Borel classes dimensions

リンショーピン大学 ヴィタリ チャティルコ (Vitalij Chatyrko)

Department of Mathematics

Linköping University

島根大学・総合理工学部 服部泰直 (Yasunao Hattori)
Faculty of Science and Engineering
Shimane University

1 Introduction and results.

The classes of topological spaces are assumed to be

- 1. non-empty (we suppose that at least the empty space \emptyset is a member), and
- 2. monotone with respect to closed subsets.

The letter \mathcal{P} is used to denote a such class and the following classes of spaces satisfy the conditions 1 and 2 above.

- The class of compact metrizable spaces K.
- The class of σ -compact metrizable spaces S.
- The class of completely metrizable spaces C.
- The class of separable completely metrizable spaces C_0 .

Let X be a space and A, B disjoint subsets of X. We recall that a closed set $C \subset X$ is said to be a partition between A and B in X if there are disjoint open subsets U and V of X such that $A \subset U$, $B \subset V$ and $C = X \setminus (U \cup V)$.

In [4] Lelek introduced the small inductive dimension modulo a class \mathcal{P} , \mathcal{P} -ind, which is a natural generalization of well known dimension functions such as the small inductive dimension ind and the small inductive compactness degree cmp.

Definition 1.1 Let X be a regular T_1 -space and \mathcal{P} a class of spaces. Then we define the *small inductive dimension modulo a class* \mathcal{P} , \mathcal{P} -ind X, of X as follows.

- (i) \mathcal{P} -ind X = -1 iff $X \in \mathcal{P}$.
- (ii) For a natural number n, \mathcal{P} -ind $X \leq n$ if for any point $x \in X$ and any closed subset A of X with $x \notin A$ there exists a partition C between x and A in X such that \mathcal{P} -ind C < n.

The small inductive dimension modulo a class \mathcal{P} has a natural transfinite extension.

Definition 1.2 Let X be a regular T_1 -space and α either an ordinal number or the integer -1. Then the *small transfinite inductive dimension modulo* \mathcal{P} , \mathcal{P} -trind X, of X is defined as follows.

- (i) \mathcal{P} -trind X = -1 iff $X \in \mathcal{P}$;
- (ii) \mathcal{P} -trind $X \leq \alpha$ if for any point $x \in X$ and any closed subset A of X with $x \notin A$ there exists a partition C between x and A in X such that \mathcal{P} -trind $C < \alpha$.
- (iii) \mathcal{P} -trind $X = \alpha$ if \mathcal{P} -trind $X \leq \alpha$ and \mathcal{P} -trind $X > \beta$ for any ordinal $\beta < \alpha$;
- (iv) \mathcal{P} -trind $X = \infty$ if \mathcal{P} -trind $X > \alpha$ for any ordinal α .

We notice the following.

• $\{\emptyset\}$ -trind X = trind X, i.e., the small transfinite dimension.

- \mathcal{K} -ind $X = \operatorname{cmp} X$ (and \mathcal{K} -trind $X = \operatorname{trcmp} X$), i.e., the small (transfinite) compactness degree.
- C-ind X = icd X (and C-trind X = tricd X), i.e., the small (transfinite) completeness degree.
- If $\mathcal{P}_2 \subset \mathcal{P}_1$, then \mathcal{P}_1 -trind $X \leq \mathcal{P}_2$ -trind X; in particular, tricd $X \leq \operatorname{trcmp} X \leq \operatorname{trind} X$ holds.

Here, we shall consider on the absolute Borel classes. For each ordinal number α , let $\mathcal{A}(\alpha)$ and $\mathcal{M}(\alpha)$ be the absolute additive class α and the absolute multiplicative classe α , respectively. Further, $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)$ is said to be the absolute ambiguous class α and we write $\mathcal{AB} = \bigcup \{\mathcal{A}_{\alpha} : \alpha < \omega_1\}$. We notice that the absolute Borel classes in the universe of metrizable spaces satisfy the conditions 1 and 2.

Recall that in the universe of separable metrizable spaces, we have the following.

