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Abstract

We formulate a weak form of reflection principle. This principle is compatible with tail club guessing on
the first uncountable cardinal and implies the corresponding tail club guessing ideal is saturated. We consider
a forcing axiom which implies our principle and is compatible with tail club guessing via a semiproper iterated
forcing.

Introduction

In [T}, a model of set theory is constructed where a tail club guessing ideal is saturated. It also shows
consistencies of forcing axioms compatible with tail club guessing. On the other hand, it is known that many
consequences of the Martin’s Maximum (MM) are gotten interpolated by the Strong Reflection Principle
(SRP) in [B]. For example, SRP implies the nonstationary ideal NS, is saturated. We intend to do the
same explicitly in the context of [I}.

To formulate a suitable principle which looks like SRP, we prefix a ladder system (Cs | § € A) on a subset
A of w; as a parameter once for all. If the parameter is tail club guessing and there exists a supercompact
cardinal, then we can force a forcing axiom while preserving this tail club guessing. This forcing axiom
implies a SRP-like principle which in turn implies the corresponding tail club guessing ideal is saturated.
Furthermore, the plus-type forcing axiom for a o-closed p.o. set together with this tail club guessing on A
negates the saturation of NS,,,. This observation is a modification of [I}.

The relevant class of preorders are o-Baire. They are proper + (Cs | § € A)-w-semiproper. We note
that w-semiproper preorders are (Cs | § € A)-w-semiproper. But (Cs | § € A)-w-semiproper preorders may
not be semiproper. We provide a characterization of preorders which are (Cs | 6 € A)-w-semiproper in terms
of preserving a type of stationary sets. This follows some of what [S] considers. We show iteration theorem
for semiproper + (Cj5 | § € A)-w-semiproper under a type of revised countable support iterated forcing found
in [M]. More specifically, this note contains the following.

§1. Statements equivalent to SRP are considered to motivate §4.

§2. Two technical lemmas are recorded for §1 and §6.

§3. Notations fixed for tail club guessing ideals.

§4. (proper, (Cs | § € A)-w-semiproper, plain)-reflection principle introduced.

§5. A tail club guessing ideal can be saturated under the principle in §4.

§6. A proper + (Cs | § € A)-w-semiproper p.o. set is considered to force the principle in §4.

§7. The nonstationary ideal on w; can not be saturated, if MA*(a o-closed p.o. set) and a tail club
guessing hold.

§8-§12. Trees of clubs and w-stationary sets etc are introduced and their basic properties are recorded.

§13. (Cs | § € A)-w-semiproper p.o. sets get characterized in terms of preserving a type of semistationary
sets of §8-§12.

§14-§18. Iteration lemma for semiproper + (Cs | § € A)-w-semiproper and corresponding forcing axiom
are considered. '

85 and §7 are modifications of [I]. To go through §14-§18, we used iteration lemma for semiproper from
[M]. The principle introduced here can be pushed a bit stronger. It implies a form of the Chang’s Conjecture.
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Its account may appear elsewhere. I would like to thank members of set theory seminar at Nagoya University
for pointing out some simplifications.

§1. Another look at the Strong Reflection Principle

We begin by fixing notations.

1.1 Definition. Let 6 be a regular cardinal, then N < Hp means that (N, €) is a countable elementary
substructure of (Hy, €). For NM < Hg, N C,,, M means that N C M and NNw; = M Nw;. Let £ < wy.
We say (Ny | @ < &) is an €-chain in Hy, if

e For all o < §, N, < Hy,
o Forall 8 <¢ with f+1<¢, (No | @< B) € Ngya,
e For all limit 8 < &, Ng =|J{No | & < 8}

We are interested in cases when §{ = w;,w + 1 and w.

For two €-chains (N, | n < w), (Mr | n < w) in Hy, the notation
(Np | n<w) G, (My, | n<w)
means for all n < w, N, C,, M,.

The following modifies [B] a little.

1.2 Definition. We say Strong Reflection Principle (SRP) holds, if for any (K, S, 6,a) such that
o K Duw,
e SC K],
e 0 is a regular cardinal with K € H]TC(K)|+ € H(grro(x)y)+ € H,,
® a € Hy,
there exists ((N, | @ < w;), C) such that
¢ (Ny | @ <w) is an €-chain in Hp,
e a€ Ny,
o C Cw isaclub,
o For each a € C, we have either (1) or (2),
(1) N«NK € S.
(2) For any N with Ny C,,, N < Hy, we have NN K ¢ S.

The following is from [F)].

1.3 Definition. Let K D w;. For S C [K]¥, S is projectively stationary, if for any stationary F C wy,
we have {a € S | aNw; € E} is stationary in [K]v.

We recap {F] as follows to motivate our principle.

1.4 Proposition. The following are equivalent.
(1) SRP holds.

(2) For any (K, S, 0,a) as in SRP, there exists an €-chain (N | @ < w1) and a club C C w, such that for
each a € C, we have either (2.1) or (2.2),
(2.1) NaNK € 8.
(2.2) For any ({an | n < w), (N}, | n S w)) such that
® a, < a are strictly increasing and sup{a, | n <w} =0,
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o (N} | n<w) is an €-chain in Hy,
o (Na, | n<w) Cuy (N, | n<w),
we have N,NK ¢ S.

(3) For any (K, S,8,a) as in SRP except S is assumed to be projectively stationary in [K]¥, there exists an
€-chain (N, | a < wy) and a club C C wy such that for each o € C, we have NN K € S.

Proof. (1) implies (2): Let (K, S,0,a) be given as in (2). Then by (1), we have (N, | @ < w;) and
C. We claim these two work in (2). To see this, let « € C and suppose we are in case (2) of (1). If
(Na, | n <w) Cu,y (N | n <w), then Ny Cou,; N, andso N, NK ¢ S.

v (2) implies (3): Let (K, S,0,a) be as in (3). So in particular, 5 is assumed to be projectively stationary
in [K]“. By (2), we have (N, | @ < w;) and C. Then this €-chain in Hy itself and the following club work.

Claim 1. {a € C | Ny N K € S} contains a club.

Proof. By contradiction. Suppose otherwise and let E = {a € C | (2.2) holds at a}. Then E is
stationary. Hence we may take a sufficiently large regular cardinal A and M < H) such that

o (Ny|la<w)eM,
e MNKES,
e MNw; =d0€E.

Since Hy € H), we may assume there exists an €-chain (N., | n < w) in Hy with N, = M N Hy. Let
n = N. Nw;. Then 6, are strictly increasing and sup{é, | n < w} = 4. Since we may assume (N, | @ <
wy) € N, we have N;, C,, N/ and so (N5, | n <w) Cuy (N, | n<w). Hence MNK = N,NK & S. This
is a contradiction.
(8) implies (1): Let (K, S,6,a) be as in (1). Let N € S+, if
e N < Hegrreuony+,
¢ Either the following (1) or (2) holds,
(1) NnKeS.
(2) For any M < Hgirouony+ with N Co, M, we have MN K ¢ S.

Claim 2. S C [Hgirawny+]? is projectively stationary.
Proof. Let E be any stationary subset of w; and let
¢ : [Higreuoy+ | — Higrreuony+.
We want N € S+ such that NNw; € E and N is ¢-closed. To this end, take M < Hp such that ¢ € M and
M Nwy € E. We argue in two cases.
Case 1. For all M’ < Hy with M C,,, M’, we have M' N K ¢ S: In this case we
Claim 3. For all M < H(2|'rc(k)|)+ with M N H(2|TC(K)|)+ Cun —M-, we have M N K €8s.

Proof. This is because Hirc(k)+ € Haircuoiy+ € Hg. More precisely, given M, by 2.1 lemma (three H
lemma) of next section, we have M’ < Hy such that M C M’ and M N Hircxy+ = M’ N Hyre(x) +- Hence
Mnuy=Mnw=MnNwand MNK=MNK¢S. Hence MNK ¢ S.

o

Let N = M N Hygirouoy+. Then N € S+, N is ¢-closed and NNwy = M Nw; € E.
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Case 2. There exists M’ < Hg such that M C,, M’ and M'NK € S: Let N = M'n Hyirowy+.
Then this N works.

[m}

Now apply (3) with (Hirewory+, S+, A, (a, Hgirewory+, Hp)). There exists (Ma | @ < wi) and C
such that for all @ € C, we have M, N Hpgirouy+ € S+. Since Hy € My, (My NHy | @ < w1) is
an €-chain in Hy. We claim this €-chain and C work. To see this let « € C. If M, N K € S, then
we have (Mo N Hg) N K = M, NK € S. Otherwise for any M < Hp with M, N Hy C,;, M, we have
M, ﬁH(2|Tc(K)|)+ Cun MﬂH(2;'rc(K)|)+ andso MNK &S.

a

§2. Technical Lemma

We frequently make use of the following crutial technical lemma from [B].

2.1 Lemma. (Three H lemma) Let wy < & < 8 < ) be regular cardinals with H, € Hy € H). Let
N < Hy with k,0 € N. Then we have

(1) Ho,Hp€ N, NNH, < Hy and NN Hy < H.
Let M < Hy with NN Hy C,, M. Then

(2) If M ={f(s) | f € N, s€ M N H}, then
e NC, M < H,,
eMNH,=MnH,.

Proof. For (1): Since H, Hy € H), we may check H, and Hy are definable in H) from x and 6,
respectively. Hence H.,Hy € N < H). Since H.,Hg € N < H), we may check that N N H, < H, and
NN Hy < Hy.

For (2): Let fi(s1),-++, fn(sn) € M and ¢(vo, v1,- -+, vyn) be a formula. Then there exists g : H, — H)
such that if ay, - -,an € Hy and Hy = “Iy ¢(y, fi(a1), - -, fn(an))”, then

Hy = “¢(9((a1,-+,an)), fr(ar), -, falan))”.

Since fi, -, fn, Hx € N, we may assume g € N, .
Now if Hy = “Sy ¢(y, f1(81),*++, fn(3n))” with some sy, ---, s, € M N Hy, then we have

H) '= “¢(g((31, ) sn))v fl(sl), ) fn(sn))”-
Since (s1,--+,3n) € M N Hy, we have g((s1,- -+, 8n)) € M. Hence by Tarski’s criterion, we conclude

M < H,.

“Tosee N C M, let z € N. Then z = f(0), where f = {(a,z) | a € H,} is the constant function in N.
Hence z € M.

