oooooooogon
1533 0 2007 O 49-63

Formulas with only one atomic formula in
Grzegorezyk logic and provability logic *

Katsumi Sasaki (64 KRB FEILUARZEEERFTE)

sasaki@ms.nanzan-u.ac.jp
Faculty of Mathematical Sciences and Information Engineering,
Nanzan University

Abstract. Here we discuss the set S(p) of the formulas having only one atomic formula
p in Grzegorczyk logic Grz and the set S(L) of the formulas having only one atomic
formula L in provability logic GL. We give an inductive construction of representatives
in the quotient set S(p)/ =grs modulo the provability of Grz. On the other hand, in
Boolos [1], it was shown that any formula 4 € S(L) is equivalent to some truth-functional
combination of formulas of the form OF L in GL. We modify it and give representatives in
the quotient set S(L)/ =qr, which correspond to the representatives for Grz. By these
representatives, we clarify structures (S(p)/ =Grz, <crz) and (S(1)/ =cr, <gL), where
<y, is the derivation in L € {Grz, GL}. Comparing these two structures, we also give a
way to express the GL-provability of formulas in S(L) in Grz. In spite of the simplicity
of S(p) and S(L), it is worth considering since the quotient sets are infinite. There is few
result on such structures with infinite quotient sets. One result was given in Nishimura
[7) in intuitionistic propositional logic, however, the target set of formulas are also simple,
with only two atomic formulas p and L. Shehtman [11] considered more general structure
for Grz. however, in our simple case, our results have more infomation.

1 Introduction

In this section, we introduce Grzegorczyk logic Grz and provability logic (or Godel-Léb
logic) GL. We use lower case Latin letters p, g, - - -, possibly with suffixes, for propositional
variables. Formulas are defined inductively, as usual, from the propositional variables
and L (contradiction) by using logical connectives A (conjunction), V (disjunction), >
(implication) and O (necessitation). We use upper case Latin letters A, B, - - -, possibly
with suffixes, for formulas. The expression O"A is defined inductively as 0%4 = A and
Ok A = O(O*A). For a finite S of formulas, we put OS = {0A | A € S}. We fix the
enumeration ENU of formulas. For a finite non-empty set S of formulas, the expressions
/\ S and \/ S denotes the formulas A; AAgA---AA, and A; VA2V -+ -V Ay, respectively,
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where 8 = {Ay,--+,A,} and A; occurs earlier than A; in ENU if ¢ < j. Also we put
/\(Z) =1 > .1 and \/(?) = 1. The depth d(A) of a formula A is defined inductively as
d(D) = 0 for any atomic formula D, d(BAC) = d(BVC) = d(B > C) = max{d(B), d(C)}
and d(OB) = d(B) +1. Let D be an atomic formula in {p, L }. By S(D), we mean the set
of formulas constructed from D by using A, V, D and 0. We put 8*(D) = {B € S(D) |
d(B) £ n}.

By Grz, we mean the smallest set of formulas containing all the tautologies, and the

" axioms K : 0(AD B) D> (DADOB), T:0AD A, grz: 0(0(AD>DOA) D> A) DUA

(Grzegorczyk axiom), and closed under modus ponens and necessitation. By GL, we
mean the smallest set of formulas containing all the tautologies, and the axioms K and
L:0(0A > A) D OA (Ldb’s axiom), and closed under modus ponens and necessitation.
Let L be either Grz or GL. We write A =y, B if (A D B) A (B D A) € L. Also for
any equivalent classes [A] and [B] modulo the provability of L, we write [A] <y, [B] if
A O B € L. We also use this kind of notations for other logics. '

- A Kripke model is a triple M = (W, R, P), where W is a non-empty set, R is a binary
relation on W and P is a mapping from the set of propositional variables to 2¥. The truth
valuation (M, ) | A, a formula A is true at « € W in M, is defined by an induction
on A in the usual way. The expression M |= A denotes (M, a) |= A for every o € W.
Since P(p) = {a | (M, ) = p}, we can extend the mapping P to the set of formulas as

P(4) = {a| (M,0) = A}.

Lemma 1.1.1

(1) A € Grz iff M |= A for any finite Kripke model M = (W, R, P) with partial orders
(i. e. W is finite and R is a partial order). '

(2) A € GL iff M |= A for any finite Kripke model M = (W, R, P) with strict partial
orders (i. e. W is finite and R is a strict partial order).

