N1 rw
(3.18) 00 w(x,t)] < 1t Tig(t)|z| UL (|2))

for all (z,t) € De(T) and all i € No with 2 < €+ 1.
PROOF. By (2.17), (2.21), (3.14), and (3.16), we have (3.18). So we
prove (3.17). Put v; = Ofv and w; = diw. Then v; and w; satisfy

Btvi = sz- - Vk(|x|)wz

by the definition of FXK . By the uniqueness of the initial value problem for
the ordinary differential equation, there exists a function ¢(¢) in (0, 00) such
that

(3.19) vi(z,t) = CR)Us (|z]) + wi(=, 1)

24
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for all (z,t) € Qp x (0,00). Furthermore, by (2.17), (2.20), (3.14), (3.15),
and (3.19), there exist constants C1, Ca, T, 11, and € such that.

Uk +)Y2) < Js(z, b)) + wi(z, B)]
ja|=e(1+)1/2 jo|=e(1+1)/2
< Ot 4 Oyt B g (UL (e(1 4 £)172)

for all t > T. This together with (3.11) implies that there exists a constant
n2 such that

(3.20) C(E)] <t % igu(t), t>T, k€ No.

In addition, by (2.15), (3.18), and (3.19), there exists a constant 73 such
that such that

|(Brvs) (=, )] < [CONGUY% ) () + [Brwi(fe], B)
< gt i g (£ U (lwl)lxl‘l

for all (z,t) € D(T) and k € Ny. So we obtain (3.17), and the proof of
Lemma 3.3 is complete. [J
We give upper estimates on the spatio-temporal derlvatlves of v and w

and its proof is done in the similar way to the proofs of Lemmas 3.2 and
3.3.

LEMMA 3.4 Assume the same assumptions as in Lemma 3.2. Then there
exist positive constants T, n, and €, independent of k, such that

(321)  (Bolu(zt)] < net B g(t)le UL (a),

(3.22) 0i0iw(z,t)| < nt B g (1)|aPIULH (|al)

for all (z,t) € D(T), 1 € No with 2(i+1) <{¢+1,andj=2,...,£+2.
Finally, we give estimates on the derivatives of v for the case (1.12).

LEMMA 3.5 Assume that ¢ is a radial function such that ||¢|1s(q.) =1
with p > 1. Let v be the solution of (P¥) with v(-,0) = ¢(-) and k = 0,
under the condition (1.12). Then, for any j € N with |j| > n+ 1 and
i € N, there exist positive constants C, T, and € such that

(3.23) |0iViv(z,t)| < Ct~ %%
for all (z,t) € D(T).



PRrROOF. By (1.12), we have

N n
U,Y,L<x>=c(2x3> Cwn = (), et:w)=0+073,

=1

where n = 2n’ and c is a positive constant. (See also Proposition 2.3). Put
vi(z,t) = Biv(z, t) and w;(z,t) = FY [vit1](|z|). Let j € N{ with |j| > n+1.
Then V4 UV r(|z]) = 0in Qz, and by (3.19), we have Vivi(z,t) = Viw(z,t)
for all, (z, t) € Qr x (0,00). Therefore, by the radial symmetry of w; and
the inequality (3.22) with k& = 0, there exist positive constants T" and € such
that

|7
|(V?cvz‘)($,t)| = E @ |x|lJ|£m ) <t ! 3|z +2 131

—<t2p11'2|x|-<t2p27‘2

for all (z,t) € D(T), and the proof of lemma 3.5 is complete. []

REMARK 3.1 If the LP-norm of the initial value is not 1, then all the right-
hand terms in the estimates in Lemmas 3.2, 3.3 and 3.4 must be multiplied

by [[¥llze(,)-

4 Upper bounds of derivatives of solutions

In this section, we prove the following two propositions, which are men-
tioned in Section 1 as upper estimates, by using lemmas given in the previous
sections.