Tosee MNH, C M, let f = {(a,a) | @ € H,} be the identity function on H,. Thenf € Nand f(s) =s
for all s € M N H,. Hence M N H, C M.

To see M N Hex 2 M N Hy, let f(s) € M N H,. We may assume f € N and f : Hy — H,. Since
fCH,x H,,wehave f C H, € Hp and so f € NN Hy C M. Hence f(s) € M N Hy.

Since we have M N H, = M N H,, we have NNw; =M Nw, = M Nw; and so N C,, M.
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2.2 Corollary. (Sequential three H lemma) Let &, 6, A be as above. Let (N, | n <w) be an €-chain in
H) with k,0 € Ny. Let (M, | n < w) be an €-chain in Hy such that

(NnNHg | n <w) Cy, My | n<w).

Then there ezists an €-chain (M, | n < w) in Hy such that for each n < w, we have Ny Cu; My, and
Man,; =Mann-

Proof. We just observe M, € M,;1. But this follows from the fact that
M, = {f(s)| f € N,, se M,NH,}
is definable from N, and M, N H,. But we have
Nn € Npy1 © My,

M,.NHc€Mpn1NH, C Mpy1.

§3. Tail club guessing ideals

We recap tail club guessing ideals and fix our notation (see {I] for more on this).

3.1 Definition. We say (Cs | 6 € A) is a ladder system on A, if A C {6 < w; | § is limit} and for each
d € A, Cj is a cofinal subset of § and is of order-type w. When C;5 gets enumerated increasingly, we denote
the n-th element either by Cs(n) or simply 6,. For a club D C w;, we write

X*(D)={6€A|C5;C" D}
where Cs C* D means an end-segment of Cj is contained in D. We write

(TCG)* = {X C w1 |3 D club such that X*(D) C X}
(TCG)t = {X Cwi |V D club, we have X*(D) N X # 0}
TCG = {X Cwi |3 D club such that X*(D) N X = 0}

We say (Cs | 6 € A) is tail club guessing, if for any club D C wy, X*(D) # 0. Notice that w; \ A may
or may not be stationary.

Hence we have
(TCG)Y = {X Cw | (C5|6€XnA) is tail club guessing}

The notation X*(D), TCG and so forth are somewhat abusive. But it will be clear from the context
which ladder system and A are under consideration.

3.2 Proposition. (T'CG)* is a normal filter on wy. More technically, we have

(1) For two clubs Dy and Dy, X*(D1 N Dy) = X*(D1) N X*(Da).
(2) For any sequence (Dy, | n < w) of clubs, X*(N{Dn | n<w}) CN{X*(Dn) | n< w}
(8) For any sequence (D¢ | £ < w1) of clubs, we have

X'{a<w |Vé€<aaeD})C{a<w |YVE<aace X" (D)}

(4) (Cs | 6 € A) is tail club guessing iff A € (TCG)* iff (TCG)* C (TCG)* iff 8 ¢ (TCG)*.



§4. A weak reflection principle introduced

We introduce one of weak reflection principles which are compatible with tail club guessing. What is
intended by this principle becomes clear if it gets compared with the second characterization of SRP in §1.
We consider its applications and consistency.

4.1 Definition. Let (C5 | § € A) be a ladder system on A which may or may not be tail club guessing.
We say (proper, (Cs | 6 € A)-w-semiproper, plain)-Reflection Principle holds, if for any (X, S, 8, a) such that
o K Duwy, ‘
e SCI[K],
o f is a regular cardinal such that H(2|Tc(x);)+ € Hy,
e a € Hy,
there exists an €-chain (N, | @ < wi) in Hy with a € Ny and a club D C w; such that for each
§ € X*(D), we have either (1) or (2),
(1) NsNnKeS.

(2) For any €-chain (N}, | n < w) in Hg with (N3, | n <w) Cu, (N} | n < w), we have N/, N K ¢ S, where
(6n | » < w) increasingly enumerates Cj.

§5. A tail club guessing ideal can be saturated, an application

The fact that a tail club guessing ideal can be saturated is due to [I]. Here we show that the same can

be said as an application of our weak reflection principle. This use of the reflection principle follows that of
SRP in [B] where the nonstationary ideal NS, is shown to be saturated.

5.1 Proposition. Let (Cs | 6 € A) be a ladder system on A which may or may not be tail club guessing.
Assume (proper, (Cs | § € A)-w-semiproper, plain)-RP. The ideal TCG associated with (Cs | § € A) is either
saturated or equals P(w;) depending on (Cs | § € A) is tail club guessing or not, respectively.

Proof. If (Cs | 6 € A) is not tail club guessing, then TCG = P(w;). However, we make no use of
(Cs | 6 € A) being tail club guessing in the rest. Let B be a maximal antichain in (TCG)*. Let

S ={N < H,, | 3B € NN B such that NNw; € B}.

Apply the assumed reflection principle to (H.,, S,0, B). We have an €-chain (N, | o < w;) in Hy and
a club D such that for each § € X* (D), we have (1) or (2),

(1) NsnN H,, € S. In this case may assume there exists B € N3 N B such that Ns Nw; =6 € B.

(2) For any €-chain (N, | n < w) in Hy with (N5, | n < w) Gy, (N}, | n < w), we have N, NH,, € S,
where (0, | n < w) increasingly enumerates Cj.

Claim 1. {0 € X*(D) | 6 satisfies (1) } € (TCG)* and so it contains X*(D,) for some club D;.
Proof. By contradiction. Suppose not and let

E = {6 € X*(D) | 6 satisfies (2)}.
Then E € (TCG)*. Hence there exists B € B with EN B € (TCG)*. This means that
(Cs|6€ ENB)

is tail club guessing. ,

Let (M, | @ < w;) be an €-chain in Hj, where ) is sufficiently large, such that (N, | @ <w), Hy, B €
M. Since {MyNw; | @ < w1} is a club, we have § € E N B such that an end-segment of C; is contained in
this club. By reindexing, we may assume {M, Nw; | n < w} is an end-segment of C;. In particular, we have

d = sup{M, Nw; | n < w}.
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Since § € E, we know ¢ satisfies (2). However, since (N, | @ < w1) € My, we have Ny, nw, Cw, MnNHg.
So (NM,.rw: | n <w) Cu, (M, N Hp | n <w). Hence we may conclude M, N H,, & S.
Since B € (M, N H,,)N B and M, Nw; = 6 € B, we have M,,N H,, € S. This is a contradiction.

o

Claim 2. B C|J{N, | @ < w1} and so |B| < w; holds.

Proof. By claim 1, we have

X*(Dy) C{a <w; | 3B € N, N B such that a € B}.
Hence by the normality of TCG, we have BN|J{N4 | @ < w1} is maximal. Hence
B=Bn|J{Na|a<w} S| J{Nala<w}

o
o

§6. Getting our weak reflection principle from a forcing axiom

Let (Cs | § € A) be a ladder system on A which may or may not be tail club guessing. We consider a
class of preorders with the ladder system as a parameter. If the ladder system is tail club guessing then this
tail club guessing remains in any generic extension by any preorder in this class. This class of preorders are
iterable under our revised countable support iterations when combined with semiproper. Notice that this
class of preorders may contain preorders which are not semiproper.

6.1 Definition. Let (Cs | § € A) be a ladder system on A which may or may not be tail club guessing.
We say a preorder P is (Cs | § € A)~w-semiproper, if for all sufficiently large regular cardinals A and all
€-chains (M, |n < w) in H) such that (C5 | § € A),P € My, My Nw; € Aand {Mp,Nw;1 | n < w}
is an end-segment of Caronw,, if p € P N My, then there exists ¢ < p in P such that for all n < w, g is
(P, M,)-semi-generic.

6.2 Lemma. Let (K,S,0,a) be as in our reflection principle in §4. Then there exists a p.o. set P such
that

(1) P is proper and o-Baire,
(2) P is (Cs | 8§ € A)-w-semiproper,
(8) P adds a sequence (No | @ < w) such that every initial segment of this is an €-chain in HY and also
adds a club D such that for each 6 € X*(D), we have either (8.1) or (8.2),
(8.1) NsNK € 8.
(3.2) For any €-chain (N, | n < w) € V in HY with (N5, | n < w) Cuy, (N4 | n < w), we have
N,NK g8, where (6, | n < w) increasingly enumerates Cj.
Proof. Let p= ((NE | a < oP), DP) € P, if
e af < wy,
o (N2 | a < aP) is an €-chain in Hy with a € N,
e D? C a” +1 is closed,
¢ For any 4 < aP with § € 4, if Cs C* DP, then we have (1) or (2),
(1) N\nKeS.

55



56

(2) For any €-chain (N, | n < w) in Hp with (N} | n <w) Cu, (N} | n < w), we have N, NK ¢ S,
where (6, | n < w) increasingly enumerates Cj.

For p,g€ P,let g < pin P, if
(N la<a®) 2(N§ | a<aP),

DN (af +1) = DP.

Claim 1. (Dense) For any £ < wy, p € P with o < £, e € Hy, there ezists ¢ € P such that a? = &,
e € N{, and D? = D? U {¢}.

Proof. Construct an €-chain (Ng | o < €) which just extends (N2 | a < aP) and e € N7. Then set

D% = D?P U {£}. Then this g works. Notice that if § < ¢, € A and C5 C* DY, then § < aof and Cs C* DP.
So there is no new § to worry about.

o

For (1): We show P is proper by ESCAPE. Let A be a sufficiently large regular cardinal and M < H)
with Pe M. Letpe PN M.

Claim 2. There exists ¢ < p such that g in (P, M)-generic, a? = M Nw, € D? and NI, = M N Hp.

Proof. Let (D, | n < w) enumerate the dense subsets D € M of P. Construct p, and p/, by recursion
such that for each n < w, we have

® Do =D,

*p, €PNM,p, <p,

® ph <pn, PR €EPNM,

o DFn = DPn U {aPn},

o (aP,0P") N Crnw, # 8, if M Nwy € 4,
® Pn+1 < P and pny1 € DN M.

Now let

(NllasMNuw) = (U{(Ng" jagaoP) | n<whU{(MNw,MnNH)},

D= U{D"" |n<w}U{MNuw}.
Then g € P and is (P, M)-generic. Notice that if § < M Nwy,d € A and Cs C* D9, then § < M Nwy.
By the above argument, we see that P is o-Baire, too. Namely, P adds no new w-sequences of ordinals.
For (2): We show P is (Cs | § € A)-w-semiproper. Let A be a sufficiently large regular cardinal and

(M | n < w) be an €-chain in Hy with (Cs | 6 € A),P € Mp, M, Nw; € Aand {(Mp,Nw; |n <w}isan
end-segment of C ., - Let p € PN M.