- $\bullet \ \mathcal{A}(0) = \{\emptyset\}.$
- $\mathcal{M}(0) = \mathcal{K}$.
- $\mathcal{A}(1) = \mathcal{S}$.
- $\mathcal{M}(1) = \mathcal{C}_0$.
- A diagram of the hierarchy of absolute Borel classes:

$$\mathcal{A}(1) = \mathcal{S} \qquad \qquad \mathcal{A}(2) \qquad \dots$$

$$\{\emptyset\} \subseteq \mathcal{K} \subseteq \mathcal{A}(1) \cap \mathcal{M}(1) \qquad \qquad \mathcal{A}(2) \cap \mathcal{M}(2) \qquad \qquad \dots$$

$$\mathcal{M}(1) = \mathcal{C}_0 \qquad \qquad \mathcal{M}(2) \qquad \dots$$

We have a trivial example which shows the difference between trind and trcmp: The Hilbert cube \mathbb{I}^{∞} has trind $\mathbb{I}^{\infty} = \infty$ and cmp $\mathbb{I}^{\infty} (= \operatorname{icd} \mathbb{I}^{\infty} = \mathcal{S}-\operatorname{ind} \mathbb{I}^{\infty}) = -1$. Furthermore, E. Pol constructed the following example.

Example 1.1 (E. Pol, [5]) There exists a σ -compact, completely metrizable space P such that $\operatorname{trcmp} P = \infty$ (i.e., $\operatorname{trind} P = \operatorname{trcmp} P = \infty$ and $\operatorname{tricd} P = \mathcal{S}$ -trind $P = \mathcal{A}(1) \cap \mathcal{M}(1)$ -trind P = -1).

Thus, we may ask whether we can generalize Pol's example to every ordinal number $\alpha < \omega_1$.

It is well know that the small compactness degree cmp is related to an extension property, i.e., de Groot proved that a separable metrizable space X is rim-compact (i.e., cmp $X \leq 0$) iff X has a metric compactification Y such that dim $(Y - X) \leq 0$. Connect with this theorem, we introduce other two dimension-like functions.

Definition 1.3 Let \mathcal{P} be a class of spaces. We recall that a separable metrizable space Y is a \mathcal{P} -hull (resp. \mathcal{P} -kernel) of a separable metrizable space X if $Y \in \mathcal{P}$ and $X \subset Y$ (resp. $Y \subset X$). Then the small transfinite \mathcal{P} -deficiency, \mathcal{P} -trdef X, and the small transfinite \mathcal{P} -surplus, \mathcal{P} -trsur X, of a separable metrizable space X are defined by

$$\mathcal{P} ext{-trdef}\,X = \min\{ ext{trind}\,(Y\setminus X): Y \ ext{ is an } \mathcal{P} ext{-hull of } X\},$$

$$(\mathcal{P} ext{-def}\,X = \min\{ ext{ind}\,(Y\setminus X): Y \ ext{ is an } \mathcal{P} ext{-hull of } X\}),$$

$$\mathcal{P} ext{-trsur}\,X = \min\{ ext{trind}\,(X\setminus Y): Y \ ext{ is an } \mathcal{P} ext{-kernel of } X\},$$

$$(\mathcal{P} ext{-sur}\,X = \min\{ ext{ind}\,(X\setminus Y): Y \ ext{ is an } \mathcal{P} ext{-kernel of } X\}).$$

It is clear that the functions \mathcal{P} -trdef and \mathcal{P} -trsur are transfinite extensions of the functions \mathcal{P} -def and \mathcal{P} -sur, respectively, which are discussed in [1]. It is also clear that if $\mathcal{P}_2 \subset \mathcal{P}_1$, then \mathcal{P}_1 -trdef $X \leq \mathcal{P}_2$ -trdef X and \mathcal{P}_1 -trsur $X \leq \mathcal{P}_2$ -trsur X.

Recall also that for the function \mathcal{K} -def is the well known compact deficiency def. We will denote the transfinite extension \mathcal{K} -trdef of the compact deficiency def by trdef.

Facts (cf. [1]). Let X be a separable metrizable space and α an ordinal number. Then we have the following.