PROPOSITION 4.1 Assume the same assumptions as in Theorem 1.1. Then,
for any p > 1 and j € NYY with |j| < £+1,

. ___]_\_]___minjang,u }
(4.1) IVEG) @llpsoo = t7% 2

for all sufficiently large t.

PROPOSITION 4.2 Assume the same assumptions as in Theorem 1.2. Then,
for any p>1 and j € N§ with |j| > n+1,

_N _oawntwy)
2

(2) IV2GY (1)llpoo < ¢

for all sufficiently large t.
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PROOF OF PROPOSITION 4.1. Let u}, be the solution of (1.1) with
¢ € Co(§2z). By the same arguments as in [3] and [4], ¢ can be expanded in
the Fourier series, that is, there exist radial functions {¢y;} C L?(Qr) such
that

(43) ZZ%I 0 (%) = ZHOw),

=0 =1

Let uk’i be a solution of (1.1) with the initial data ¢k ;(|z|)Qk:(z/|z|) and

v,’i 8 radial solution of (P,’f) with the initial data ¢ ;. By the uniqueness

of the solution of (1.1), we see that

(44 w(e,t) = oH (@, £)Qus (ﬂ) L (@,8) € QL x (0,00),

where k € Ngand i = 1,...,l;. On the other hand, by the standard elliptic
regularity theorem and || Qg ;|| z2(gv-1) = 1, for any n € N, we have

(4-5) I1Qkllcon(sn-1y < (1 +wie)™ =< (k + 1)+

for all k € Ng and ¢ = 1,...,l;. Furthermore the eigenspace of Agn-1
corresponding to wy is spanned by the functions V%|z| for j € N} with
|7] = £, and we have

(4.6) I, < N*.
By the orthogonality of {Q i}k, we have

(4.7) / uﬁl’il(m,t)uﬁz’iz(a:,t)dx =0
QL

for all t > 0 if (k1,41) # (k2,42). On the other hand, for any ¢t > 0,

(4.8) V(xt = hm in“(thk,<l ‘)

k=0 i=1
Q’“<|x|>

for all (z,t) € Qr x (0,00). Then, by (4.5) and the Jensen inequality, we
have

holds uniformly for all x € Qf. Hence we have

u (z,t Qk-(—:c—)da = ol w,t/
/BB(O,I:::I) ()G |z] W (@) 8B(0,)z|)

= |2V gz, t)

2
do

oo < b+ 1% [ ()Pl
8B(0,|z|)
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for all (z,t) € Q x (0,00) and k € Ny. So, by (2.9), we have

| = | 1/p
(49) [0 eay < ( /L rN‘llvz%r,t)ipdr)

2 (k+ 1)2l|u2{‘(',t)”LP(QL) < (k+ 1)l ecay)
for all t > 0 and k € Ny.
Let j € NN with |j| < £+ 1. Let k € Nand i =1,...,lt. By (1.6),
(4.4), and (4.5), we have

|4 Iam kz(x t)'

(4.10) [Viubi(z,t)| < (k+ 1)**® Z P (z,t) € QL x (0,00).

Since D, (T) C D¢, (T) if €1 < €3, by Lemmas 3.2, 3.3, 3.4, Remark 3.1 and
(4.9), there exist positive constants 71, 72, 73, Tk, and €, such that

omylt z,t+tg _N k Y .
= Txfm—m N < ore 8 g (UL (eIl o, to)l o)

m{ak,l 1}
< (k + 1)2elonlillepory 25— ~l9llze@,)

for all (z,t) € De(T}) with 0 < € < €, to > 0, and m =0, 1,...,|j|, where
o = a(w + wg). Letting tg — 0, we obtain
v (=, 8)]
'xlljl_m

for all (z,t) € DG(T,,) with 0 < e < e, and m =0,1,...,|j|]. This inequality
together with (4.10) implies that

iy minielsl)
2 (b + 1)2elon bl pgeg e ol zear)

mm{a& |31}
(4 11) le kz(m t)l < (k+ 1)£+56[ak U|]+nakt"%_ . “¢HLP(QL)

for all (z,t) € De(T) with 0 < € < €. Let 0 < € < ¢, and T, be a positive
constant such that 7. > T, and e(1 + T.)1/2 > L + 2. By (4.11), taking a
sufficiently small € if necessary, we see