Claim 3. There exists ¢ < p such that for all n < w, q is (P, My,)-semi-generic.

Proof. We argue in two cases.

Case 1. For any €-chain (M}, | n < w) in Hy with (My, | n < w) Cu, (M}, | n < w), we have M/,NK ¢ S:
Since H|tc(k)+ € Hp € H, by 2.2 corollary (sequential three H lemma), we have:

For any e-chain (M, | n < w) in H with (M, N Hp | n < w) Cu, (Mn | n <w), we have M,NK ¢ S.

We construct {gn | n < w) by recursion such that for each n < w, we have



® go < p, qo is (P, Mp)-generic, a? = My Nw; € D%, N3, = My N Hg and go € M.
® g is (P, My)-generic, a? = M, Nw; € D%, N%, = M, N Hp and g, € Mp41.
® gnt1 < {n.

Let

(N2 | o< Mynw) = (N | a <o) | n<w}) U{(MyNwi, M, N Hp)},
D = (U{Dq" In<whU{M,Nw}

Then ¢ € P and is (P, My)-generic and so (P, My )-semi-generic for all n < w. Notice that
CMurun © {MaNw; | n<w} € D?

and we have,
For any €-chain (N}, | n < w) in He with (N] |n <w) Cy, (N, | n <w), we have NN K ¢ S.
Case 2. There exists an €-chain (M/, | n < w) in Hy such that (M, | n < w) Cu, (M,, | n < w) and
M,NK e S:
We construct (g | n < w) by recursion such that for each n < w, we have

® go < P, qo is (P, M})-generic and so is (P, Mp)-semi-generic, % = Mj Nwy = My Nw; € D®, N, =
M N Hg and go € M],

® g, is (P, M.)-generic and so is (P, M,,)-semi-generic, a® = M}, Nw; = My Nwy € D, N&i, = M,NHy
and g, € M,

® In+1 < gn.

Let
(Ne|a< M,Nw) = (U{(Ngn | a<of) | n<w})U{(M,Nnw, M, N Hp)},

D= ({D* | n < w}) U{MNw1}.
Then ¢ € P and is (P, M,)-generic and so is (P, My,)-semi-generic for all n < w. Notice that
CuMynun = CMurun €* {MnNwy [n<w} C DY

and we have
Nipon NK=Nin, NK=M,NK€S.

For (3): Let G be P-generic over V. Let
(No | a <wr) = J{(NZ | @< of) |p€ G},

D=|J{D* |pe @}

Then by genericity these two work and we are done.

§7. The nonstationary ideal may not be saturated under tail club guessing

The following is implicit in [I].

7.1 Theorem. Let (Cs5 | § € A) be a ladder system on A which may or may not be tail club guessing
but assume A is stationary.
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(1) If MA* (Adding a club subset of wy by countable conditions) holds, then
{S € A| S is stationary and (Cs | 6 € S) fails to be tail club guessing i.e., $ € TCG}

is dense below A in P(w1)/NS,,. Hence
AlFPw)/nNs, ‘DS € G, SC Aand ((Cs | 6 €S) fails to be club guessing)V ”.

(2) If MA* (Adding a club subset of wy by countable conditions) holds, then there erist (S |1 < p) and
(D; | i < p) such that

o (S; | i < p) lists stationary subsets of A one-to-one manner and {S; | i < p} is a mazimal antichain
below A in P(w1)/NS.,,,

e D; is a club subset of w1,

e SC{6€A|Csg D).

(8) If in addition we assume (Cs | § € A) is tail club guessing, then |u| > ws.

Proof. Let E C A be stationary. Let P be the notion of forcing which adds a club D by initial segments.
Then P is o-closed. By genericity,

Claim 1. |-p “S = {6 € E | Cs €* D} is stationary”.

Proof. Supose p |- p“C Cw; is a club”. Let A be a sufficiently large regular cardinal and take M < Hy,
such that p,C,P € M and M Nw; =6 € E. Easy to construct ¢ < p such that

e g is (P, M)-generic,
° q”’"P“CJ zm D”,
Since g J-p“6 = M Nw; = M[D]Nw, € C”, we are done.
o

For (1): Apply MA*(Adding a club subset of w; by countable conditions). Get a filter F C P which is
generic over relevant w;-many dense subsets of P. Let

DF={5<w1|3p€Fp|}—p “66D”}=UF,
Sp={0<w |3peFplp“es})

Then we may assume Dy is a club. By MAt, Sp is stationary. We want and may arrange
Sp={6€ E|CsZ" Dr}.
Here are some details. For § € E, let
D) ={p€P|plp“Cs<* D" orpll-p “Cs * D”}.
Make sure F hits these D(6)’s.

We may also prepare w;-many functions (n — mm(6,n) | n < w) in VP such that

e If C5 * D, then for all n < w, we have n < 7m(6,n) < w and Cs(m(d,n)) ¢ D.

o If C5 C* D, then m(d,n) = m(J) constantly and we have Cs[[r(8),w) C D.
where (Cs(n) | n < w) increasingly enumerates Cs and Cs{[m,w) = {Cs(k) | m < k < w}.
Let F decide the functions to (n— m(6,n) | n < w).

Now suppose § € Sp. Then p|-p“Cs Z* D” for some p € F. Hence there exists p’ € F such that for all
n < w, we have p’ |-p“n < m(4,n) < w, Cs(m(d,n)) € D”. Therefore, we may conclude Cs(m(d,n)) € Dr
and n < m(6,n). Hence Cs £* Dp.
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. Conversely, suppose C5 £* Dp. Then p||-p“Cs Z* D” for some p € F. This is because if p |-p“Cs C*
D”, then p |- p“Cs[[m(6),w) € D” and so Cs[[m(d),w) C Dp. This is a contradiction.
plp“Cs €* D” in turn implies p|-p“6 € S” and so & € Sp.

For (2): By (1), every statioanry subset below A gets extended to some stationary S with S € TCG.
Hence we may construct (S; | ¢ < u) as specified for some u. Since S; € TCG, (Cs | § € S;) fails to be tail
club guessing. Take a club D; such that S; C {6 € E | Cs £* D;}.

For (3): By contradiction. Since case u < w is similar, we assume y = w;. Let D be the diagonal
intersection of the D;. Since (Cs | § € A) is tail club guessing, we have {6 € A | Cs C* D} is stationary.
Since the S;’s are maximal below A, we have some S;, such that {§ € S;, | Cs C* D} is stationary. Pick
0 € Si, with ig < 6 and C5; C* D. Then for all n < w with i < Cs(n) € D, we have Cs(n) € D;,. Hence
Cs5 C* D,,. This contradicts to the choice of § € S;,.

a

7.2 Corollary. (1) (MA* (o-closed p.o. sets)) If NS, is saturated, then no tail club guessing holds.
(2) (MA* (o-closed p.o. sets)) If SRP holds, then no tail club guessing holds.

7.3 Note. If we have w-semiproper p.o. sets which iteratively force SRP, then MA*(w-semiproper)
would imply that SRP and any tail club guessing in the ground model would remain. Hence we would get
MA™*(o-closed p.o. sets), SRP and tail club guessing. This is a contradiction. Hence it is quite unlikely to
have w-semiproper p.o. sets which iteratively force SRP.

7.4 Question. Does SRP negate tail club guessing ?
§8. Trees of clubs and w-stationary sets

We know by [S] proper and semiproper preorders are characterized in terms of preserving the stationary
sets and the semistationary sets, respectively. We would like to consider a characterization of (Cs | § € A}-w-
semiproper preorders along this line. We introduce trees of clubs in [K]* and w-stationary sets in Seq“(K).
They are counterparts to clubs in [K]“ and stationary sets in [K]“.

8.1 Notation. Let K be a set with K D w;. Let h: [K]<“ — K be a map. Then for a € [K]“, we
say a is h-closed, if for all z € [a]<¥, we have h(z) € a. We denote

C(h) = {a € [K]“ | a is h—closed}.
Then C(h) is a club in [K]“. It is well-known that every club in [K]“ contains C(h) for some h.
8.2 Definition. Let K be a set with K O w;. Denote
Seq“(K) = {(an | n < w) | for all n < w, a, € [K]“}.

We call f is a tree of clubs in [K]¥, if f is a function such that
e Dom(f) = <“([K]"),
e For all (a9, -+, an-1) € Dom(f), we have f(q,,....a,_,) is a function from [K]<“ to K.
For a tree of clubs f in [K]¥, denote

B(f) = {{an | n < w) € Seq“(K) | for all n < w, an is fiag, - a,_,) —Closed}.

Let S C Seq“(K). We say S is w-stationary in Seq®(K), if for all trees of clubs f in [K]“, we have
B(f)ynS+#0.
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We say S is w-semistationary in Seq“(K), if
S* = {{bp | n <w) € Seq“(K) | there exists {(an | n < w) € S such that for all n < w, a, C,, bn}

is w-stationary in Seq“(K), where a,, C,,, b, means a, C b, and a, Nw; = by Nw1.

If we write
(an | n < w) Sy, (b | n <w),

then this means that for all n < w, we have a,, C b, and a, Nw; = b, Nws.
8.3 Definition. Let w; C K7 € K. For S C Seq“(K4), define
STKy={(bn | n <w) € Seg“(K3) | o N K1 | n <w) € S}.
For T C Seg(K3), define
T|Ki={(baNKi|n<w)e€ Seq“(Ki) | (bn | n<w) €T}
We may call S T K5 the lift-up of S to K; and T' | K, the pull-down of T to K;. We have
(STKy) | K1=8, (T| K1) TK;2T.
So we loose some specificness if we first go down and then go up.
8.4 Definition. Let (C5 | § € A) be a ladder system oﬂ A which may or may not be tail club guessing.

Denote
£ = {Cs[[m,w) € Seq“(w1) | 6 € A, m <w},

where Cs[[m,w) = {(n — m,Cs(n)) | m < n <w} and Cs(n) denotes the n-th element of Cj.
For any set K 2 wy, the lift-up of £ to K is

ETK={{an|n<w) € Seq”(K) | (anNw; In <w) € E}.

