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A PARABOLIC FREE BOUNDARY PROBLEM WITH BERNOULLI
TYPE CONDITION ON THE FREE BOUNDARY

JOHN ANDERSSON AND GEORG S. WEISS

ABSTRACT. In the brilliant paper [1], HW Alt and L.A. Caffarelli proved that close to

flat points the free boundary of certain weak solutions of the Bernoulli free boundary

problem ' 7 '
Au—Gu=0in {u>0}, qul=1on6{‘u>0}.

is analytic.

The result is related to the theory of harmonic measures (see [10], [11], [12]).

For a realistic class of . solutlons, containing for example all limits of the singular pertur-

bation problem .

.. Aue — Byue = Pe(u,) ase—0,

we prove that one-sided flatness of the free boundary implies regula.rity. ]

In particular, we show that the topological free boundary &{u > 0} can be decomposed

into an open regular set (relative to 8{u > 0}) which is locally a surface with Holder-

continuous space normal, and a closed singular set.

Our result extends the main theorem in the paper by H.W. Alt-L.A. Caffarelli (1981)

to more general solutions as well as the time-dependent case. Our proof uses methods

developed in HW. Alt-L.A. Caffarelli (1981), however we replace the core of that paper,

whicli relies on non-positive mean curvature at singular points, by an argument based

on scaling discrepancies, which promises to be applicable to more general free boundary

or free discontinuity problems. ‘

L INTRODUCTION
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This note contains an a.nnouncement as well as heuristics for the paper with the same

title to appear, but no rigorous proofs.
The parabolic free boundary problem

(L1) Au—-8u=0in {u>0}, |Vu| =1 on 8{u > 0}
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has originaliy been derived as singular limit from a model for the propagation of equidif-
fusional premixed flames with high activation energy ([3]); here u = A(T, — T, T is the
flame temperature, which is assumed to be constant, T is the temperature outside the
flame and A is a normalization factor. : |

Let us shortly summarize the mathematical results d1rectly relevant in this context, begin-
ning with the limit problem (1.1): in the brilliant paper {1}, H. W. Alt and L.A. Caffarélli
proved via minimization of the energy J(IVul® + Xjus>0)) — here x{u>0) denotes the char-
acteristic function of the set {u > 0} — existence of a stationary solution of (1.1) in the

sense of distributions. They also derived regularity of the free boundary 8{v > 0} up to a .

set of vanishing n — 1-dimensional Hausdorff measure. By [16] existence of singular min-
imizers implies the existence of singular minimizing cones. L.A. Caffarelli-D. Jerison-C.
Kenig showed that singular minimizing conés do not exist in dimension 3 ([6]). Moreover
- it is known that singular minimizing cones exist for n > 7 ([9]). Non-minimizing singular

118

‘cones appear already for n = 3 (see [1, example 2.7]). Moreover it is kndwn, that solutions .

- of the‘Dir'ichlet problem in two space dimensions are not unique (see (1, example 2.6))..

CE. Kemg—T Toro ([10], [11], [12]) extended the result in [l] to VMO—coeﬁiments and

applied it to abstract harmonic measures.

For the time-dependent (1.1), both “trivial non-uniqueness” (the posn;ive solution of the
heat equation is always another solution of (1.1)) and “non-trivial uniqueness” (see [14])
occur. Even for flawless initial data, classical solutions of (1.1) develop singularities after
a ﬁnlte time span; consider e.g. the example of two colhdmg travelmg waves

U(t ) = X{=C+1:>1}(exP(‘E +t-1)-1)

1.2 .
( ) + X{-—m+t>1}(exp(~$ +t—-1)— 1) for t €[0,1)

(see Figure 1).

t=1

z=0

FIGURE 1. Colliding traveling waves

There are several approaches concerning the construction of a solution"o_f the time-

dependent problem, all of which are based in some form on the convergence of the solution



ue of the reaction-diffusion equation
(1-3) . A'uvs - atuE = ﬁs(l[/g)

to (1.1) as £ — 0; here B.(2) = 24(2) , B € C}([0,1]), 8> 01in (0,1) and [B =1

L.A. Caffarelli and J.L. Vazquez proved in (7] uniform estimates for (1.3) and a conver-
gence result: for initial data u® that are strictly mean concave in the interior of their
support, a sequence of e-solutions converges to a solutron of (1.1) in the sense of drstn-
butions. :