. i 1 _ N _ min{ag,|j|}
(412 Vi, )] % st BT [l
for all (z,t) € De(Te), k € N,and i = 1,...,l;. Similarly, for the case k =0,

we have

31 0,1
. (0w z,t
(4.13) {Viug’l(x,t)l = |VJ 01 (z,t)| < Z I Imllﬂl)—(m )

_N_ mm:lan I51}

A
L 3
-'é’

ol e (1)
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for all (x,t) € De(T:). By (4.6), (4.12), and (4.13), we obtain

m g
(4.14) (Viu¥)(z,t)| < limsupZZKVgsuz’i)(x,t)}

m-—0o0 k=0 i=1

_I_\T___m‘n{o‘“sbl
< t % |9l e (ar)

for all (z,t) € De(T.). On the other hand, by Lemma 2.3, we have

. Nl
(4.15) (Viuy ) (z,t)| 2¢7% 7 ||¢lleay)
for all (z,t) & De(T). Therefore, by (4.14) and (4.15), we obtain
___minja!w!,j t
(4.16) [(Viu))(z,t)| Xt % 7 |Bllzear)

for all (z,t) € Qr with t > T, where ¢ € Co(2z). Since Co(€2L) is a dense
subset of L(Q), the inequality (4.16) holds for all ¢ € LP(Q2z), and the
proof of Proposition 4.1 is complete. [

PROOF OF PROPOSITION 4.2. By (1.12), V satisfies the condition (V4
with w = wp and £=0,1,2,.... Let j € N with |j| >n+1=2n'+1. Let
u;, be the solution of (1.1) with ¢ € Co(€z) and u* a function given in the
proof of Proposition 4.1. By the same argument as in the proof of (4.13) and
Lemma. 3.5, for any sufficiently small € > 0, there exists a positive constant
T. such that

, _N_n1
(4.17) [(Viud)(z,8)] <t 2% 2 ||¢llo(ay)
for all (z,t) € De(Te).
On the other hand, by the same argument as in the proof of (4.14),
taking a sufficiently small € > 0 if necessary, we have

m N rmn{a(wn+w1);l
(4.18) hmsupZZl (m )] 2t % llellLer)

M= k=1 i=1

for all (z,t) € D¢(T.). We note that a(wn + w1) < a(wn) +1 =n+1.
Therefore, by (4.17), (4.18), and |j| 2 n + 1, we have

_N_olwntwy)

(4.19) (Viu) (@, ) <t7% 7 |[¢lle(ay)

for all (x,t) € D¢(T.). Furthermore, by (4.15) and (4.19), taking a suffi-
ciently small € if necessary, we have

N _o(w n ]

(4.20) (Viu!) (@, B)] =2 £ 5™ ] o)



for all (z,t) € Qr x (T.,0), where ¢ € Cp(Qr). Furthermore, since Co(£2z)
is a dense subset of LP(Qr ), we have the inequality (4.20) for all ¢ € LP(Qy,),
and the proof of Proposition 4.2 is complete. [

5 Proofs of Theorems 1.1 and 1.2

In this section we consider the asymptotic behavior of the derivatives of
the radial solution v of (1.1) for some initial data ¢ € Cp(€2r) and complete
proofs of Theorems 1.1 and 1.2.

