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A UNIFORM APPROACH TO PRODUCING MODEL SPACES OF
INFINITE-DIMENSIONAL TOPOLOGY

T. BANAKH, O. SHABAT, AND M. ZARICHNYI

ABSTRACT. Given an ordinal o and a pointed topological space X, we endow X <% = U{X" :
B < o} with the strongest topology that coincides with the product topology on every subset
X8 of X<*, B < a. It turns out that many important model spaces of infinite-dimensional
topology (including the topology of nonmetrizable manifolds) can be obtained as spaces of the
form X< for X = I, R. The paper deals with some topological properties of spaces X <*. Some
new classification and characterization theorems are proved for these spaces.

1. INTRODUCTION

A considerable part of the classical infinite-dimensional topology deals with manifolds modeled
on some nice model infinite-dimensional spaces. Among the most important model spaces let
us mention the Hilbert cube @ = [—1,1]¥, the countable product of lines R, the Tychonov
cube I, the uncountable power of the line R, the direct limit R™ of Euclidean spaces and the
direct limit Q° of Hilbert cubes. The topological characterizations of these model spaces can
be found in [Tol], [To2], [Chi], [FC], [S], [Sa] and are among the most prominent achievements
of the classical infinite-dimensional topology.

It turns out that all these model spaces are particular examples of one fairly general topological
construction we are going to describe now.

We shall identify cardinals with initial ordinals of a given size. Each ordinal a will be identified
with the set of all ordinals < . By a pointed space we understand a topological space X with
some distinguished point * of X. In the sequel we shall consider the real line R and the interval
I = [-1,1] as pointed spaces whose distinguished point is zero. The distinguished point of a
Tychonov cube I is the constant zero function.

Given two ordinals 8 < « and a pointed topological space X with a distinguished point *
identify the power X? with the subset {(zi)ica € X : z; =  for all ¢ > 8}. Let

xX<e — U X8
B<a
and endow the space X< with the strongest topology inducing the product topology on each
subset X? C X<® B < a. We shall refer to this topology on X< as the strong topology
in contrast to the product topology. In infinite-dimensional topology the spaces of the form
X<v usually are denoted by X*. For some special pointed spaces X like the closed interval
I = [~1,1], the real line R, Hilbert cube Q = I or the Hilbert space 2, the spaces X = X <w
were topologically characterized in [Sa} and [Pe}.
For such particular X the spaces X <* yield us almost all known model spaces of the classical

infinite-dimensional topology. Namely, the space I<® coincides with

e the n-dimensional cube if & = n;

e the direct limit I° = lim I" of finite-dimensional cubes (homeomorphic to R™) if & = w;
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e the Hilbert cube @ if o = w + 1;

e the direct limit Q*° = lim Q™ of Hilbert cubes if o = w - w;

e a non-metrizable Tychonov cube I” if @ = 7 + 1 is uncountable successor ordinal;

e the direct limit (/7)*° = lim(I")" of Tychonov cubes if @ = 7 - w;

e the X-product X(I) = {f € I*! : |[{a € w1 : f(e) # 0} < w} C I** of intervals if o = w;
(as we shall see in Coincidence Theorem 2.2, the strong topology on I<“! coincides with
the product topology).

On the other hand, the spaces R<® yield us

o the Euclidean space R" if o = n;
o the direct limit R* = limR" of Euclidean spaces if o = w;
e the countable product of lines R¥ (homeomorphic to the separable Hilbert space l3) if
a=w+1;
e the direct limit (R¥)*® = lim(R*)" if @ = w - w (the latter space is homeomorphic to the
direct limit of Hilbert spaces (I2)>® and was studied by E.Pentsak [Pe]);
¢ an uncountable product of lines R” if & = 7 + 1 is an uncountable successor ordinal;
e the X-product Z(R) = {f € R“ : [{a € w; : f(a) # 0}| < w} of the lines if a = w;.
Thus the spaces of the form X<% can be considered as universal model spaces for infinite-
dimensional topology. In this paper we shall be interested in three general problems concerning
these spaces:

(1) Investigate topological properties of the spaces X<® for various ordinals a.

(2) Give a topological classification of the spaces X <.

(3) Find topological characterizations of the spaces X <* for simple spaces X (like I or R)
and simple ordinals a.

2. SURVEY OF PRINCIPAL RESULTS

We start the investigation of the spaces X <* with calculating some of their cardinals charac-
teristics.