Let us also mention several results on the corresponding two-phase problem, which are
relevant as solutions of the one-phase problem are automatically solutions of the corre-
sponding two-phase problem. In [5] and [4], L.A. Caffarelli, C. Lederman and N. Wolan-
ski prove'convergeﬁce to a barrier solution in the case that the' limit function: satisfies
{fu=0}°=0.

_Then, there is the convergence to a solution in the sense of domain variations [15] which
seems to contain more information than the barrier solutions in' [5} and [4]. For more
general two-phase problems see [17]. Domain variation solutions play an important rule
in this paper and will be discussed in more detail in Section 3.

_ Here let it suffice to say that domain variation solutlons are pa.1rs (u, x) where the order
parameter x shares many properties with the characteristic function X{u>0} but does not
- necessarily coincide with it. By [15], all limits of the singular perturbation problem (1.3)
are domain variation solutlons, so all results in the present paper hold for all limits of
(1.3). v ,

~ Our main result Theorem 8.1 states — leaving out inessential assumptions — that if (0, p%)
is a point on the topological free boundary and if the set {x > 0} is flat enough, i.e.

| x(z,t) = 0 when (z,t) € Q, and z, > op,

for some o < gy (see Figure 2), then the free boundary Qpra NO{u > O} is a surface with
Holder-continuous space normal.
" As a consequence we obtain that the regular set is open relative to 8{u > 0} (Corolla.ry
8.2, cf. Figure 3).
Note that even in the stationary case our result extends the result in [1] as our assumptions
do not exclude degenerate points or cusps close to the origin (excluded by the definition
of weak solutions [1, 5.1]), our result does that.
In the proof of our result we use ingenious tools developed in [1] We prove that flatness
on the side of {x = 0} implies flatness on the side of {x > 0} which in turn yields uniform
convergence of an inhomogeneously scaled sequence of free boundaries. |
However we replace the core in the method of H-W. Alt-L.A. Caffarelli, relying on non-
* positive mean curvature of 8{u > 0} at singularities, by a method based on scaling
discrepancies (Proposition 7.1). This original component gives hope that the method
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may now be applicable to more, general free boundary or free discontinuity problems, in
particular two-phase free boundary problems.

Note that the time-dependent problem (1.1) is related to caloric measures (see [8] where
the topic of the present paper has been mentioned as open problem). |

2. NOTATION

" Throughout this article R® will be equipped with the Euclidean inner product z -y and
the induced norm |z|, B,(zo) will denote the open n-dimensional ball of center zo, radius
r and volume r” w, , B.(0) the open n — 1-dimensional ball of center 0 and radius r, and
e; the i-th unit vector in R™. We define Q,(zo,to) ;= B,(z0o) X (to = 72, to + 2) to be the
cylinder of radius r and height 272, Q5 (2o, to) = B, (o) X (to — 72, to) its “negative part”
and T (to) := R™ X (to — 4r%,to — r?) the horizontal layer from to — 4r? to -ty — r?. Let
us also introduce the parabolic distance pardist((t, z), A) := inf(egyea /|7 — y[* + |t — .
Considering a function ¢ € HY2(R™R") we denote by div ¢ := Y», Oi¢s the space

loc
divergence and by

011 ... Ony.
D=1 vee o
) al¢n s an¢n /
‘the matrix of the spatial partial derivatives.
Given a set A C R", we denote its interior by A° and its characteristic function by x4 . In
the text we use the n-dimensional Lebesgue-measure L™ and the ‘m-dimensional'Ha,usdorff
. measure H™. When considering a given set A C R™, let