- 1. If $\alpha = 0$, then $\mathcal{M}(0)$ -ind $X \leq \mathcal{M}(0)$ -def $X \leq \mathcal{M}(0)$ -sur X holds and the converse of the inequalities do not hold. (We notice that $\mathcal{M}(0) = \mathcal{K}$ and so $\mathcal{M}(0)$ -ind $X = \operatorname{cmp} X$ and $\mathcal{M}(0)$ -def $X = \operatorname{def} X$.) We also notice that $\mathcal{A}(0) = \{\emptyset\}$ and hence $\mathcal{A}(0)$ -ind $X = \mathcal{A}(0)$ -sur X trivially holds and $\mathcal{A}(0)$ -def X can not be defined if $X \neq \emptyset$.
- 2. If $\alpha = 1$, then $\mathcal{A}(1)$ -ind $X \leq \mathcal{A}(1)$ -def $X = \mathcal{A}(1)$ -sur X and $\mathcal{M}(1)$ -ind $X = \mathcal{M}(1)$ -def $X \leq \mathcal{M}(1)$ -sur X hold. The converses of the inequalities above do not hold. (We notice that $\mathcal{A}(1) = \mathcal{S}$ and $\mathcal{M}(1) = \mathcal{C}_0$ and so $\mathcal{M}(1)$ -ind $X = \operatorname{icd} X$.)
- 3. If $\alpha \geq 2$, then $\mathcal{A}(\alpha)$ -ind $X = \mathcal{A}(\alpha)$ -def $X = \mathcal{A}(\alpha)$ -sur X and $\mathcal{M}(\alpha)$ -ind $X = \mathcal{M}(\alpha)$ -def $X = \mathcal{M}(\alpha)$ -sur X hold.

M. Charalambous [2] showed that the equality $\mathcal{M}(\alpha)$ -def $X = \mathcal{M}(\alpha)$ -ind X can not be extended to the transfinite dimension for the case of $\alpha = 1$.

Example 1.2 (M. Charalambous, [2]) There exists a separable metrizable space C such that C-trdef C (= $\mathcal{M}(1)$ -trdef C) = ω_0 and tricd C (= $\mathcal{M}(1)$ -trind C) = ∞ . (We notice that C_0 -trdef \leq tricd X holds for every separable metrizable space.)

Thus, it seems to be natural that we ask whether for each ordinal number $\alpha < \omega_1$ there exits a separable metrizable space X such that $\mathcal{M}(\alpha)$ -trdef $X = \omega_0$ and $\mathcal{M}(\alpha)$ -trind $X = \infty$ or $\mathcal{A}(\alpha)$ -trdef $X = \omega_0$ and $\mathcal{A}(\alpha)$ -trind $X = \infty$.

Connect with the questions above, we have the following.

Theorem 1.1 Let α be any ordinal with $1 \leq \alpha < \omega_1$.

- (1) There exist separable metrizable spaces X_{α}, Y_{α} and Z_{α} such that
 - (a) $f X_{\alpha}$, $f Y_{\alpha}$, $f Z_{\alpha} \leq \omega_0$, where f is either trdef or K-trsur;
 - (b) $\mathcal{M}(\alpha)$ -trind $X_{\alpha} = -1$ and $\mathcal{A}(\alpha)$ -trind $X_{\alpha} = \infty$ (and hence $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)$ -trind $X_{\alpha} = \infty$);
 - (c) $\mathcal{A}(\alpha)$ -trind $Y_{\alpha} = -1$ and $\mathcal{M}(\alpha)$ -trind $Y_{\alpha} = \infty$ (and hence $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)$ -trind $X_{\alpha} = \infty$);
 - (d) $\mathcal{M}(\alpha)$ -trind $Z_{\alpha} = \mathcal{A}(\alpha)$ -trind $Z_{\alpha} = \infty$ and $\mathcal{A}(\alpha+1) \cap \mathcal{M}(\alpha+1)$ -trind $Z_{\alpha} = -1$.

(2) There does not exist a separable metrizable space W_{α} such that $\mathcal{A}(\alpha)$ -trind $W_{\alpha} \neq \infty$, $\mathcal{M}(\alpha)$ -trind $W_{\alpha} \neq \infty$ and $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)$ -trind $W_{\alpha} = \infty$.

Theorem 1.2 There exists a separable metrizable space X with $\operatorname{trdef} X = \mathcal{K}$ -trsur $X = \omega_0$ such that for each $1 \leq \alpha < \omega_1$ we have \mathcal{B} -trind $X = \infty$ and \mathcal{B} -trdef $X = \mathcal{B}$ -trsur $X = \omega_0$, where $\mathcal{B} = \mathcal{A}(\alpha)$, $\mathcal{M}(\alpha)$ or $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)$.

Remark 1.1 By Thereoms 1.1 and 1.2, it follows that the equalities $\mathcal{M}(\alpha)$ def $X = \mathcal{M}(\alpha)$ -ind X and $\mathcal{A}(\alpha)$ -sur $X = \mathcal{A}(\alpha)$ -ind X can not be extended to
transfinite-dimensional cases. For the spaces X_{α} , $Y_{|alpha}$ and Z_{α} in Theorem
1.1, we additionally have that

- $\mathcal{M}(\alpha)$ -trdef $X_{\alpha} = \mathcal{A}(\alpha)$ -trsur $Y_{\alpha} = -1$;
- $\mathcal{M}(\alpha)$ -trdef $Y_{\alpha} = \mathcal{M}(\alpha)$ -trdef $Z_{\alpha} = \mathcal{A}(\alpha)$ -trsur $X_{\alpha} = \mathcal{A}(\alpha)$ -trsur $Z_{\alpha} = \omega_0$.