The behavior of £ is the heart of all in this paper. Notice that the ladder system (Cs | § € A) gets
recovered from £ in an obvious manner, if Cs5(n) > w foralld € Aand all n < w.

§9. Trees of clubs going up and down and their diagonals

Basics with trees of clubs.

9.1 Lemma. (Typical trees of clubs) Let 6 be a regular uncountable cardinal so that [Hg]* C Hg and
z € Hg. Then there exists a tree of clubs f in [Hg]“ such that

B(f) C{{(Vn | n <w) € Seq¥(Hy) | (Nn | n < w) is an € —chain in Hy with z € No}.

Proof. For (Np,+++, Np—1) € <¥([Hg]¥), let
f(NO;"';Nﬂ—l) : [H9]<w i HB
Be such that

C(f(No,-~-,N,._1)) - {N< Hy lxv (No, e ')Nn—1> € N}
Then this tree of clubs f works.



9.2 Lemma. (Going up) Let wy € K C K. If g is a tree of clubs in [K]*, then there exists a tree of
clubs f in [K,]* such that
' B(f) € B(g) T K».

Proof. For {by, *+,bn_1) € <¥([K2]*) with (b N K1, -+, ba_1 N K1) € <¥([K1]¥), let
f(bOy""bn—l) : [K2]<w — K3
be such that
C(f(bo,bn-1)) © {0 € [K2]* | 3a € C(geponks, - ba-snkyr)) DN K1 = a}.
Claim. B(f) C B(g) 1 K2 = {{bn | n <w) € Seg“(K2) | (bn N K1 | n < w) € B(g)}-
Proof. Let (b, | n < w) € B(f). Then

bn € C(f(bo,bn—1))-

Hence by induction on n, we have

bpNK; € C(g(bonK;,---,b"..anﬂ)-

Therefore
(b N K, | n < w) € B(g)-

9.3 Lemma. (Going down) Let wi C K1 C K,. If f is a tree of clubs in [K)]*, then there exists a tree
of clubs g in [K;]¥ such that
B(g) € B(f) | K.

Proof. For a € [K3)* and @, (ao,- - -,an) € <“([K1]*), we define 4(®), a({30,an)) € [K,]* by recursion
on n as follows;
a® = the C —least fy—closed set b with b D a,

g({aoran)) = the C —least f(a“” . ge0 a1 —closed set b with b 2 a.
0 " ln

)
We choose a tree of clubs g in [K1]“ so that

C(ge) C{bNK1 | be C(fo)},

C(g(ao,--‘,,a»)) c {bﬁ Ky \beC(f, m . sla0ran 1)) )}
(&0 * van )

Claim. B(g) C B(f) | K.
Proof. Let {a, | n < w) € B(g). Then ao is go-closed. So there exists ap which is fy-closed and

ao = ap N K3.

Since &((,0) is the fp-closure of ap, we have

ap C &gb) C ap.
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And so o
agg&(())ﬂKlgaGHKl:ao.

Hence
ag = &éo) NK;.

Similarly, @n+1 18 g(ao,--,a,)-Closed. So there exists a}, ., which is f @® &((ao,‘.._a"_l)))-closed and
0 1 1 8n

!
an+1 = an+1 N Kl.

Since &5,(:‘;""’“")) is the f(a"’ &«ao,....,n_l)))-closure of any1, we have
® .. a4

ont1 G 853 Calpyy.

And so « N
ant1 C apyy " NKL Cah  NKL = anyy.

Hence ( 9
ny1 = fln(_ﬁ'm'a" N K.

By the definition of @(¢@0:%n))’s, we have
8" € C(fo),
av(z(-:‘i""'a")) € C(f(af,m,-~,a£.‘°°""’°"“”))'

Hence .
(a(() ), &(1(00))’ &g‘ao’al», ee @(fﬁru,an))’ )€ B(f)

Therefore, (a, | n < w) € B(f) | K;.

9.4 Lemma. (o-closed) If f* are trees of clubs in [K]“ for all k < w, then there exists a tree of clubs
f in [K]¥ such that

B(f) S[({B(f*) | k< w}.
Proof. For (ao, -+, an-1) € <“([K]¥), define f(a,, .an_,) : [K]<¥ — K so that

C(faoran-1) S [ HC(Floo, an_ny) | E <w}.

Then this f works.

9.5 Lemma. (Diagonal intersection) Let f* be a tree of clubs in [K]“ for all v € K. Then there exists
a tree of clubs f in [K]¥ such that for all {(aq,- -+, 6n-1) € <¥([K]*), we have

C(fiao,an-1)) S{a€[K]” |VYvEQQaE C(fz,ao.-v-,a.._x))}'

Proof. Let {ag,-+*,an-1) € <¥([K]¥). For all v € K, we form clubs C(flao,rany)) i [K]“. Then take
their diagonal intersection. So we have a function

f(ao,---.ﬂn—l) : [K]<w — K
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such that
C(fiao,an-1)) C{a € [K]* |VvEaa€C(flh, an_)}
o
§10. w-Stationary sets going up and down and Fodor’s lemma
Basics with w-stationary sets.
10.1 Lemma. (w-stationary sets going up and down) Let w1 € K; C K. Then we have
(1) If S C Seq“(K1) is w-stationary, then
STKy={(bn | n <w) € Seq“(Kz) | (bn N K; | n <w) € 5}
18 w-stationary in Seq¥(Ks).
(2) If T C Seq“(K>) is w-stationary, then
T Ki={(baN K1 |n<w)e Seq“(K1) | {bn | n<w) €T}
is w-stationary in Seq¥(K,).
Proof. By 9.2 lemma (going up) and 9.3 lemma (going down).
o

10.2 Lemma. (Fodor’s lemma) Let S C Seq“(K) be w-stationary in Seq”(K) and r be a map from S
to K such that for all (a, | n < w) € S, we have

r({an | n < w)) € ay.
Then there ezists S' C S and v € K such that S’ is w-stationary in Seq”(K) and for all {an | n <w) € S,

we have
r({an | n <w)) = .

Proof. By contradiction. Suppose for all v € K, the preimages r~!({v}) of {v} are not w-stationary in
Seq“(K). Take a tree of clubs f¥ in [K]“such that
B (e I8 <w) €S| r(lan | 1 <u) = 0} =
Let f be the diagonal intersection of the f*’s so that for all {ag,**+,an-1) € <*([K]¥),
C(flao,an_1)) S{a € [K]“ |YvEQQaE C(f(”ao,,,,’an_l))}.

Since for any a € [K]¥,
{be[K]“|aCb}

is a club in [K]“, we may assume, if (a, | n < w) € B(f), then
aCa1CaxC---CanC---.

Since S is w-stationary, B(f) N S # 0. Take {a, | n < w) such that

{an | n<w) € B(f)NS.



Let v € K be such that
r({an | n < w)) =vp.

Then
Vo € ag.
Let n < w. Since ag € a,, we have
Vo € an.
Since an € C(f(ao, an-1))» We have
Gn € C(fF:Os""an—l))'

Hence
(an | n <w) € B(f*).

Since (an | n < w) € B(f*)Nr~1({vo}) = @, this is a contradiction.

§11. Trees of clubs vs. clubs and w-stationary vs. stationary

We may say that Seq®(K) is more complex than [K]“. It appears trees of clubs in [K]“ are more complex
than clubs in [K]“. Also w-stationary sets in Seq“(K) are more complex than stationary sets in {K}*. This
leads us to consider a map which associate | J{an | n < w} € [K]¥ for each (a, | n < w) € Seq¥(K). We
may call this map, the projection P : Seq*(K) — [K]“.

11.1 Lemma. (Seq¥(K) — [K]“) Let K 2 w1. Then
(1) For any club C C [K]¥, there exists a tree of clubs f in [K]“ such that its projection to [K]“

P(f) = P(B(f)) = {aw € [K]* | (an | n < w) € B(f), a0 = | J{an | n < w}}

is a subset of C.
(2) If S is w-stationary in Seq¥(K), then its projection

P(S) = {a, € [K]“" | {an | n < w) € S,a0 = J{an | n <w}}

to [K]¥ is stationary in [K]“.
Proof. Easy.

§12. Relativizations and tail club guessing
We consider a connection between w-stationary sets in Seg“(w;) and ladder systems (C5 | § € A) which
are tail club guessing. For K = w; and S C Seq“(K) with specific origins, we have

12.1 Lemma. Let (C5 | § € A) be a ladder system on A which may or may not be tail club guessing.
Let us denote
£ ={Cs[[m,w) € Seqg“(w1) | 6 € A,m < w}.

where Cs[[m,w) = (Cs(m),Cs(m +1),--+,Cs(k),---) and Cs(k) denotes the k-th element of Cj.
Then the following are equivalent.

(1) € is w-stationary in Seq“(w1).
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(2) (Cs5 | 6 € A) is tail club guessing.

Proof. (1) implies (2): Let D be a club in w;. We may view D as a club in [w;]*. Hence we have a map
h: [w1]<¥ — w; such that ’
C(h) = {a € [w1]¥ | a is h—closed} C D.

Let f be the tree of clubs in [w;]¥ such that for all (ag,: -, an-1) € <“([w1]*),
fiao,an1) = P
Then for all (g, | n < w) € B(f) and all n < w, we have
an € D,

Since £ is w-stationary, we have (a, | n < w) € B(f) N €. Hence we have C5 with § € A and m < w such
that ’

(an | n < w) = Cs[[m,w).

So
Cs C* D.

(2) implies (1): Let f be a tree of clubs in [w;]“. Take a large regular cardinal § and an €-chain
(N; | i <wy) in Hg with f € Np. Since (Cs | 6 € A) is tail club guessing, we have § € A such that
Cs C* {NiNw; | i <wi}.
Let us reindex and may assume that there exists m < w such that
Csl[m,w) = (Np Nw1 | n <w).
Since fiNynwy, -\ Nnu—1nus) € Nn, We have
Nn Nwi € C(f(Norws, -, Nu—1rwwr))-

Hence
(N, Nwy | n<w) €B(f)NE.

The following idea of relativizing (restricting) w-stationary sets in Seq“(K) to £ T K and considering
preimages under the projection P : Seq“(K) — [K]¥ are very important. But we sometimes directly
describe related facts on these rather than using fancy terms.