: . : n ' n _
ko= R lmap SRR > st kv ST > 0

T DO

FIGURE 2. Oné-sided flatness in the case p =1
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FI1GURE 3. Example of the set of regular free Boundé.ry points (stationa;t'y)-

be the measure-theoretic Bound_a,ry' of A, let 8"A = {x € R® : thereis v(x) €

0B,(0) such that r" [ @) X4 = X{y:(y-2) v(z)<0y] — 0 as 7 — 0} (by [18, Corollary 5.6. 8]
9* A coincides H""!-a.e. with the reduced boundary of a set of finite ‘perimeter defined in
[18, Definition 5.5.1]), and let v : 3*A — 8B1(0) denote this measure theoretic outward
normal to A. We shall often use abbreviations for inverse images like {u > 0} := {z €
Q:u(r) >0}, {2z, >0} :={z€R" : 2, >0}, {s=t}:={(s,y) € R™1 : s =t} etc.

as well as A(t) .= AN {,3 =t} for a set A ¢ R™, and occasionally we employ the de- -

composition z = (2, z,) of & vector z € R™ as well as the corresponding decompositions
of the gradient and the Laplace operator,

Vu= ‘(V’u, Bpu) and Au = A'u + Gpau .

Finally, CP# ;= H*# denotes the parabolic Hélder-space defined in [13].

3. NOTION OF SOLUTION AND PRELIMINARIES

In this section we gather some results from [15]. As degenerate points are unavoidable in
the parabolic problem (see the mtroductlon of [15] for exampl&s) an extension of the weak
 solutions in [1] does not seem to be the right choice. Instead we use the solutions of [15,
Definition 6.1}, which are, roughly speaking, solutions in the sense of domain variations.
The advantage is that the class of solutions defined in (15, Definition 6.1] is closed under
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the blow-up process. Moreover, all limits of the singular perturbation problem discussed
in 7] are domain variation solutions and satisfy [15, Definition 6.1] (see [15, Section 6}).
Let us recall the definition of solutions and the monotonicity formula used therein:

Theorem 3.1 (Monotonicity Formula, cf. [15, Theorem 5.2]). Let (zo;%) € R™ x
(0,00), T (to) =R" x (to —4r%,to—7?),0< p<o < 32@ and

: ' -§-1 |z — zof?
G(am,to)(x7 t) = 47r(t0 - t) |47r(t0 - t)’ .7 exp (""4(t0 — t))

Then

‘I’(zo'to)( =7 fT (to) (|V'ul + X) G(zo,to) 2f'.r, (to) to-t w? G(mo,to)

satisfies the monotonicity formula

Yoo ta)(0) = Lante)(P)

- ) .
> / r-1-2 / 1 Vu-(z —z¢) — 2(t0"t)6tu - U G(io,to) dr 2 0.
R T+ (t0) to—1 .

Definition 3.2 (cf. [15 Definition 6. 1]) We call (u, x) a solution in Qg := R" x (0, 00)
(in which case we set 7 := 0) or 2, := R® x (—00,00) (in which case we set 7 := 1), if:
Nue C,oc%(Q )N C*Q, N {u> 0}) N HE2(Q,) and x € L}((—TR, R); BV(Bg(0))) for
each R € (0,00) . For each R € (0,00) and € (0,1) there exists C; < oo such that for
Q+(zo, to) C Q- NQr(0) | : : |

| Vxl < Gyt

Qr(z0,to)

/- [Bu|? < Cyr", and
" J Qr(zo.ts)

/. 01Vl + ) * dusl < C1V/Er = 5117
B,.(zo)x(to+51r2,to+527‘2)

for 0 < §; < Sy < 00; here the mollifier (¢5)5e(0 1) should be non-negative and satisfy
¢s(-) = % ¢(3), 0 € CSI(R") [ ¢=1and supp ¢ C By(0).

Moreover, x € {0,1} a.e. in 2, and x{u>0} < X a.e. in Q..

2) The solution u satisfies the monotonicity formula Theorem 3.1 (1n the case of 7 = 1
for (zo, o) € R™! and o € (0, 00)).

30 = [ /R”[-Zc'?tuVu'§+ (|Vul® + x')'divif — 2VuDEV)

for every £ € Co™ (1 R™) .