By a k-space we understand a Hausdorff topological space X admitting a cover K by compact
subspaces, generating the topology of X in the sense that a subset U C X is open in X if and
only if for any compactum K € K the intersection U/ N K is open in K, see [En]. The smallest
possible size |K| of such a cover K is called the k-ness of X and is denoted by k(X), see [vD].
The k-ness of a topological space does not exceed the compact covering number kc(X) equal
to the smallest size of a cover of X by compact subspaces. The network weight nw(X) of a
topological space X is the smallest size |N| of a collection AV of subsets of X such that for any
open set U C X and any point z € U there is an element N € N with z € N Cc U. For two
cardinals k,7 by k x 7 we denote their product (as cardinals).

By the cofinality cf(a) of an ordinal o we understand the smallest size |C| of a cofinal subset
C C a (the latter means that for each z < o there is y € C with z < y).

Proposition 2.1. For any pointed compact Hausdorff space X with |X| > 1 and any ordinal o
the space X<% is a k-space with ke(X<%) = k(X<%) = cf(@) and nw(X <¥) = nw(X) x |a|.

Let us observe that the strong topology on X <% coincides with the product topology if a is
a successor cardinal. Surprisingly enough but the same is true also for certain limit ordinals.
To characterize such ordinals we need to introduce the notion of the irreducible tail tl(a) of
an ordinal a. By definition, the irreducible tail tl(a) of « is the smallest ordinal @ for which
there exists an ordinal ¥ < « such that o = v + 3. Let us observe that cf(a) < tl(a) < o; and
cf(a) = tl(a) = 1 if and only if « is a successor ordinal.
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Let us also note that tl{(a) = « if and only if o is additively indecomposable in the sense that
B+~ < a for any 3,7 < . In particular, the ordinal tl(e) is additively indecomposable.

Theorem 2.2 (Coincidence Theorem). Let X be a pointed (compact Hausdorff first countable)
T, -space with | X| > 1. For an ordinal @ the strong and product topologies on X<® coincide (if
and) only if tl(a) is a cardinal with cf(tl(a)) # w.

This theorem implies that the strong and product topologies coincide on I<*! but differ on
(I“1)<w1. Also for any an ordinal & with cf(a) = w and any pointed space X with non-isolated
distinguished point the strong topology on X<“ differs from the product topology. For such
ordinals o the spaces X <% occupy a special place in the whole theory and have especially nice
topological properties.

A topological space X is called a k,-space if X is a k-space with k(X) < w. k,-Spaces often
appear in topological algebra and have many nice properties, see [FST]. In particular, they are
real complete. A topological space X is called real complete if it is homeomorphic to a closed
subspace of R* for some cardinal x. Real complete spaces admit also an inner description: a
Tychonov space X is real complete if any point £ € 8X \ X in the remainder of the Stone-Cech
compactification 3X of X lies in a Gs-subset of 53X missing the set X, see [En, §3.11].

Let us call a topological space X an absolute extensor for compact spaces in dimension 0
(briefly AE(0)) if any continuous map f : B — X defined on a closed subset B of a zero-
dimensional compact Hausdorff space A admits a continuous extension f: A — X onto the
whole compactum A. Removing the dimensional restrictions we get the definition of an absolute
extensor (briefly AE). A space X is called an absolute retract (briefly an AR) it is a compact
Hausdorff AE. It is well known that a compact space is an AR if it is a retract of a Tychonov
cube. In particular, Tychonov cubes are absolute retracts.

Now we show that many natural topological properties of the spaces X <* are equivalent to
the countable cofinality of a.

Theorem 2.3. For an ordinal ¢ the following conditions are equivalent:
(1) cf(a) < w;
(2) X<@ is a k,-space for any pointed compact Hausdorff space X;
(8) X<2 is real complete for any real complete pointed space X;
(4) X<2 is real complete for some pointed T:-space X containing more than one point.
(5) X<% is an AE for any pointed absolute extensor X ;
(6) X<* is an AE(0) for some pointed Ty -space X with |X| > 1.

Now we shall discuss the topological classification of spaces X <¢.

Theorem 2.4 (Redixction Theorem). For a pointed space X and an infinite ordinal a the space
X <% is homeomorphic to:

Xlel if o is a successor ordinal;

X <lel if @ = |a| is a cardinal;

X <lal+cf(@) if 1 < cf(e) = tl(a) < |al;
X<lal+ltia)lcfla) 4f1 < cf(a) < tl(a) < |af;

X <lalcf(@) if 1 < cf(a) < |tl(a)| = |¢| < .

This theorem can be proved using coordinate permutating homeomorphisms and is left to the
reader. Observe that the set X <®+5Y can be naturally identified with the product X* x (X?)<7.
For compact Hausdorff X this identification is topological.

