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1 Introduction and results.
The classes of topological spaces are assumed to be

1. non-empty (we suppose that at least the empty space  is a member),
and

2. monotone with respect to closed subsets.

The letter P is used to denote a such class and the following classes of
spaces satisfiy the conditions 1 and 2 above.

e The class of compact metrizable spaces K.

The class of o-compact metrizable spaces S.

The class of completely metrizable spaces C.

The class of separable completely metrizable spaces Co.



- Let X be a space and A, B disjoint subsets of X. We recall that a closed
set C C X is said to be a partition between A and B in X if there are disjoint
open subsets U and V of X suchthat ACU,BCV and C=X\ (UUV).

In [4] Lelek introduced the small inductive dimension modulo a class P,
P-ind , which is a natural generalization of well known dimension functions
such as the small inductive dimension ind and the small inductive compact-
ness degree cmp .

Definition 1.1 Let X be a regular T;-space and P a class of spaces. Then
we define the small inductive dimension modulo a class P, P-ind X, of X as
follows.

(i) P-ind X = -1 iff X € P.

(i) For a natural number n, P-ind X < n if for any point z € X and any
closed subset A of X with z ¢ A there exists a partition C between z
and A in X such that P-indC < n. '

. The small inductive dimension modulo a class P has a natural transfinite
extension. '

Definition 1.2 Let X be a regular 73-space and « either an ordinal number
or the integer —1. Then the small transfinite inductive dimension modulo P,
P-trind X, of X is defined as follows. -

(i) P-trind X = -1 iff X € P;

(ii) P-trind X < a if for any point £ € X and any closed subset A of X
with z ¢ A there exists a partition C between z and A in X such that
P-trind C < a.

(iii) P-trind X = ¢ if P-trind X < a and P-trind X > ( for any ordinal
- By

(iv) P-trind X = oo if P-trind X > a for any ordinal o.
We notice the following. :

o {0}-trind X = trind X, i.e., the small transfinite dimension.
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e K-ind X = cmp X (and K-trind X = trcmp X), i.e., the small (transfi-
nite) compactness degree.

e C-ind X = icd X (and C-trind X = tricd X), i.e., the small (transfinite)
completeness degree.

o If P, C P;, then P;-trind X < P,-trind X; in particular, tricd X <

tremp X < trind X holds.

Here, we shall consider on the absolute Borel classes. For each ordinal
number ¢, let A(a) and M(a) be the absolute additive class o and the
absolute multiplicative classe a, respectively. Further, A(a) N M(a) is said
to be the absolute ambiguous class o and we write AB = U{A, : @ < w;}.
We notice that the absolute Borel classes in the universe of metrizable spaces
satisfy the conditions 1 and 2. |

Recall that in the universe of separable metrizable spaces, we have the

following.

o A(0) = {0}.
o M(0) =K.
« A1) =S5.

o M(1) =Cp.

e A diagram of the hierarchy of absolute Borel classes:

A1) =S8 | | A(2)
& \§ G
{0} CcKC A1) NM(1) A(2) N M(2)
S & - <&
M(1) =G M(2)
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We have a trivial example which shows the difference between trind and

trcmp: The Hilbert cube I*® has trindI*° = oo and cmpI*®(= icdI* =
S-indI*°) = —1. Furthermore, E. Pol constructed the following example.



Example 1.1 (E. Pol, [5]) There exists a o-compact, completely metriz-
able space P such that trcmp P = oo (i, trind P = trcmp P = oo and
tricd P = S-trind P = A(1) N M(1)-trindP = —1). |

Thus, we may ask whether we can generalize Pol’s example to every
ordinal number a < w;.

It is well know that the small compactness degree cmp is related to an
extension property, i.e., de Groot proved that a separable metrizable space
X is rim-compact (i.e., cmp X < 0) iff X has a metric compactification Y’
such that dim(Y — X) < 0. Connect with this theorem, we 1ntroduce other
two dimension-like functions.

Definition 1.3 Let P be a class of spaces. We recall that a separable metriz-

able space Y is a P-hull (resp. P-kernel) of a separable metrizable space X if
Y e Pand X CY (resp. Y C X). Then the small transfinite P-deficiency,
P-trdef X, and the small transfinite P-surplus, P-trsur X, of a separable
metrizable space X are defined by

P-trdef X = min{trind (Y \ X): ¥ is an P-hull of X},

(P-def X = min{ind (Y \ X) : Y is an P-hull of X}),

P-trsur X = min{trind (X \Y) :Y is an P-kernel of X 1,
 (P-swr X = min{ind (X \Y):Y is an P-kernel of X}).

It is clear that the functions P-trdef and P-trsur are transfinite exten-
sions of the functions P-def and P-sur, respectively, which are discussed in
[1]. It is also clear that if P, C Pi, then Pi-trdef X < Por-trdef X and
P;-trsur X < Py-trsur X.

Recall also that for the function K- def is the well known compact defi-
ciency def. We will denote the transfinite extension KC-trdef of the compact

deficiency def by trdef.