4) The solution u is non-negative.

5) The solution u attains the initial data u® € C3"*(R™) in L? (R") in the case that 7 = 0.
6) For each k > 0 there is ¢ > 0 such that Q-(zo,t0) C O, and Hmf—"ﬂ—zﬂ
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9'17”'”00((31(0)) <dimply 6 <1+k. )
7) For 6 € (0,1), v € Co*({Jy]* + s* < 6%}), ur(y,s) := ﬂt—"“—:ﬂﬂ—‘d and x,(y,s) 1=
x(zo + ry, to + r25) the following holds:

a) | [(Vxr -z + 2t0exr) * sl
Qn(@1,t1)

[—ti + 8+ 02 ' [—t1 — 6 -
< 0(6’ Z,T, S,p) (\I’(zo.to)(r —'}—'2_8') - \Ij(zo,to)(r —'l_z_ﬁ))

for -8 <t £-T<0,86+p <%, |2:] <Zand, in the case of 7 =0, 8o — 2r3(—t; +
p>+6)>0. :

b) (V- ) x %] < C(6) IR
Qp(t1,71) VR4 (t1m1)

for £ € 8B1(0) , 1 < 0 and, in the case of 7=0, t =~ (=t + (p+ V8)?) > 0.

t2

o) [ B((Vurl + xr) * 85)(t, 20) / / By (t, 2)Vur(t, 2) - Veba(zo — 2) da
) ty t1 ; .

for ~00 < t; € t3 < 00 a.nd, in the case‘off =0, tg+7r >0.

Rema.rkv 3.3. As the function x is deﬁned only almost everywhere, all pointwise equal-

ities/inequalities involving x should be understood a8 equalities/inequalities that hold

almost everywhere with respect to the Lebesgue measure..

The reader may wonder whether a solution in the sense of dlstrlbutmm (powbly deﬁned.
by the identity in [15, Lemma 11. 3]) would not be good enough for the purposes of this
paper. It turns however out that the information yielded by the order parameter x in
Definition 3 2 carries information that is essential in what follows. Incidentally, x may be
different from X{us0) (see [15, Remark 4.1])."

4. FLATNESS CLAS.SES
Definition 4.1. Let 0 < 0,,0_ < 1 and T > 0. We say that
u € F(oy, a;_, 7) in @, in direction e,
if
(1) (u,x) is a solution in the sense of Definition 3.2 in a domain conta.lnmg Qp-

(2)
(0,0%) € 8{u > o}

u(z,t) = x(z,t) = 0 when (a: t) € Q,, and z, 2 a+p,
x(z,t) = 1'and u(z,t) > —(zn + 0_p) when (z,t) € Q, and z, < —0_p.



(3)
|Vu| <1+ 7in Q,.

When the origin is replaced by (zo, to) and the flatness direction e, is replaced by v then
we define u to belong to the flatness class F(o.,0_,7) in Q,(2o,%p) in direction v.

5. FLATNESS ON THE SIDE OF {x = 0} IMPLIES FLATNESS ON THE SIDE OF {x > 0}

The aim of this and the following sections is to draw information from properties of an
inhomogeneous blow-up limit. One of the central problems when using blow-up arguments
is “not-strong convergence” or “energy loss” in the limit. Here we avoid those problems
by working with uniform convergence (not some Sobolev noxm) The approach is based
on a powerful idea by H.W. Alt-L.A. Caffarelli who used “flatness on the side of {u = 0}
implies flatness on the side of {u > 0}” to prove uniform convergence to an inhomogeneous
blow-up limit (cf [1, Section 7]). In this section we extend their result to a weaker class

of solutions and to the parabolic case, using results in [15).
The following theorem extends {1, Lemma 7.2].