12.2 Definition. (Tentative) Let (Cs | § € A) be a ladder system which may or may not be tail club
guessing. Let K D w;. Then we might say S C Seq“(K) is (Cs | § € A)-w-stationary in Seq“(K), if

SN(ETK)
is w-stationary in Seq“(K). We might say S C [K]“ is positive in [K], if
P~YS) = {{an | n < w) € Seq“(K) | U{an |n<w}eS}
is w-stationary in Seq“(K). Lastly we might say S C [K]* is (Cs | 6 € A)-positive in {K]“, if

P~Y(S) = {{an | n < w) € Seq“(K) | Lj{a,l | n <w} €S}
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is (Cs | 6 € A)-w-stationary in Seq“(K).

Basic relations.

12.3 Proposition. Let (Cs | 6 € A) be a ladder system on A which may or may not be tail club guessing
and K D w;.
(1) If S C Seq“(K) is (C5 | 6 € A)-w-stationary in Seq“(K), then S is w-stationary in Seq¥(K).
(2) If S C [K]“ is (Cs | 6 € A)-positive in [K]“, then S is positive in [K]*.
(8) If S C [K]“ is positive in [K]“, then S is stationary in [K]“.

For K = w), we have a better understanding between (TCG)™* of §3 and (Cjs | & € A)-positive sets in
(K]~

12.4 Lemma. Let (C; | § € A) be a ladder system on A which may or may not be tail club guessing.
Then for S C [w1]“ the following are equivalent.

(1) 8 is (Cs | 6 € A)-positive in [wq]“.
(2) The preimage of AN S under the projection

P: Seq“(w) — [w1]¥,

P~YANS), is (Cs | 6 € A)-w-stationary.
(8) (C5 |6 € ANS) is tail club guessing.
(4) Snw, € (TCG)*.

Proof. Similar to 12.1 lemma and playing with terminologies.

12.5 Corollary. Let (C; | 6 € A) be a ladder system on A which may or may not be tail club guessing
and P be the projection

P Seq”(w)) — [n]
(an | n<u)»—+U{an | n <w}.
For X C [w, wy), the following are equivalent.
(1) X is (Cs | 6 € A)-positive in [w1]¥.
(2) P~Y(X N A)NE is w-stationary in Seq®(w).
(8) (C5 | 6 € AN X) is tail club guessing.
(4) X € (TCG)*, Namely, X is a positive set with respect to the tail club guessing ideal TCG.

§13. Another look at (Cs | § € A)-w-semiproper preorders

We consider a characterization of our class of preorders in terms of preserving (Cs | § € A)-w-
semistationary sets in Seg“(K). It is important to notice that there is a critical level X = Hirepy+
for each preorder P so that if relevant type of stationary sets are preserved there, then so are everywhere.

13.1 Definition. Let (C; | § € A) be a ladder system on A which may or may not be tail club guessing
and K 2 w1. We might say S C Seq“(K) is w-semistationary in Seq“(K), if S* is w-stationary in Seq“(K).
We might also say S C Seq“(K) is (Cs | § € A)-w-semistationary in Seq“(K), if (SN(ETK))* =8 N(ET
K) is w-stationary in Seq“(K), where for T C Seq“(K), we define

T*={(bx | n<w) € Seq“(K) | I{an | n<w) €T (an | n <w) Cu, (bn | n <w)}.
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13.2 Note. In the above, (Cs | 6 € A) and w;(= |J A, usually) are parameters. Even if we go bigger
universes, these concepts are considered there with these parameters fixed in V. Notice that we do not
assume (Cj | § € A) is tail club guessing which might get lost going bigger universes. Though we are going
to see that relevant objects, say, wi, [K]* and Seq“(K) do not change and property like {Cs | § € A) is tail
club guessing and so forth are preserved, these do not come free.

13.3 Definition. Let (Cs | § € A) be a ladder system on A which may or may not be tail club guessing.
Let P be a preorder. We say P is (C; | 6 € A)-w-semiproper, if for all regular cardinals A with

Pe H|Tc(p)|+ € H(zrrc(r);)+ € H,

and all €-chains (N, | n < w) in H), such that (N, Nw; In <w) € Eand (C5 | 6 € A),P € Ny, ifp€ PhNo,
then there exists g < p in P such that for all n < w, q is (P, Ny,)-semi-generic. Namely,

glFp “N[GNwY = NNnuwY>.
where G denotes the canonical P-name for the generic objects and N [G) = {7 | 7 is a P-name with r € N}.

If a preorder P is finite, then we have no new objects in the generic extensions. Hence infinite preorders
are intended in the following.

13.4 Theorem. Let (Cs | § € A) be a ladder system on A which may or may not be tail club guessing.
Let P be a preorder with | TC(P)| > w. Then the following are equivalent.

(1) P is (Cs | § € Ay-w-semiproper.
(2) For all K 2wy and all S C Seq“(K) such that SN (£ T K) is w-semistationary, we have

Fp “(SN (€1 K))V is w—semistationary in (Seq“'(K))V[G]”.
Namely, P preseves every (Cs | § € A)-w-semistationary set in every Seq(K) with K D w;.

(8) (Critical level) (2) just at K = HITC(P)]+'

Proof. (1) implies (2): Let § C Seq“(K) such that SN (€ T K) is w-semistationary in Seq®(K).
Suppose ‘ ‘
pl-p “f is a tree of clubs in ([K]“)V[G]».

We want to find (. | n <w) € SN (£ 1K), (bn | n <w) and ¢ < p in P such that

gl-p “an | n <w) Cuy (bn | n < w) € (Seq(K))V) such that (bn | 7 < w) € (B(f))VIEV.
Let 6 be a sufficiently large regular cardinal. Then we have an €-chain (N, | n < w) in Hp and
(an | n <w) € SN (€ 1 K) such that

. (05 I JGA)spa-ny.ENO!
® (an |n<w) Gy (NnNK | n<w).
And so
o (NyNwy |n<w)eé.
This is possible since SN(€ T K) is w-semistationary in Seq(K). Since P is (Cs | § € A)-w-semiproper,
we have ¢ < p in P such that for all n < w, g is (P, N,)-semi-generic. Hence we have

glFp “Na[GINK |n<w) e (B(f))V[G’”,

alFp “NalG]l NwY = No NwY =an N,
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and so
gl-p “on | n <w) Sy (NA[GINK | n<w)”.

Hence )
) alFp “UNa[GINK | n<w)e(((SN(ET K))V)*)V[G] N (B(f))VEh.

(2) implies (3): Trivial.
(3) implies (1): Let § = |TC(P)|*. Then 8 > w; is a regular cardinal such that P € Hy. Let
K = Hy.

We first show that there exsists a tree of clubs f in [K]“ such that if (N, [n<w) € B(f)N(ET K ), then

¢ (N, | n <w) is an €-chain in K,
e Pe Ny,
e For all p € PN Ny, there exists ¢ < p such that for all n < w, q is (P, N, )-semi-generic.

We show this by contradiction. Suppose not. Then by 10.2 lemma (Fodor’s lemma), there exists S C
Seq“(K) and po € P such that SN(€ 1 K) is w-stationary in Seq“(K) and for all (N, | n < w) € SN(€ 1 K),
we have

e (N, | n <w) is an €-chain in Hy,
L4 pOaP € NO,
e For all ¢ < po, there exists n < w such that g is not (P, N,)-semi-generic.

We argue in V[G] with po € G. Let f be a tree of clubs in ([K 1“)VIG! such that
o Clfiaorminny) € {N < K | N[GIN K C N}, where

C(j(dos“'yén-l)) = {N e ([K]W)V[G] l N is j(“"Oi"';éﬂ—l)_.CIosed}'

Since $ N (£ T K) remains w-semistationary, we have
((SnETEY)) N (B()VE £ 0.
Let us take (N, | n < w) € (SN (£ T K)) and (N, | n < w) such that
(Nn | n<w) Sy (N | n <w) € (B(f))V1O.

Hence ‘ ] .
N.[GINnwY C N, [GINw) = N,nwY = N, nuY.

Take a witness g < po which decides (N, | n < w) € SN (€ T K). Hence for all n < w, we have
qlFp “Na[GINwY = N, Nwy”

and so
g is (P, N,,)—semi—generic.

This is a contradiction.
Claim. Let A be a regular cardinal with Hg € Hy. Let (M, | n < w) be an €-chain in Hy such that

(Cs|6€A), PEM and (MpyNuw; |n< w) € €. Then for all p € My, there exists ¢ < p such that for all
n < w, q is (P, My)-semi-generic.



Proof. Since P € My < H), we have Hy € My and we may assume that f € My. Hence
(Mo NHp | n<w) € B(f) N (€1 He).

Let p € PN Mpy. Then p € PN (Mo N Hy). Get g < p such that for alln < w, ¢ is (P M, N Hg)-semi-
generic. Since P € Hy and w; < 6, we have

qlFp “My[GINwY = (M, nH)CINWY = (M, nHY)Nw! = M, Nw}™.

Therefore we conclude for all n < w, g is (P, M,,)-semi-generic.

§14. A quick review of iterated forcing and stages

We provide a quick review on iterated forcing and stages from [M].

14.1 Definition. We say a sequence
is a p-stage iteration, if
(1) For each i, (P;, <;) is a separative preorder with a greatest element 1; and P; consists of sequences of
length 2.
(2) For p € P; and k < i, we have p[k = {(e, p(a)) | @ < k} € P and 1 = 1;[k.
(8) For p € P; and a € Py with k < i, if a < p[k, then we have a Up[[k, %) € P; and a U p[[k, %) <; p.
(4) For p,q € P, if p <; q, then for any k < ¢, we have p[k <y g[k and p <; p[k U g[[k, ).
(5) Let ¢ be limit and p, q € P;. Then p <; g iff for all k < 4, p[k <k g[k. (order at limit)
For p € P;, we denote its length by I(p) and so I(p) = i. The length I(p) is important, since it tells
which preorder p comes from. Conditions of the form a U p[lk, %) = aU {(j,p(j)) | k < j < i} are sometimes

denoted by a"p[[k,i). We abbreviate 1; to 1 and a™1;[[k, %) to a™1. For p,q € P;, to express p <; ¢ we
write either p < g in P; or just p < ¢. In these cases the value of ¢ will be clear from the context.

We turn to intermediate stages V|G| and the tails Pi; of P; in V[Gy].
14.2 Definition. Let I = {(P;,<;, 1) | i < p) be an iteration. Let k < i < p. Let G be Py-generic
over V. Then let
Pyi = {p[[k,%) | p € P;, p[k € Gk}

and for z,y € Py, < y in Py, if there exists a € Gy such that ™z < a”y in P;. Then Py » Pi; and B;
are forcing equivalent. We call this preorder Py; the tail of P; at k.