Proposition 2.5. Let X be a pointed topological space and a, 3 be ordinals.
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(1) The space X<*7 is naturally homomorphic to the space (X*)<A.
(2) If X is compact and Hausdorff, then X+ is naturally homeomorphic to the product
X% x X<B,

Remark 1. It is interesting to notice that the second statement of this proposition does not hold
for non-compact spaces X. In particular, the space R<“*“ is not homeomorphic to R¥ x R<¥
since the former space is a k-space while the latter is not, see [Ba2].

Proposition 2.5 and Reduction Theorem 2.4 allows us to reduce the study of spaces X< for
compact spaces X to studying the particular cases when « is a cardinal.

Corollary 2.6. For a pointed compact space X and an ordinal a the space X <% is homomorphic
to one of the spaces: X7, X<T, (XT)<*, X7 x X<}, X x (X®)<A, where 7 = |a|, A = cf(a),
K = [tl(a)].

For two ordinals a > 8 by a — 8 we denote the unique ordinal v such that « = 3+ . The
Reduction Theorem 2.4 allows us to prove the following

Theorem 2.7 (Classification Theorem). Let X be a pointed metrizable separable space contain-
ing more than one point. For two infinite ordinals a, B the spaces X< and X<P are homeo-
morphic if and only if || = |B|, cf(a) =cf(B) and |tl(a) — cf(a)| = [tI(B) — cf(B)].

For metrizable ARs X studying the topology of the spaces X <* can be reduced to investigating
the spaces 1<%,

Theorem 2.8. For any pointed compact metrizable absolute retract X and any ordinal a > w
the space X<% is homeomorphic to the space I<®. In its turn the space I<® is homeomorphic
to one of the spaces: I7, I<T, (I")<*, I" x I, or I x (I®)<*, where 7 = |a|, A = |cf(a)|, and
K = |tl(a)|.

This theorem can be easily deduced from Corollary 2.6 and a result of H.Torusiczyk [Tol]
asserting that the countable power of a non-degenerate metrizable AR is homeomorphic to the
Hilbert cube I¥.

Finally we consider the problem of topological characterization of the spaces I<%. In case
of countable cofinality of o this problem reduces to characterizing the spaces I”, (I7)<, I<",
I" x I<¥, and I x (I*)<¥ for infinite cardinals k¥ < 7. In fact, such characterizations are known
for the first three spaces: I7, (I7)* and I<".

We distinguish between countable and uncountable cardinals 7. For 7 = w the power I" = I*
is nothing else but the Hilbert cube. The topological characterization of the Hilbert cube is one
of the most brilliant achievements of infinite-dimensional topology and belongs to H.Torusczyk
[Tol).

Characterization 2.9 (Toruficzyk). A topological space X is homeomorphic to the Hilbert cube
I if and only if X is a compact metrizable absolute retract satisfying the disjoint cells property
in the sense that any two maps f,g : I™ — X from a finite-dimensional cube can be uniformly
approzimated by maps with disjoint images.

A topological characterization of Tychonov cubes I" for uncountable cardinals 7 is even
shorter and belongs to E. Sé€epin [S].

Characterization 2.10 (S¢epin). A topological space X is homeomorphic to a non-metrizable
Tychonov cube I” if and only if X is a non-metrizable uniform-by-character compact AR of
weight 7.
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A topological space X is called uniform-by-character if the character at each point of X equals
the character of X.

To give a topological characterization of spaces (I7)<“ and I<" we need to recall the notion
of a strongly universal space.

Definition 1. Let K be a class of compact Hausdorff spaces. A topological space X is defined
to be

o universal for the class K if each compact subspace of X belongs to K and each compactum
K € K is homeomorphic to some compact subset of X;

o strongly universal for the class K if each compact subspace of X belongs to X and for
any compact space K € K any embedding f : B — X of a closed subset B of K can be
extended to an embedding f : K — X of the whole K;

o strongly universal if X is strongly universal for some class K of compacta.

It is easy to see that each strongly universal space X is strongly universal for the class K£(X)
of all spaces homeomorphic to compact subsets of X.

We shall say that a topological space X has the compact unknotting property if every home-
omorphism h : A — B between compact subsets A, B C X extends to an autohomeomorphism
of X. It is easy to see that each space with compact unknotting property is strongly universal.
The converse is true for k,-spaces.

Theorem 2.11 (Unknotting Theorem). A k,-space X is strongly universal if and only if it has
the compact unknotting property.

Another fundamental feature of strongly universal & -spaces is described by

Theorem 2.12 (Uniqueness Theorem). Two k,-spaces X,Y are homeomorphic provided they
are strongly universal for some class K of compact Hausdorff spaces. In particular, two strongly
universal k,-spaces X,Y are homeomorphic if and only if K(X) = K(Y).