We refer the readers to the books [1], [3] and [7] for the dimensions modulo classes, dimension theory and the theory of Borel sets, respectively.

2 Outline of proofs.

All classes of topological spaces considered here are additionally assumed to be finitely additive. We will follow some idea of E. Pol [5]. Let \mathcal{P} be a class of topological spaces. A space X is said to have the property $(*)_{\mathcal{P}}$ if for every sequence $\{(A_i, B_i)\}_{i=1}^{\infty}$ of pairs of disjoint compact subsets of X there exist partitions L_i between A_i and B_i in X and an integer N such that $\bigcap_{i=1}^{N} L_i \in \mathcal{P}$.

It is evident that the property $(*)_{\mathcal{P}}$ is closed hereditary.

We have two propositions on the property $(*)_{\mathcal{P}}$.

Proposition 2.1 If a space X is covered by a finite family of closed sets such that each element of this cover possesses property $(*)_{\mathcal{P}}$ then X also possesses this property.

Proposition 2.2 Let X be a space. If \mathcal{P} -trind $X \neq \infty$ then X possesses property $(*)_{\mathcal{P}}$.

Let $\mathbb{I}^{\infty}=\{(x_i):0\leq x_i\leq 1,i=1,2,...\}$ be the Hilbert cube and $Z=\{0,\frac{1}{2},\frac{1}{3},...\}$ a subspace of the unit interval \mathbb{I} . For each $n\geq 1$ we denote the subset $\{(x_i)\in\mathbb{I}^{\infty}:x_j=0 \text{ for } j\geq n+1\}$ of \mathbb{I}^{∞} by \mathbb{I}^n . For each $n\geq 1$ and each i=1,...,n, we put

$$A_i^n = \{(x_i) \in \mathbb{I}^n \subset \mathbb{I}^\infty : x_i = 0\}, \ B_i^n = \{(x_i) \in \mathbb{I}^n \subset \mathbb{I}^\infty : x_i = 1\}.$$

Choose for each $n \geq 1$ a subset E_n of \mathbb{I}^n and put

$$X = (\{0\} \times \mathbb{I}^{\infty}) \cup (\bigcup_{n=1}^{\infty} \{\frac{1}{n}\} \times E_n).$$
 (1)

Furthermore, we put $Y = (\{0\} \times \mathbb{I}^{\infty}) \cup (\bigcup_{n=1}^{\infty} \{\frac{1}{n}\} \times \mathbb{I}^{n})$. It is clear that $X \subset Y \subset Z \times \mathbb{I}^{\infty}$, Y is compact, and $Y \setminus X$ is a subspace of the topological sum $\bigoplus_{n=1}^{\infty} \mathbb{I}^{n}$. Thus, trind $(Y \setminus X) \leq \omega_{0}$. Observe also that trind $(X \setminus (\{0\} \times \mathbb{I}^{\infty})) \leq \omega_{0}$. Hence

$$\operatorname{trdef} X \leq \omega_0 \text{ and } \mathcal{K}\text{-}\operatorname{trsur} X \leq \omega_0.$$
 (2)

Lemma 2.1 If for each $m \geq 1$ there exists an integer $k(m) \geq m+1$ such that for any $n \geq k(m)$ and any partition L_i^n between A_i^n and B_i^n in \mathbb{I}^n , $i \leq m$, we have $E_n \cap \bigcap_{i=1}^m L_i^n \notin \mathcal{P}$, then \mathcal{P} -trind $X = \infty$.