Theorem 5.1. There ezists a constant C € (0,4+00) depending only on the space dimen-
sion n such that ifu € F(o, 1 o) in Q, then u € F(Co,Co,0) in Qp2(0,yn,0)) for some
lyn| < Co. ‘

The idea is to touch the boundary 8{x = 0} with the graph of a C?-function, and to
~proceed then with a Harnack inequality argument. -

6. INHOMOGENEOUS BLOW-UP

In this sectlon we consider inhomogeneous scaling of the solutlon and the free boundary.
The following lemma is our version of [1, Lemma 7.3]

Lemma 6.1. Suppose that ug € F(ok, ok,'rk) mn ka, that o) — 0 and that /0% — O
and defme '

fi(«,t) :=sup{h: limsupr "'2/ ‘ x > 0},
_ Qr (P’ \Orprh,PL)

r—0

fe (a:’,t) =inf{h: limsupr "2 / x> 0}.

r—0 - JQr(pa’ oxprh.pRt) ‘

Then, as a subsequence k — oo, f,c and f,c conuerge in L,OC(Q’I)' to some function f, and
[ s continuous in Q.

The next Proposition follows the lines of [2, Lemma 5.7)].
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Proposition 6.2. Suppose that the assumptions of Lemma 6.1 are satz’sﬁed and that k is
the subsequence of Lemma 6.1. Then

we (o', peh, PRE) + okh -
Ok

wk(a" h,t) =

is for each § € (0,1) bounded in Q15N {:c,1 < 0} (by a constant depending only oné and
n) and converges on compact subsets of Q7 in C? to a caloric function w.
Moreover, w(z', h,t) is non-decreasing in the h-variable in Q7 and

lim wi(y, 8) = F(&',1);

Qr 3(v,8)-'($'.0,t)€Q'1 Jk—o0

here f is the function defined in Lemma 6.1.

7. SCALING DISCREPANCY AND C°°-REGULARITY OF BLOW-UP LIMITS

In order to obtain “better-tha.n—L1psch1tz” -regularity of the mhomogeneous blow-up'

limit f, H.W. Alt-L.A. Caffarelli used the non-positive mean curvature of o{u.> 0} at
singularities. More precisely, for any smooth test set -D each classical solution @ of the
stationary problem satisfies

0'=/ Aa=—/ 1+/ Vi-v,
_ Dn{a>0} ’ Dnd{a>0} - J{a>0y6D -

implying by the fact that |Va| < 1+ Cdist(z, {@ = 0})* that the perimeter of {ﬂ > 0}
is less than the Hausdorff measure of {@> 0} N 8D plus o(1) and thereby “almost” non-
positive mean curvature of 6{u > 0}. ,

The analogue of the non-positive mean curvature property can still be proved in the time-
" dependent case, however that path leads to problems in the sequel Therefore we replace
it by a scaling discrepancy argument which gives hope to be applicable in more general
s1tua.t10ns We obtain C°°-regular1ty of f.

Proposition 7.1. Suppoee that the assumptions of Lemma 6.1 are satisfied and that k is

‘the subsequence of Lemma 6.1. Then O,w =.0 on Qi PR the sense of distributions.

Proof. The reason why the proposition holds is tha.t the definition of wy results in dlﬁ”erent
terms scaling at different orders, i.e. a scaling discrepancy. The rigorous proof is however
rather lengthy.

Corollary 7.2. Suppose that the assumptzons of Lemma 6.1 are satzsﬁed and that k is

' the ‘subsequence of Lemma 6.1. Then f € C°(Qu/2); moreover,

la 5 < C(n,|al, k)

in Qy4 for any k € N and multz-'mdez a € N™.
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8. FLATNESS IMPROVEMENT AND REGULARITY

Concluding regularity is then a standard procedure. We obtain:

Theorem 8.1. There exists a constant og > 0 such that if u € F(o0,1,7) in Q,(to, zo),

o < oo and T < 0p0?, then the topological free boundary 8{u > 0} is in Q,4(to, o) .

the graph of a C'*®*_function; in particular the space normal is Hélder continuous in
Q,/4(to, To).

Corollary 8.2. For each point (zo,t) of the set R,‘ the topological free boundary 0{u > 0}
is in an open neighborhood of (o, to) the graph of a CY**-function; in particular, the
space normal is Hélder continuous in an open space-time neighborhood of (zo,10).
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