For z,y € Py, we write 2 = y in Py, if 2 < y and y < z in Pi. This z = y in Py; is an equivalence
relation. However we do not bother to take equivalence classes, as we work with preorders.

We are interested in conditions whose contents would be exhaused in w-many stages. Since we are
dealing with iterated forcing, those stages may depend on the situation claimed by ealier stages and generic
objects in use. Namely, stages come up are naturally dependent on the nature of generic objects in use.
Names for stages are ready to tell how stages proceed in every situation.

14.8 Definition. Let I = ((B;, <;, 1i) | i < p) be an iteration. Let ¢ be a limit ordinal with ¢ < p and
p € P,. We say p has stages (0, | n < w), if

e 0,’s are P;-names,
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o If£ <iandz|-p“b, =E, then z[¢"1|p,“bn = € (tame),
¢ 1)-p,“6p < bpy1 <4 (increasing),
o 1|}-p, “if p[dn € Gi[dn, then &, < i for all n < w (stage),

o 1|p “if 6 = sup{d, | n < w} and p[é € G;[8, then p € G;”, where G; denotes the canonical P;-name
of the P;-generic filters over V' (tail).

We collect technicalities related to stages. We recap the following from [M].

14.4 Lemma. (Hooking) Let I = ((P;,<;,1:) | i < p) be an iteration. Leti < p be limit. Lety <z in _
| k

P; and (6% | k < w), {8} | k < w) be stages for = and y, respectively. Then there ezist stages (37
for y such that for all k < w, we have

w)

1lp, “6541, 00 <8 = maz{d%, 1,0}

. 14.5 Corollary. Let I = ((P;,<;,1;) | i < p) be an iteration. Leti < p be limit. Let x € P; has stages
(OFf | k <w) and € < i.

(1) There ezist stages (6% | k < w) for  such that
1|-p, “€ < max{£, 67} = 83"
(2) There exist stages (6% | k < w) for = such that

thn 5=

We want conditions which decide its very first stage.

14.6 Lemma. Let I = ((F;,<;,1;) | i < p) be an iteration. Let a < a* < p and o* be limit. Let G,
be P,-generic over V, p € Py, pla € Gq, (0k | k < w) stages for p and 1 |-p,. “a < 8”. Then there exists
(a, &) such that

e a<é<a* ac P anda<p[E,

¢ afa € G,,

e a”1|p,. b = &7,

o (max{€,d,} | n <w) are stages for a"p[[¢, a*).
Proof. Let d < pla in P,.

Claim. There ezists (§,a) such that @ < £ < a* and a € P; such that a < p[¢, ala < d and
a"1|p,. “bo = é”.

Proof. To get these £ and a, we may temporally take G4- which is P,--generic over V such that
d~pf[a, a*) € Gae. Let £ = (do),.. Then since p € Go+, we have

agé<a".

Take g € Gg» 'suclil that ¢ < d~p[[a, @*) and g|l-p,. “€ = 80”. Now argue in V. Since do is tame, we have
g[§"1)Fp,. “€=0". Let a=g[§. Thenafa=q[a<d, a <d™p[[a,§) < p[€ and a™1|}p,. “bp = €.
a

Let (¢, a) be as claimed. We may assume a[a € G,.
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We next show (max{£,8,} | n < w) are stages for a"p[[€, a*).
(tame) Since £ and 4,,’s are all tame, so are max{¢,8,}’s.
(increasing) max{¢,d,} < max{¢,é,41}.

To show (stage) and (tail), we argue in V[G‘at], where G+ is the canonical P,--name for the P,+-generic
filters.

_ (stage) Let a"p[[£, o*)[max{¢, 6} € Gax [max{é, b,}. Then p[max{£,é,} € Go-[max{¢,é,}. Hence
Plon € Ga+[dn and so d, < a*. Hence max{¢,6,} < a*.

(tsil) Let a~p[[¢, a")[sup{mex{¢,5,} | n < w} € Gor [sup{max{€, 5.} | n <w}. Then psup{5, | n <
w} € Goo[sup{d, | n < w}. Hence p € Go+ and so a”p[[¢, a*) € Gge.

a

14.7 Corollary. Let I = ((P;, <;,1;) | i < p) be an iteration. Let o < a* < p and o* be limit. Let Gq
be Pa-generic over V, p € Pos, (0n | n < w) stages for p and p[a: € Go. Then there ezists p' < p in Pye
and stages (0}, | k < w) for p’ such that

o There ezist § with a < € < a* such that p'[€"1|p,. ‘Gh = €7,
o 1|p, Gx < 8.7 for all k < w,
o pa€G,.

Proof. First consider stages (max{4&, 5,.} | n < w) for p. Then apply lemma above.

o

Hence given p € P,- such that p has stages b and pla € Gq, we may assume, taking an extension if
necessary, p|l-p,. “do < £” for some £ > a. And in this case, we actually have p[¢{™ (1a-[[£, @*)) Fp,. “d0 <
£” by tameness.

§15. Nested antichains, fusion structures and fusions

To decide the values of a name of an ordinal, we may form an antichain. If we have stages, then we
would keep deciding their values in a nested manner. Hence we formulate the following.

15.1 Definition. Let I = ((P;, <i,1;) | © < p) be an iteration. Let ¢ be a limit ordinal with i < p. We
call

NA=(T,(Tp | n < w), (@~ such(a) | n < w, a€Typ))
is a nested antichain in Ifi, if

o T=[H{Tn | n<w},
o Ty = {ao} for some ag € Py(qy) With I(ag) < i (root),
o T, CULP | k<,
® Thy1 = U{suct(a) | ¢ € T5},
e For each a € T, and b € suc}(a), we have l(a) < I(b) < i and b[l(a) < @ in Py,
o For each a € T), and b, b’ € suc}(a), if b # ¥/, then b[l(a) and b'[I(a) are incompatible in Py,
o For each a € Ty, we have {b[l(a) | b € suc}(a)} is a maximal antichain below a in Py,

Note that we may show sucl(a) = {b € T,41 | l(a) < I(b), b[la) < a}.

We form a nested antichain by recursion and at the same time may attach a condition p(™®) to each node

(n, a) in the manner specified below. We know every nested antichain gives rise to a condition in the simple
iterations ([M]). And such a condition would work sort of a master condition to the conditions attatched.
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15.2 Definition. Let I = ((P;, <i, 1) | ¢ < p) be an iteration. Let ¢ be a limit ordinal with ¢ < p. Let
A= (T,(Tn | n <w),{a > suct(a) | n <w, a € Ty,)) be a nested antichain in I[i. We call

F= (@™, 6™ | k<w) |n<w, acTy)

is a fusion structure (on NA) in I[3, if
e For each a € T},, we have p(™® € P; and a < p(™®[i(a) in Pia),
e For each a € T, and b € suc(a), we have p(n 1) < pne) in P
o (6™ | k < w) are stages for p(™®),
e For each a € T, and b € suc}(a), we have 1|-p, “6,(:,_“) < 6',(:‘“"’)” (A step ahead),
o ™I [U(a)~1 |p, “6{™® = I(a)”. (This is sufficient to have a™1 |- p, “6{™* = I(a)".)
We call p € P; is a fusion of the fusion structure F, if .

o ll-p“pe G; iff there exists a sequence {Gn | n < w) such that for all n < w, we have d, € T, N
Gi[l(n), @n+1 € suchk(a,) and so in this case, for all n < w, we have p(™i») ¢ G;”.

We refer to (@ | n < w) as a generic cofinal path through T.
§16. Simple iterations of semiproper preorders

We introduce our revised countable support iterations of [M]. We refer to them as simple iterations.
They satisfy properties listed below. To construct a simple iteration we specify how we force at each successor
stage. Namely, Q;. We take what [M] calls the simple limit at each limit stage. The simple limit is a suborder
of the inverse limit. Each condition in the limit has its stages. Each fusion structure in the limit has its
fusion in the limit. For details of simple iterations, see [M], where Qi’s are dealt implicitly.

16.1 Lemma. If SI = ({((P;,<i, L) | i < p), (@i, <iy 10) |3 < p)) is a simple iteration, then
(1) I={(P;y<i,1;) | i < p) is an iteration,
(2) 1|p. (Qi, <i, 1;) is a separative preorder”,
(8) Piy1 and Pi * Q; are forcing equivalent and Lit1 =L U{(, ii)},
(4) For limiti, if p € P;, then p has some stages (0, | n < w),

(5) For limit i, if F = {(p™9), (5,(:"“) lk<w)) | a€T,, n<w) isa fusion structure in I[i, then there
exists a fusion p € P; of F,

(6) For limit i, if p € P;, then there exists a fusion structure F in I[i such that if g € P; is a fusion of F,
thenq <pin P,

(7) Ifk <4, T is a Py-name and all-p, “r € P; and 7[k € Gi”, then there exists q € P, such that g[k =a
and a|-p, “r[[k, 1) = q[[k, %) in Pe;” (fullness).

16.2 Definition. Let SI = (((P;,<i L) | i < p),{(Qi,<i,1i) | i < p)) be a simple iteration. For
p € P;, the support of p is defined by

support(p) = {k < i | p(k) # ix}.
support(p) may or may not be countable.

We recap from [M] the iteration lemma for semiproperness under simple iterations.

16.3 Lemma. (Iteration lemma for semiproper) Let ST = ({(P;, <i, i) | ¢ < p), (@i, <5, 15) i < )
be a simple iteration such that for all i < p we assume

1lFp “Q; are semiproper”,
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Let 0 be a sufficiently large reqular cardinal and SI € N < Hg. These 6 and N are fized once for all. Then
we have: :

IF (a,i,1*, p, M) satisfy
(1) i<i*<p,a€P,pe P and a < pli in F;,
(2) albp, N U{Gip} € M < HY 7,
THEN there exists a* € P;» such that
(8) a*[i=a and a* < p in P,
(4) a|-p, “a*[[i,3*) is (Pije, M)-semi-generic”.
Hence we have the following in V[Gy] for all G; with i < p:

IFNU{G} S M= H;/[G‘], i<i* < p, € P NM and z[i € Gy, then there exists y < z in P such
that y[i € Gy and y[[i,3*) is (Pis, M)-semi-generic.