PrOPOSITION 5.1 Let R > 0, w > 0, and ¥(# 0) be a nonnegative, radial
function belonging to Co(Qr). Let v be a radial solution of

O = Av — 2 in Qg % (0,00),

|z|2
(5.1) v(z,t) =0 on 0OQg x (0, 00),
v(z,0) = ¢(z) n Qg
Then, for any p € [1,00],
_N(q_1ly_aw)
(5'2) ”'U('at)”Lp(QR) =t 2 1=2)==%

holds for all sufficiently large t. Furthermore there exists a positive constant
€« such that, for any 0 < € < ¢,

(5.3) v(z, 1) x (alw)= T
|o|=e(1+£)1/2

holds with suitably chosen T' = T'(e).

t>T

Proor. Put
(5.4) 2(y,s) =(1+1) FTu(z,t), y=(1+t) "7z, s=Ilog(l+1),

where a = a(w). Then the function z satisfies

052 = ldiv(,oVyz)+ N+az— wzz in W,
(5.5) p 2 |yl
‘ z2=0 on OW,
Z(y, 0) = ’l/J(y) in Qg,

where p(y) = exp(|y|>/4) and
Qs) =e~0r, W= |J Q) x{s}), oW = {J (82(s) x {s}).

0<s<oo 0<s<o0
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Put
o(y) = coly|*™ exp(—|y|*/4),

where ¢ is a positive constant such that ||¢||12g~ pay) = 1. Then, since

/ v(z, ) U¥ g (|2 = / S@)Uep(lz)dz >0, ¢>0,
Qr Qg

by the same argument as in the proof of Lemma 6.1 in [4], we see that

66 o= [ o@Uta(elds = lim [ W)y >0

=00

Furthermore, by the same argument as in the proof of Lemmas 3.3 and 3.4
in [4], for any r; and r; with 0 < r; < r9, we have

(5.7) S‘ilg 12(, )l 22(0(s),pa) < 0
)
(5.8) sup ||2(-, 8) || Lo (fy: pyzr ) < 0
$>0
(5.9) Jim [|2(-, s) — apllo(y: r<picrp = 0-

By (5.6), (5.7) and (5.9), we have ||2(-, 8)||11(q(s)) < 1 for all sufficiently large
s. So, by (5.8) and (5.9), for any p € [1, 00], we have ||2(:, 5)||Lr(q(s)) < 1 for
all sufficiently large s, and obtain (5.2).

On the other hand, by the same argument as in (3.19), there exists a
function ¢ in (0, 00) such that

(5.10) v(z,t) = (U r(l2l) + FL [(80) (-, ) (1)

for all (z,t) € Qg x (0,00) with V = w/r?. By (5.2) with p = oo, we
may apply the same arguments as in the proof of Lemma 3.2 with v =
(N + a(w))/2 to v. Then we see that there exist positive constants e, and
T such that

(5.11) \FY [(8) (-, )](|z])] < t_%"“(“’)_llwla(“’”?

for all (z,t) € D, (Ty). Therefore, by (2.18), (5.9), (5.10), (5.11), and the
same arguments as in the deduction of (3.20), we may take a sufficiently
small € so that

(5.12)  ((t) = [Ug (L + )2 [v(z, t) — FY [Bew](lz])]

|| =&(1+¢)1/2

= ot § [t—ﬂéﬂ + O+ ”?“] o

N
*2——0
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for all sufficiently large t. Then, by (5.10)—(5.12) and the similar argument
as in (5.12), we have (5.3), and the proof of Proposition 5.1 is complete. []

PROOF OF THEOREM 1.1. Assume (V). Let & be a constant such that
@ > w and
(5.13) a(@) < a(w) + 1.

Then, by (V£)-(i), we may take a sufficiently large R so that

V(r) < r > R.

ﬁtol £

Let p > 1 and 1( 0) be a nonnegative, radial function belonging to CO(Q R)-
Let v be a solution of (5.1) with w replaced by @. For any T > 0, let uT be
a solution of (1.1) with the initial data ¢(-) = v(-, T)/||lv(-, T)llzr (o). Here
we remark that

(5.14) luy (-, 0| ey = 1-

By the comparison principle, (5.2), and (5.3), for any sufficiently small e > 0,
there exists a positive constant 7, such that

v(z,2T)
[v(-s D)l o (ap)
- @72

La@)