Facts (cf. [1]). Let X be a separable metrizable space and a an ordinal
number. Then we have the following.
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1. If o = 0, then M(0)-ind X < M(0)-def X < M(0)-sur X holds and the
converse of the inequalities do not hold. (We notice that M(0) = K and
so M(0)-ind X = cmp X and M(0)-def X = defX.) We also notice

that A(0) = {#} and hence A(0)-ind X = A(0)-sur X trivially holds

and A(0)-def X can not be defined if X # 0.

2. If @ = 1, then A(1)-ind X < A(1)-defX = A(1)-sur X and M(1)-
ind X = M(1)-def X < M(1)-sur X hold. The converses of the in-
equalities above do not hold. (We notice that A(1) = S and M(1) =Gy
and so M(1)-ind X =icd X.) :

3. If & > 2, then A(a)-ind X = A(a)-def X = A(a)-sur X and M(a)-
ind X = M(a)-def X = M(a)-sur X hold.

M. Charalambous [2} showed that the equality M(a)-defX = M(a)-
ind X can not be extended to the transfinite dimension for the case of a = 1.

Example 1.2 (M. Charalambous, [2]) There exists a separable metriz-
able space C such that C-trdefC (= M(1)-trdefC) = wp and tricd C (=
M(1)-trind C) = oco. (We notice that Co-trdef < tricd X holds for every
separable metrizable space.) ’

Thus, it seems to be natural that we ask whether for each ordinal number
a < w; there exits a separable metrizable space X such that M(a)-trdef X =
wp and M(a)-trind X = oo or A(a)-trdef X = wp and A(a)-trind X = oo.
Connect with the questions above, we have the following.

Theorem 1.1 Let a be any ordinal with 1 < o < wy.
(1) There ezist separable metrizable spaces Xo, Yo and Zo such that

(a) fXa, [Ya, f Za < wo, where f is either trdef or KC-trsur ;

(b) M(a)-trind X, = —1 and A(a)-trind X, = co (and hence A(a) N
M(a)-trind X, = 00);

(c) A(a)-trind Y, = —1 and M(a)-trind Y, = co (and hence A(@)NM(a)-
 trind X, = 0); ,

(d) M(a)-trind Z, = A(a)-trind Z, = oo and
Ala + 1) N M(a + 1)-trind Z, = —1.
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(2) There does not exist a separable metrizable space W, such that A(c)-
trind Wy, # oo, M(a)-trind W, # oo and A(a) N M(a)-trind W, = co.

Theorem 1.2 There exists a separable metrizable space X with trdef X =
K-trsur X = wy such that for each 1 < a < w; we have B-trindX = oco and
B-trdefX = B-trsurX = wy, where B = A(a), M(a) or A(a) N M(a).

‘Remark 1.1 By Thereoms 1.1 and 1.2, it follows that the equalities M(a)-

def X = M(a)-ind X and A(a)-sur X = A(a)-ind X can not be extended to
transfinite-dimensional cases. For the spaces Xo» Yaipha and Z, in Theorem
1.1, we additionally have that

o M(a)-trdef X, = A(a)-trsur Y, = —1;

o M(a)-trdef Yo, = M(a)-trdef Z, = A(a)-trsur X, = A(a)-trsur Z, =
Wy -

| We refer the readers to the books [1], [3] and (7] for the dimensions modulo
classes, dimension theory and the theory of Borel sets, respectively.

- 2 Outline of proofs.

All classes of topological spaces considered here are additionally assumed to
be finitely additive. We will follow some idea of E. Pol [5]. Let P be a class
of topological spaces. A space X is said to have the property (%)p if for every
sequence {(A;, B;)}&2; of pairs of disjoint compact subsets of X there exist
partitions L; between A; and B; in X and an integer N such that N, L; € P.
It is evident that the property (x)p is closed hereditary.
We have two propositions on the property (*)p.

Proposition 2.1 If a space X is covered by a finite family of closed sets such
that each element of this cover possesses property (x)p then X also PoSsesses
this property. ‘ :

Proposition 2.2 Let X be a space. If P-trind X # oo then X possesses
property (*)p. | |
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Let I = {(z;) : 0 < z; < 1,5 = 1,2,..} be the Hilbert cube and
Z ={0,%,3,...} a subspace of the unit interval I. For each n > 1 we denote
the subset {(z;) € I : z; = 0for j > n + 1} of I** by I". For each n > 1
and each ¢ = 1,...,n, we put

Al ={(z;) e"CcI®:2; =0}, Bl ={(z;) e" CI®: 2, =1}.
Choose for each n > 1 a subset E, of I" and put

X = (0} x 1)U (1o} x B (1)

Furthermore, we put ¥ = ({0} x I**) U (Us—, {2} x I"). It is clear that

X CY c ZxI*,Y is compact, and Y\ X is a subspace of the topological sum

@2 ,I". Thus, trind (Y'\ X) < wp. Observe also that trind (X'\ ({0} xI*°)) <
wo. Hence

trdef X < wy and K-trsurX < wy. (2)

Lemma 2.1 If for each m > 1 there erists an integer k(m) > m + 1 such
that for any n > k(m) and any partition LT between A? and B} inI*,i < m,
we have E, N, L} ¢ P, then P-trind X = co.