Proof. By Proposition 2.2, it suffices to show that X does not have the property $(*)_{\mathcal{P}}$. For each $i=1,2,\ldots$ let L_i be a partition between compact sets $A_i=\{(0,(x_j))\in\{0\}\times\mathbb{I}^\infty:x_i=0\}$ and $B_i=\{(0,(x_j))\in\{0\}\times\mathbb{I}^\infty:x_i=1\}$ We shall show that $\bigcap_{i=1}^N L_i\notin\mathcal{P}$ for every natural number N. Let N be a natural number. For each $i\geq 1$ let us consider a partition L_i' between A_i and B_i in Y such that $L_i=L_i'\cap X$. Note that for every i there exists a natural number $n_i\geq 2$ such that for any $n\geq n_i$ $L_i^n=L_i'\cap(\{\frac{1}{n}\}\times\mathbb{I}^n)$ is a partition between $\{\frac{1}{n}\}\times A_i^n$ and $\{\frac{1}{n}\}\times B_i^n$ in $\{\frac{1}{n}\}\times\mathbb{I}^n$. Let n a fixed integer with $n\geq \max\{n_1,\ldots,n_N,k(N)\}$. Then $C=(\bigcap_{i=1}^N L_i^n)\cap(\{\frac{1}{n}\}\times E_n)=(\bigcap_{i=1}^N L_i)\cap(\{\frac{1}{n}\}\times E_n)$ is a closed subset of $\bigcap_{i=1}^N L_i$, and $C\notin\mathcal{P}$ by the assumption. So $\bigcap_{i=1}^N L_i\notin\mathcal{P}$.

We shall also use the following.

Lemma 2.2 ([8, Lemma 5.2]) Let L_{i_j} be partitions between the opposite faces $A^n_{i_j}$ and $B^n_{i_j}$ in \mathbb{I}^n , where $1 \leq i_1 < i_2 ... < i_p \leq n$ and $1 \leq p < n$. Then for any $k \neq i_j, j = 1, ..., p$, there is a continuum $C \subset \bigcap_{j=1}^p L_{i_j}$ meeting the faces A^n_k and B^n_k .

Lemma 2.3 Let α be an ordinal number with $1 \leq \alpha < \omega_1$. Then there exist subsets Q_{α} , P_{α} and D_{α} of \mathbb{I} such that

- 1. $Q_{\alpha} \in \mathcal{A}(\alpha) \mathcal{M}(\alpha)$,
- 2. $P_{\alpha} \in \mathcal{M}(\alpha) \mathcal{A}(\alpha)$,
- 3. $D_{\alpha} \in \mathcal{A}(\alpha+1) \cap \mathcal{M}(\alpha+1) (\mathcal{A}(\alpha) \cup \mathcal{M}(\alpha)).$

Proof of Theorem 1.1. (1) We shall prove for Y_{α} only. We put

$$Y_{\alpha} = (\{0\} \times \mathbb{I}^{\infty}) \cup (\bigcup_{n=2}^{\infty} \{\frac{1}{n}\} \times \pi_n^{-1}(Q_{\alpha})),$$

where Q_{α} is the subspace \mathbb{I} described in Lemma 2.3 and $\pi_n: \mathbb{I}^n \to \mathbb{I}$ be the projection onto the n-th factor. By the construction of Y_{α} , it is clear that $\mathcal{M}(\alpha)$ -trdef $Y_{\alpha} \leq \operatorname{trdef} Y_{\alpha} \leq \omega_0$, and $\mathcal{M}(\alpha)$ -trsur $Y_{\alpha} \leq \omega_0$. Since the absolute Borel classes are preserved under perfect preimages, it follows that $\pi_n^{-1}(Q_{\alpha}) \in \mathcal{A}(\alpha)$. Thus, $Y_{\alpha} \in \mathcal{A}(\alpha)$ and hence $\mathcal{A}(\alpha)$ -trind $Y_{\alpha} = -1$. Now, it suffices to show that $\mathcal{M}(\alpha)$ -trind $Y_{\alpha} = \infty$. To apply Lemma 2.1, for every natural number m let k(m) = m+1. For each $n \geq k(m)$ and each $i \leq n$ let L_i^n be a partition between A_i^n and B_i^n in \mathbb{I}^n . By Lemmea 2.2, there exsits a continuum C such that $C \subset \bigcap_{i=1}^n L_i^n$ and $C \cap A_i^n \neq \emptyset \neq C \cap B_i^n$. Let $\pi_n^C = \pi | C: C \to \mathbb{I}$ be the restriction of the projection π_n over C. Then $C \cap \pi_n^{-1}(Q_{\alpha}) = (\pi_n^C)^{-1}(Q_{\alpha}) \subset \bigcap_{i=1}^n L_i^n \cap \pi_n^{-1}(Q_{\alpha})$. Since $C \cap \pi_n^{-1}(Q_{\alpha})$ is closed set of $\bigcap_{i=1}^n L_i^n \cap \pi_n^{-1}(Q_{\alpha})$ and $(\pi_n^C)^{-1}(Q_{\alpha}) \notin \mathcal{M}(\alpha)$, it follows that $\bigcap_{i=1}^n L_i^n \cap \pi_n^{-1}(Q_{\alpha}) \notin \mathcal{M}(\alpha)$. Thus, it follows from Lemma 2.1 that $\mathcal{M}(\alpha)$ -trind $Y_{\alpha} = \infty$. This completes the proof.