Lastly we recall things related to chain conditions of simple iterations from [M].

16.4 Lemma. Let k be a regular uncountable cardinal. Let SI = (((H, <i, 1) | i < k), ((Q,-, <5, 1) i<
K)) be a simple iteration.

(1) If for all i < K, we have | P;| < &, then every condition in P is eztended to a condition with bounded
support in Py.
(2) If k is Mahlo and for all i < k, we have | P;| < &, then P, has the k-c.c.

We are not sure about the size of P, other than |P,| < Ilo<x|P|. However, it is very much close to the
direct limit in some cases.

16.5 Proposition. Let & be a regular uncountable cardinal. Let I = ((P;, <i,1;) | i < &) be an iteration.
If P, has the k-c.c and the conditions with bounded supports are dense in Py, then for every conditionp € P,
there erists £ < k with p = p[¢™1.

Proof. Let p € P,. Take a maximal antichain A below p. We may assume every member of A has
bounded support. Since P, has the s-c.c, there exists £ < & such that for all ¢ € A, support(g) C £&. We
show

p=p[{TL

Let G, be P.-generic over V with p[¢~1 € G. Let G, be Px-generic over V such that G, [{ = G«[€ and
p € G'.. Then there exists g € ANGY,. Since g[¢ € G[¢, we have g[¢ € G.[€. Since g = g[§™1, we conclude
g € Gx. Since g < p, we have p € G. Since P; is separative, we are done.

a

§17. Tteration lemma and theorem

Now we are ready to show the following.

17.1 Lemma. (Iteration lemma for semiproper + (Cs | 6 € A)-w-semiproper) Let (Cs | 6 € A) be a
ladder system on A C {a < wy | « is limit } which may or may not be tail club guessing. Let us denote

E= U{Ca[[m,w) | m<w, 6§ €A} C Seq®(w1).

Let
SI = (((PM Sia 11) l i S p)1 ((Q.i) é‘i) it) | 1< p))

be a simple iteration such that for all ¢ < p,
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¢ |-p, Qi are semiproper”,
o |kp, “Q; are (Cs | 6 € A)-w-semiproper”.
Then for all sufficiently large regular cardinals 6 and all N < Hy with (Cs | 6 € A), SI € N, we have
the following:
IF (w, o, a*,p, (M, | n < w)) satisfies
(1) aLa* < p, wE Py, p€ Por andw < pla in Py,
(2) wikp. “NU{Garp} C Mo, (M | n<w) is an E-chain in HY C=l7,
(3) wiFp, {ManwY | n<w) €€
THEN there exists w* € P, such that
(4) w*fa=w and w* < p in P,.,
(5) wiFp, “for all n < w, w*[[a, a*) is (Paar, My)-semi-generic”.
Therefore in VP, the following holds.
Let us assume that
o NU{Ga} C Mo < HYC),
o (M, | n <w) is an €-chain in H,
o (ManuwY | n<w) €€, _
o z € Pao N My and z[a € G
Then there exists y such that

V[Ga]

*y S zin Pa‘;
. yra € Ga,
e For alln < w, we have yf[a, a*) is (Paa+, My)-semi-generic.

Proof. 6 and N are fixed once for all. We proceed by induction on a*.

Notatlgn If M is a P,-name with w]l-pﬂ “M < HV[G'"‘]” and G, is Pa-genenc over V with w € G,,
then Mg, denotes the interpretation of M by G4 in V[Ga} Ifa < Band Pog € Mg, and Gag is Pag-generic
over V[G,), then M[Gog] abbreviates

Mg, [Gap) = {7Gas | T € Mg, N (V[Gal)Pr} < Hy 19} = g 1CeliCrl - (gpyViGalig, ],
where c
Gp=GCa*Gas, (Hp)V1%[Gap) = {76., | 7 € Hy ) N (V[Ga]) ).

If o < B and Gg is Pg-generic over V, then for P,-names M, it would not be precise to write Mc, We
denote it by MG‘, far 88 Ggla = {y[a | y € Gg} is P,-generic over V.

Case. (3 — B+1):

Let (w,8,8+1,p, (Mp |n< w)) satisfy
(1) B<B+1<p, w€ P, p € Pgy1 and w < p[B,
2) wlps“N U{Gp,p} C Mo, (M | n < w) is an €-chain in HY C#,
(3) wlFp,“Manw! | n<w)eé.

In V[Gg) with w € G, let M, = (M,)g,. We assume Qg = (Q6)c, is (Cs | 6 € A)-w-semiproper and
we now have
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o (Cs |6 € A),Qs€ My, (M, | n<w) is an €-chain in Hy ),
o (p(B))e, € QaN My,
o M, Nnw! |n<uw) €t

Hence we get (w(8))g, € @p such that

e For all n < w, (w(B))g, is (Qp, My,)-semi-generic,
o (w(B)e, < (p(B))g,-
Let w* = w™(w(B)) in V. Then this w* works.

Case. (a — 38— B+ 1):
Let (w,a,8+1,p, (M, | n < w)) satisfy
(1) a<B<B+1<p, we Py, p€E Pgyy and w < pla,
(2) wlkp, “N U{Ga,p} C My, (M, | n < w) is an €-chain in H;,[G“]”,
@) wiFp, “MaNuwY | n<w) €&
Hence (w, a, B,p[B, (My | n < w)) satisfy
(1) a<B < p, we Py, p[B € Pg and w < (p[f)[e,
(2) wi-p, “N U {Ga,p[B} S Mo, (Mn | n < w) is an -chain in H) =),
B) wip “MaNwY | n<w) €.
Apply induction hypothesis at 3. We get w* € Py such that
(4) w*[a =w and w* < p[B,
(5) w|p, “for all n < w, w*[[a, B) is (Pug, Mp)-semi-generic”.
Then (w*, 8,8+ 1,p, (Mn[Gag) | n < w)) satisfy
(1) B<B+1<p, w* € P, p € Pgy1 and w* < p[f,
(2) w* |-y “N U{Gp,p} € Mo[Capl, (Mn[CGag] | n < w) is an €-chain in H;/[a’]”,
(3) w* IFpy “AMp[Gagl NwY | n <w) = (M, NwY | n<w) €&

Proof. Argue in V[Gpg] with w* € Gg. Let Go = Ggla, Gas = Gp[[e, B) and (My)g, = Ma.
Claim 1. {Gp,p} C Mo[Gag)-

Proof. Ga, Pg € Mo and 30 Pag € Mo. So Mo[Gap] < Hy *\. We have Gg = Go * Gag € Mo[Gag]-
Claim 2. (M,[Gqg] | n < w) is an E€-chain in H;’[G"].

Proof. My, € Mny1, Gap € Mny1[Gog). Hence
Mo[Gagl = {76us | T € Mp 0V (V[Ga])PP} € Mny1[Gap] < Hy 121,
Claim 3. M,[Gug]NwY = M, NuY.

Proof. w*[[a, B) € Gag and is (Pag, My)-semi-generic. So My[Gag] NwY = M, NoY.

Now by case (8 — [+ 1), get w* € Pgy1 such that
(4) w*[f=w* and w* < pin Ppy4y,



(5) w* |-p,“ for all n <w, w*[[8, B8+1) is (Pgg+1, M3, [G o))-semi-generic”.

Hence
(4) w*[a =w*[a =w and w* <pin Pgy,
(5) wlkp, “for all n < w, w*[[a, B+ 1) is (Pap+1, My )-semi-generic”.

Proof. Argue in V[Gg41] with w* € Ggy41. Let G4, Gog and M, ’s be as indicated.

My[Gapl NwY = My Nwy,
as ([0, 6) € Gap , ,
M [GagllGap+1] Nwi = My [Gag] Nwy,

as w*[[8, 8+ 1) € Gpp+1. Hence

Mn[GaBH] ﬂw‘( = Mn[Gap][Gpp+1] nWY =M,N “"Y-

Case. Limit(a*):

Let (w, o, a*,p, (Mn | n < w)) satisfy
(1) a<a* < p,w € Py, p € Pye and w < pla,
2) wlp,“N U{Ca,p} C Mo, (M | n < w) is an €-chain in Hy %P,
(B) wlkp, “Mpnw! | n<w)eé.

Construct by recursion on k < w,
((k,a) = (0%, (6% | 1 < w), (MPF | n<w)) | k<w, a€Th)

such that

Ty = {ao}h:

Let Tp = {w}, p©¥ =p, (6™ | | < w) be stages for p©¥) with §>*) = & and M = M,. We
may assume w || p, “(6") | | < w) € My”.

Ty ~ Teq1:

Suppose we have constructed

((k,a) = (%2, (659 | 1 < w), (MFD | n < w)) | a € Ti)
such that for each a € T, we have
¢ a < p*9)[l(a) and p**) < p in P,.,
e pk9) has stages (5,("’“) |l < w),
o p4ONU(a) "1 lp,. 4 = U(a)",
) elp, “NU {Gi(ay, p*®, (S{k'a) [l<w)} C Mék’a), (M) | n < w) is an €-chain in H;,[Gl(o)ln'
() alFrg, “ME N | n<w) e
Apply 16.3 lemma (iteration lemma for semiproper) to (a,l(a), a*, p®®), M{¥*)) which satisfies
¢ i(a) < o*, a € Pyg), p* € Pye and o < p*9[i(a),
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- “r(k, VIGiayly
o ol B “N U {Gia), p*®} € M < Hy C1ob,

Get a Py,)-name p such that a forces the following in VPue) via 14.7 corollary.
o p<ptkain P,.,
¢ pli(a) € Gia),
e p[[i(a),a*) is (Pl(a)a.,Mék’a))-semi-generic,
o (87 | 1 < w) are stages for p and for all | < w, 1 I¥.. “5&’1" ) < 67" (a step ahead),
o There is o such that l(a) < o/, pla’ 1|} “6 = o,
o o,p, (87 | 1 <w) € MF.