Both the theorems can be proved by the standard back-and-forth argument. In light of the
above results it would be helpful to detect ordinals for which the space I<% is strongly universal
or has the compact unknotting property.

Theorem 2.13. For an ordinal o the following conditions are equivalent:
(1) I<® 4s a strongly universal k,,-space;
(2) I<* is a k,-space with the compact unknotting property;
(3) cf(a) =w and B+ |B| < a for any uncountable ordinal B < a;
(4) I<“ is homeomorphic to a topological group;
(5) I<* is homeomorphic to a locally convez linear topological lattice.

Observe that this theorem characterizes ordinals o with countable cofinality for which the
space 1<% is strongly universal. For ordinals with uncountable cofinality we get another theorem
characterizing strongly universal spaces I<%.

Theorem 2.14. For an ordinal o with uncountable cofinality the following conditions are equiv-
alent: '

(1) I<* is a strongly universal space;

(2) I<* has the compact unknotting property;

(3) « is a regular cardinal.

These two theorems imply that for spaces I<® the strong universality is equivalent‘ to the
compact unknotting property.
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Let us note that for the smallest uncountable ordinal w; the class K(I <w1) of compact sub-
spaces of I<“! is well-understood: it consists of all Corson compacta of weight < w;. We recall
that a topological space X is called Corson compact if it is homeomorphic to a compact subset
of a T-product of lines Z(R) = {f € R™ : |{i € 7: f(i) # 0}| <w} C R” for some cardinal 7.

For an infinite ordinal a with countable cofinality the class K(I<%) also admits a simple
description: if a > w, then K(I<%) consists of all compact Hausdorff spaces with weight < a.
For the ordinal o = w the class K{(I<¥) consists of all finite-dimensional metrizable compact
spaces. Using this description and the Uniqueness Theorem we get the following characterization
theorems. The first two of them belong to K.Sakai [Sa].

Characterization 2.15 (Sakai). A topological space X is homeomorphic to the space I®° = I <w
if and only if X 1is a strongly universal k,-space for the class of finite-dimensional compact
metrizable spaces.

Characterization 2.16 (Sakai). A topological space X is homeomorphic to the space (I*)*® =
(I*)<% if and only if X is homeomorphic to I<™ for some countable limit ordinal a > w if and
only if X is a strongly universal k,,-space for the class of compact metrizable spaces.

The latter characterization theorem of Sakai was generslized to spaces (I7)® = (I")<¥ by
T. Banakh {Bal].

Characterization 2.17 (Banakh). A topological space X is homeomorphic to the space (I Ty<w
for some infinite cardinal T if and only if X is a strongly universal k,-space for the class of
compact spaces of weight < 7.

Finally, the topology of the spaces I<7 for cardinals 7 of countable cofinality was characterized
by O. Shabat and M. Zarichnyi in [SZ].

Characterization 2.18 (Shabat, Zarichnyi). A topological space X is homeomorphic to I<T
for some cardinal with cf(7) = w if and only if X is a strongly universal k,-space for the class
of compact spaces of weight < 7.

These theorems give us topological characterizations of strongly universal spaces of the form
I<?® for ordinals o with countable cofinality. Next, we turn to the problem of topological
characterization of the spaces I x (I*)<¥ with 7 > k. For « = 1 this problem was posed in the
paper [SZ]. It should be mentioned that unlike the spaces considered in Theorems 2.15-2.18 the
spaces I x (I*)® for 7 > k are not strongly universal.

First we recall two notion. Let s be a cardinal. A closed subset A of a topological space X
is called

e a Gx-setin X if A =Nl for some family U of open subsets of X with U| = k;
@ a Zg-setin A is for every map f : I* — X and a family Y of open covers of X with
|4] < & there is a map g: X — X \ A which is U-near to f for every cover Uell
Observe that for the cardinal k& = w, the notion of a Z«,-set coincides with the classical notion
of & Z-set introduced by Anderson, see [Ch].
Our final theorem gives a characterization of the spaces I7 x (I*)<“ and hence answers the
mentioned problem from [SZ].

Characterization 2.19. For a topological space X and infinite cardinals 7 2 k the following
conditions are equivalent:
(1) X is homeomorphic to I x (I*)<¥;
(2) X is homeomorphic to I<® for some ordinal with |a| = 7, cf(a) = w, and [tl(@)| = &;
(8) X is a k,,-space such that each compact subset K C X lies as a Z<,-set in some compact
G-subset K C X, homeomorphic to the Tychonov cube I7.
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