Proof. By Proposition 2.2, it suffices to show that X does not have the
property (x)p. For each 2 = 1,2,... let L; be a partition between compact
sets A; = {(0,(z;)) € {0} x I** : z; = 0} and B; = {(0, (z;)) € {0} x I*:
z; = 1} We shall show that NYY, L; ¢ P for every natural number N. Let N
be a natural number. For each ¢ > 1 let us consider a partition L; between
A; and B; in Y such that L, = L; N X. Note that for every ¢ there exists
a natural number n; > 2 such that for any n > n; L} = L; N ({2} x I")
is a partition between {1} x AP and {1} x Bl in {1} x I". Let n a fixed
integer with n > max{n, ..., ny, k(N)}. Then C = (N, L})N({2} x B,) =
(N, L) N ({1} x E,) is a closed subset of NY,L;, and C ¢ P by the
assumption. So NY.,L; ¢ P.

We shall also use the following.

- Lemma 2.2 (/8, Lemma 5.2]) Let L;; be partitions between the opposite
faces A}‘j and B}‘j inI™, where1 <43 <4p... < iy <nandl <p<n. Then
for any k # i;,5 = 1,...,p, there is a continuum C C M;_,L;; meeting the
faces Ay and Bj.
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Lemma 2.3 Let o be an ordinal number with 1 < o < w,. Then there exist
subsets Qu, P, and D, of I such that

1. Qqu € A(a) — M(a),
2. P, € M(a) — Ala),
8. Dy € Ala+1)NM(a+1) - (Ala) UM(a)).
Proof of Theorem 1.1. (1) We shall prove for Y, only. We put

= ({0} xI*) U U{ X 174(@Qa),

n=2
where Q, is the subspace I described in Lemma 2.3 and 7, : I* — I be
the projection onto the n-th factor. By the construction of Y, it is clear
that M(a)-trdefY, < trdefY, < wp, and M(a)-trsurY, < wp. Since the
absolute Borel classes are preserved under perfect preimages, it follows that
771 (Qa) € A(a). Thus, Y, € A(a) and hence A(a)-trindY,, = —1. Now, it
suffices to show that M(a)-trindY, = oo. To apply Lemma 2.1, for every
natural number m let k(m) = m + 1. For each n > k(m) and each i < n
let L? be a partition between A? and B} in I". By Lemmea 2.2, there exsits
a continuum C such that C C ﬂ,*lL” and CNA? #£ 0 # C’ N B, Let
G = 7|C : C — I be the restriction of the projection m, over C. Then
C’ﬂ'/r“l(Qa) = (7)) HQa) C N, LP N7 (Qq). Since C N 77(Qa) is
closed set of N L" N 771(Qq) and (7€)1 (Qa) &€ M(a), it follows that
N LN w‘l(Qa) ¢ M(a) Thus, it follows from Lemma 2.1 that M(a)-

trind Y, = co. This completes the proof.

(2) The second part of Theorem 1.1 is a direct consequence of the follow-
ing proposition.

| Proposition 2.3 Let X be a separable metrizable space with A(a)-trind X <
w1 and M(a)-trind X < uy. Then

- A(e) N M(a)-trind X = { Zi+ n(pa) +1, g f\\gzig . igzzg

Proof. The proposition can be proved by a standard transfinite induction
on v = max{y, 42 }-

Connect with Proposition 2.1, we ask the following question.



Question 2.1 Does there exsit a separable metrizable space X, such that
A(a) N M(a)-trind X, > max{A(a)-trind X,, M(a)-trind X, } for each or-
dinal number a? In particular, does there exist a separable metrizable space
X such that Co N S-ind X =1 and Cy-ind X = S-trind X = 07

Recall from M.G. Charalambous ([2]) that we call a subset A of a space
X a Bernstein set if |]ANB| = |(X \ A) N B| = c for every uncountable Borel
set B of X, where ¢ denotes the casrdinality of the continuum. It is known
that every uncountable completely metrizable space X has countably many
disjoint Berstein sets. We notice that A ¢ AB for every Berstein set A of an
uncountable completely metrizable space X.

Proof of Theorem 1.2. | Let F be a Berstein set of . We put X =
({0} x I®°) U (U2, {2} x m;*(F)). Then, we can show that X is the desired

space by an argument similar to Theorem 1.1.
Connect with Theorem 1.1, we may ask the following question.

Question 2.2 For each ordinal numbers o and § with 1 < @ < w; and
0 < B < w; do there exist separable metrizable spaces X, and Yq g which
satisfy the folowing conditions?

1. A(a)-trind Xop5 = ,8,4
2. M(a)-trindY, g = f, and .
3. M(a)-trind X, g = A(a)-trind Y, g = —1.
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