(5.15)  ui(z,T) = 77O~ (g, 27T)

for all (z,T) € Qg x (Ty, 00) with |z| = e(1 + 2T)Y/2 > max{R, 2L + 2}.
On the other hand, there exists a function (v (t) such that
(5.16) uf (2,t) = (v (U 1 (l2) + FL [Beur ()
for all z € Qz. By Lemmas 3.2-3.4 and (5.14), taking a sufficiently small €
and sufficiently large T if necessary, we have
(5.17) | FY [0ur)(al)] = £ 51 g2 bel)
for all (z,t) € De(Te) and j € No with |j| < £+ 2. Furthermore, by (5.13)
and (5.15)—(5.17), there exist positive constants Cy and Cy such that
w@UYL(e) 2 ui(e,T) -~ |FL eur](z)]
> Clea(&'))T—'glyz; _ Czea(w)+2T—%, > eo.f(w)+111-v~%

for all z € Qp with L+ 1 < |z] = (1 +2T)/2/2 < (1 +T)Y? and T > T..
Therefore, by (2.5) and (2.16), we have

oW

(5.18) (T) = T %55



for all sufficiently large T. Therefore, by (5.16)—(5.18), there exist positive
constants C3 and Cy such that

(519)  |Viur(z,T)
> O 5 ViU ()] - Cur BT g et

forall L < |z| < (1 +T)Y2, T > T, and j € N} with |j| < £.

Let j € N} with |j| < £. By the assumption of Theorem 1.1 and
Proposition 2.3, there exists a point zg € )z, such that (VLU P L)(xo) # 0.
Then, by (5.19), there exist positive constants Cs and Cs such that

a(w)

(5.20) |(Viu¥)(z0,T)| > CsT~ 5~ F — o7~ %~ F L - 75~

for all sufficiently large T. This inequality together with (5.14) implies

: _N_aw)
(5.21) IVIGL (T)llpmoo = T %7 2

for all sufficiently large T'. This together with Proposition 4.1 implies (1.10)
and (1.11), and the proof of Theorem 1.1 is complete. O

PROOF OF THEOREM 1.2. Let u ! be a function given in the proof of
Theorem 1.1 with V(r) = (w, + w1) /r Put

iy (z,t) = urt (z, t)’ :

Then @Y. is a solution of (1.1) with V(r) = wy/r2.
Let j = (j1,...,jn) € N{ with [j| > n+1. Put §' = (1 +1,52,...,4n)
and

U:7113+w1 (,r / an+w1
b

Then, by (2.5), we see that U “’“+“’1 (r) x relwntwi)+l for a]l sufficiently large

r. ¥VL 17;’“‘“"1 (lz]) =0in Q L, then, we see that ﬁ:{"‘"l (r) is a polynomial.
This contradicts aw, +w1) € Nif n > 1. If n =0, by (1.12),

()(’Vl) N-1

n+
U/‘ZL “ (7‘) (T) LN T

and [7;;’”"“"1 (r) is not a polynomial. So we have

Vi G (af) = Vi [meu 2 |] in 0.
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By the similar arguments in (5.16)—(5.20) and w = wp + w1, there exist
positive constants C; and Cs such that

a(wntwy

Vjﬂv xg, 1 CIT"%"" p) )—CZT_%J'—Q(WTL“{‘WI)—I
4T

Vv

N wn, =+
— T‘?‘ﬂ—%—ﬂl

for all sufficiently large 7. Furthermore, since || (-,0)]| ) X 1, we
obtain N aontwn)
; _N _alwntw))
V3G (Dllpmoo = T2~ 2
for all sufficiently large T. Therefore, this inequality together with Propo-
sitions 4.1 and 4.2 imply (1.13) and (1.14), and the proof of Theorem 1.2 is

complete. 1

6 Concluding remarks

As concluding remarks, we state some related topics. In the previous
sections, we treat the exterior of a ball, however, we can treat the whole
space and we can argue the movement of hot spots (the maximum points
of a solution) with a potential V. According to the decay order of V, the
bahavior of hots spots varies. Such works are now in progress and we will
discuss these topics later.
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