By considering d’s which decide the values of p and o, we have a map (d > (P4, (87 | 1 < w), Ba))
whose domain is dense below a in Py(,). Hence for each d in the domain, we have

o d<ain Py,
e d < pa[l(a) in Py, and pg < p*®) in P,e,
¢ d|py,, “palll(a), *) is (Pya)as, Mék"’))-semi-generic”
e p4 has stages (67 | I < w) such that 1|-p,. “5,(_’:_’1“ )< 67" (a step ahead),
e l@) < fa<a,
o pa[B71Ip,. “08¢ = Ba.
o dlp, “Bapa, (¢ | 1 <) € M.
Now apply induction hypothesis to (d, I(a), B4, pa[Ba, (MED MED .. )) which satisfies
(1) i(a) < Ba <a”, d € Pya), pa[Ba € Pg, and d < (pa[Ba)[i(d),
() dl-p, “N U {Gya),pa[Ba} S M@ and (M*) p*®), .. ) is an e-chain in H;/[G"“’]”,
() dlpe, “M nwl, M0 NWY, ) €87
Get d* € Pg, such that
e d*[l(a) = d and d* < pa[fa,
e d|-p,,, “ for all n = 1,2, -, we have d*[[I(a), B4) is (Pi(a)gas M,(;k'“))-semi-generic”.

Fix suck(a) among the d* and a map

(b (p*HID, BT | 1 < Wy, (MY | n < w)) | b € suck(a))

so that
o b < p+10)[1(b) and pkt+1b) < pkia) < p in P,.,
o p(k+1b) hag stages (5,“‘"'1"’) | 1< w),
o pEHD[B) 1 g, D = 10),
o 1l-p,. “Sl(f_f) < 5',(k+1’b)” (a step ahead),
o b[1(a) By, “UB), pEH1D), (GHFID | 1 < 0) € M and s0 Piayiqey € M,
o b[l(a) I By, “PEHID[[1(a), @*) is (Payae, MG")-semi-generic”,
* b[l(a) | Py, “for all n =1,2, ..., we have b[[l(a), I(8)) is (Piayis)s M*®))-semi-generic”,
* biFpyy, e = M,,(,ﬁ_‘l') [Giay(p)] are well-defined for n < w”,
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(2) b"—p.,(b) “N U {Gl(b),p(k+1’b)} c Ml(k'a)[G[(a)l(b)] = Mék-H'b) and (M,S’““’b) { n < w) is an €-chain in
H;/[Gl(b)L),
(3) blp “METI WY [0 <w) = (MY 0wV, MED WY, e £

This completes the construction.
Let g be a fusion of the fusion structure F in Ifa*, where

F = {(k,a) — (p*, (Sl(k’“) [ I<w) | k<w, aeTg).
Namely, we have
e p*:9) € Py and a < p*:)[l(a),
e If b € suck(a), then p(-+19) < p(k:0) in P
o (6% | 1 < w) are stages for p*®) € P,.,
. (5,("'“"’) | I < w) is a step shead of (Sl(k’a) | < w),
o pFD[Ia)1 -p,. 6 = I(a)” and so a~1|p,. 68" = I(a)",
e g|}-p,. “there exists a generic cofinal path () | k < w) through T such that p*%) € Gy,
Argue in V[Gq+] with g € Gge, let

ak = (Gk)Gavs @k = l(8k), Cay = Gaslax, pr = plaF) ME = (MFEeg,

M-n = (M")Ga.

Claim. For all n < w, we have
M [Gao] NwY =M, NwY.

And this shows ¢ < p in Pa«, w|p, “for all n < w, we have q[[a, a*) is (Paaa,Mn)-semi-geneﬁc". Since
we may assume q[a = w, we are done.

Proof. We have
Ml[Gaoa;][Gala‘] 2 Ml[Gaoa']1

M, [Gorocn][Gama][Gdna‘] 2 M, [Gaoa’]a

Mn[Gaoa:][Gaxaa] o '[Gan-xan}{aana'] 2 Mn[Gaoa‘]a

And so
Monw! = Mo[Gagar] NwY

M ﬂw}’ = Mi[Gaga;] N wY = M1[Gava;)[Gasar] ﬂw}' = Mi[Gapar] N w}’,
M, an = M2[G00a1] an = MQ[Gaom][Gmaz] ﬁw}/ = M2[Gaom][Ga1aa][Gaga'] an = M2[Gaoa‘] ﬂw}’,

This way we conclude
My[Gaar) NWwY = My NuY.



17.2 Theorem. (Iteration theorem for semiproper + (Cs | 6 € A)-w-semiproper) Let (Cs | § € A) be
a ladder system on A C {a < w | a is limit} which may or may not be tail club guessing. Let

SI = (((Ry Sia 11) | i S p)v <(Qi’ éi, 11) I i< p))
be a simple iteration such that for all i < p we assume
l1ip “Q; are semiproper”.

1|p, “Q; are (Cs | § € A)—w—semiproper”.
Then for all sufficiently large regular cardinals 8 and all €-chains (N, | n < w) in Hp such that
(NpnNwy [n<w) €€

and (Cs | 6 € A),SI € Ny, if p € P,N Ny, then there exists ¢ < p in P, such that for alln < w, q is
(Ppy Ny)-semi-generic.

Hence P, is semiproper and (C;s | § € A)-w-semiproper.

Proof. Let N = Ny, a =0, o* = p, w =0, M,, = N,, in Py. Get w* € P, such that w* < p and for all
n < w, w* is (P,, N,)-semi-generic.

]

§18. A forcing axiom compatible with tail club guessing

18.1 Theorem. Let k be a supercompact cardinal and (Cs | § € A) be tail club guessing. Then there
ezists a notion of forcing P such that P is semiproper and (Cs | 6§ € A)-w-semiproper and in the generic
extensions W = VP, we have

(1) (Cs | 6 € A) remains tail club guessing,

(2) The +-type forcing aziom holds for all preorders which are semiproper and (Cs | § € A)-w-semiproper.
Namely, if Q is semiproper and (Cs | § € A)~<w-semiproper, (D; | i < w1) is a sequence of dense subsets
of @Q and S is a Q-name of a stationary subset of w1 in W9, then there exists a filter F in Q such that
foralli<w, DiNF#Qand {a<wi |Ipe Fp|-§ “ae S”} is stationary.

Proof. This is a usual construction by Laver’s diamond sequence
f:x— Hjg.

We construct P, and Qq by recursion on a. Suppose we have constructed P, such that P, € H,. Let Qa
be a P,-name such that

e 1|p, “Qq is semiproper and (C; | 6 € A)-w-semiproper”,
o If f(a) is a Py-name, then 1|}-p, “ if f(c) is semiproper and (Cs | § € A)-w-semiproper, then Qo =
f(@)".

By the iteration lemma for semiproper + (Cs | § € A)-w-semiproper, for all a < &, P, are semiproper
and (Cs | § € A)-w-semiproper. In particular, (C; | § € A) remains tail club guessing in V=,

Claim 1. The +-type forcing aziom holds for the preorders which are semiproper and (Cs | 6 € A)-w-
semiproper in W = VF=,

Proof. Let Gy be any P,-generic over V. We want to show the forcing axiom.hdlds in V[G,]. Suppose
P € Gy and p-p, “Q is semiproper and (Cj | 6 € A)-w-semiproper” and p |- p, “(D; | i < w1) dense subsets
of Q and S is a Q-name of a stationary subset of w; in the extensions via Q”.
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Choose an elementary embedding
such that

Then in M, denote
P =j(P i< )
for a < j(x) and ) )
Q' =3(@i]i<)a
for a < j(k). We have
If 5(f)(k) is a PM-name in M, then 1 H—%M “if §(f)(k) is semiproper and (Cs | § € A)-w-semiproper,
then QM = j(1)(k)".

Claim 2. In V[G.] with p € G, we have if V|G| E “Q = Qa, is semiproper and (C5 | 6 € A)-w-
semiproper”, then M[G,] = “Q is semiproper and (C; | § € A)-w-semiproper” .

Proof. Let A be a sufficiently large regular cardinal. We may assume
VvniMc M.
Therefore P, = PM. We also have
VG« N AM[G.] C M[G.],
because Py is a set.

So we are in a situation where we have the same objects to be preserved at the same critical level (see
13.4 theorem) with respect to Q from V[G,] to V[G,]|Gq| and from M[G,] to M[G,][G¢g] for the same
Q-generic filters Gq. Since M[G.][Gq| C V[G.][Gg], we would be done.

Here are some details to show M[G,] = “Q is (C;s | 6‘6 A)-w-semiproper”. We first observe the critical
levels for Q in V[G,] and in M[G,] are the same. In V[G,], we calculate

VI[Gx] _ 17VIGk]
KV16 = Hirdigyyvice

and in M[Gy] iG] (6]
K = Hroigy+ymien:-

We may assume they are common to V[G,] and M[G,]. Let us denote K = KVICxl = gMIGx],
Also we may assume that
(Seq® (K))VIC] = (Seqw (x))MICH]

and V[G,] and M(G,] have the same w-stationary sets in the common Seq“(K).
Namely, for all $ C (Seq®(K))V[C<] = (Seq®(K))MIC~] with S € V[G,] (iff S € M[G.)),

S is w-stationary in V[G,] iff S is w-stationary in M|[G,],
SN (€1 K) is w-stationary in V[G,] iff SN (€ T K) is w-stationary in M[G,].
SN (€1 K) is w-semistationary in V[G,] iff $ N (€ 1 K) is w-semistationary in M[G].

So if (Cs | 6 € A)-w-semistationary S remained in V[G,][Gq), then so in M[G,]|Gq], where Gq is
Q-generic over V[G,] (iff over M[G.]). Hence M[G.] = “Q is (Cs | § € A)-w-semiproper”.

We may similary show the semistationary sets at the critical level with respect to Q are all preserved
from M[G] to the extensions M[G]9. Hence M[G,] = “Q is semiproper”.
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Since p € Gy, we have in M[G] )
(QK.M)GN = Q'

Extend j : V — M to j : V[Gx] — M|[G(x)], where Gyj(x) is Pg(n -generic over V[G,]. Note every
condition in Py is equivalent to a condition with bounded support in P,. Hence we have

for q € G,..

In M[Gy41], we have a filtker F C Q such that for all { < wy, DiNF # @ and {a < w, | 3¢ €
Fgq ”__g[a,‘] “a € $”} is stationary.

We may assume Q is an ordinal so that for the restriction of j, we have

jQe *MNnVcCM.

Then we have M[G;(q) k= “ j”F C j(Q) is directed in j(Q), for all i <wy, j({Dy | I <w1))s NJ"F # 0
and {a | Iq€j°F qll—xg);’("’] “a € j(S)” } is stationary”.

Hence V[Gy] = “3F C Q directed, for all i <wy DiNF# D and {a<w; |3g€ F g II—X[G"] “a € 5‘”}
is stationary”

a
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