(2) The second part of Theorem 1.1 is a direct consequence of the following proposition.

Proposition 2.3 Let X be a separable metrizable space with $\mathcal{A}(\alpha)$ -trind $X \leq \mu_1$ and $\mathcal{M}(\alpha)$ -trind $X \leq \mu_2$. Then

$$\mathcal{A}(\alpha)\cap\mathcal{M}(\alpha) ext{-trind }X=\left\{egin{array}{ll} \mu_1+n(\mu_2)+1, & ext{ if }\lambda(\mu_1)=\lambda(\mu_2),\ \mu_1, & ext{ if }\lambda(\mu_1)>\lambda(\mu_2). \end{array}
ight.$$

Proof. The proposition can be proved by a standard transfinite induction on $\nu = \max\{\mu_1, \mu_2\}$.

Connect with Proposition 2.1, we ask the following question.

Question 2.1 Does there exsit a separable metrizable space X_{α} such that $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)$ -trind $X_{\alpha} > \max\{\mathcal{A}(\alpha)\text{-trind }X_{\alpha}, \mathcal{M}(\alpha)\text{-trind }X_{\alpha}\}$ for each ordinal number α ? In particular, does there exist a separable metrizable space X such that $\mathcal{C}_0 \cap \mathcal{S}\text{-ind }X = 1$ and $\mathcal{C}_0\text{-ind }X = \mathcal{S}\text{-trind }X = 0$?

Recall from M.G. Charalambous ([2]) that we call a subset A of a space X a Bernstein set if $|A \cap B| = |(X \setminus A) \cap B| = c$ for every uncountable Borel set B of X, where c denotes the casrdinality of the continuum. It is known that every uncountable completely metrizable space X has countably many disjoint Berstein sets. We notice that $A \notin \mathcal{AB}$ for every Berstein set A of an uncountable completely metrizable space X.

Proof of Theorem 1.2. Let F be a Berstein set of \mathbb{I} . We put $X = (\{0\} \times \mathbb{I}^{\infty}) \cup (\bigcup_{n=1}^{\infty} \{\frac{1}{n}\} \times \pi_n^{-1}(F))$. Then, we can show that X is the desired space by an argument similar to Theorem 1.1.

Connect with Theorem 1.1, we may ask the following question.

Question 2.2 For each ordinal numbers α and β with $1 \leq \alpha < \omega_1$ and $0 \leq \beta < \omega_1$ do there exist separable metrizable spaces $X_{\alpha,\beta}$ and $Y_{\alpha,\beta}$ which satisfy the following conditions?

- 1. $\mathcal{A}(\alpha)$ -trind $X_{\alpha,\beta} = \beta$,
- 2. $\mathcal{M}(\alpha)$ -trind $Y_{\alpha,\beta} = \beta$, and
- 3. $\mathcal{M}(\alpha)$ -trind $X_{\alpha,\beta} = \mathcal{A}(\alpha)$ -trind $Y_{\alpha,\beta} = -1$.

References

- [1] J.M. Aarts, T. Nishiura, Dimension and Extensions, North-Holland, Amsterdam 1993
- [2] M.G. Charalambous, On transfinite inductive dimension and deficiency modulo a class P, Topol. Appl. 81 (1997) 123-135
- [3] R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, Lemgo, 1995.

- [4] A. Lelek, Dimension and mappings of spaces with finite deficiency, Colloquium Mathematicum 12 (1964) 221-227
- [5] E. Pol, The Baire-category method in some compact extension problems, Pacific J. Math. 122: 1 (1986) 197-210
- [6] R. Pol, On transfinite inductive compactness degree, Colloq. Math. 53 (1987), 57-61.
- [7] S.M. Srivastava, A Course on Borel Sets, Springer Verlag, New York, 1998
- [8] L.R. Rubin, R.M. Schori, J. J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topol. Appl. 10 (1979) 93-102

(V.A. Chatyrko)

Department of Mathematics, Linköping University, 581 83 Linkeping, Sweden.

vitja@mai.liu.se

(Y. Hattori)

Department of Mathematics, Shimane University, Matsue, Shimane, 690-8504 Japan

hattori@riko.shimane-u.ac.jp