Lemma 1.2. For L € {Grz, GL},

(1) 0(AA B) =, DAADB,

(2) OkA > OFA €L for k> 0,7 >0,
(3) AD B €L implies DAD OB €L,
(4) OAD Be L impliesDAD OB € L.

2 The structure (S(p)/ =Grz; <Grz)

In this section, we construct representatives of equivalent classes in S*(p)/ =gr. and
clarify the structure (S(p)/ =Grz) <Grz). It is known, however, structures (S™(p)/ =Grz
, <arz) are boolean(cf. [3]). Also the quotient set is finite. So, we have only to construct
representatives of generators of the boolean.

1¢f. K. Segerberg [10] and A. Chagrov and M. Zakharyaschev [3].
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Definition 2.1. A list Fy, Fy,- - - of formulas are defined inductively as Fy = p and
Fyp = Fy D OF.

Lemma 2.2. Fork > 0,

(1) OF;, D OFk4; € Grz (i > 0),

(2) Fk A Fk+1 =Grz DFk;

(3) D(DFk_H D) DFk) =Grz DFk,

(4) Fiy2 A (OFiq1 D OF) =gra Fi,

(5) OFk =ars \{DOFkser1 D OFpe | £= 0,1, +,i = 1} U {Fipiy Frpina}) (62 0).

Proof. By Lemma 1.2(4), we have (1). By the axiom T', we have (2).

We show (3). By the axiom T', we have (OFk41 D OFy) D (OFk41 D Fi) € Grz, and
using Lemma 1.2(3), O(OFyy; D OF) D O(0Fk4 D Fi) € Grz. By the axiom grz,
we have O(OFy; D Fi) D OF; € Grz. Hence O(OFy; D OFy) D OF € Grz. The
converse is from Lemma 1.2(4).

We show (4). Let be that A = Fy4oA(DFkt1 D OFy). We note that Fyiy D (A D OF)
is a tautology. Using the axiom T, we have Fyy; D (A D Fi) € Grz. We also note that
Fi D (A O F;) and Fy V Fiy1 are tautologies. Hence we have A D Fy € Grz. On
the other hand, we note that (F A Fy,1) D OFj is a tautology, and using (1) and the
axiom T, we have (Fi A Fiy1) O OFky1 € Grz and (Fx A OFyy1) D OF € Grz. So,
Fi. D (Fi41 D OFjyy) = Fy D Fiey2 € Grz and Fy, O (OF;y1 D OF) € Grz.

We show (5). By (1), we have OF; =grz A({DFk+e41 D OFkte | £=0,1,---,i—1}U
{OFy4:}), and using (2), we obtain (5). -

Definition 2.3. The sets G, (n = 0,1,2,---) of formulas are defined as Go = {Fo}
and Gk+]_ = {Fk, Fk+1, DFk D DFk—l, SN DF]_ >} DF()}.

‘Theorem 2.4.
(1) 8"#)/ =ax= = {{\S]18 € Ga}.
(2) For any subsets Sy and Sy of G, 81 € Sy iff [/\ S2] <Grz [/\ S1).

To prove the theorem above, we need some preparations.

By N, odd and even, we mean the set of integers 0,1,2, - - -, the set of odd numbers
1,3,5,- - -, and the set of even numbers 0, 2, 4, - - -, respectively. We define the Kripke model
Mg, = <WGrz7 R, PGrz>7 where Wg,, = N, Rgy, = {(k,e) ' k > £} and PGrz(p) = odd.

Lemma 2.5.

(1) (Mgys, k) | F; iff either i > k ori+k € odd,

(2) (MGrnk) I= DE zﬁz > k. .

Proof. We use an induction on .

Basis(i = 0): We note that 0 > k does not hold. So, by the definition of Pgr., we have
(1). By kRgr,0 and (Mg, 0) ¢ Fy, we have (Mgrz, k) = OFp, and so, we obtain 2).

Induction step(i > 0): We show (1). By the definition of |=, we have

(MGrz’k) l# E iff (MGrzyk) l= E—l and (MGf'z’k) bé DFl‘l'
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Using the induction hypothesis,
| (Mara k) b Fyiff “i—1>kori—1+k€odd” andi—1<k.
We note that i — 1 > k and ¢ — 1 < k do not hold simultaneously. So,
(Mgrs, k) e Fyiffi—1+k€oddandi—1< k.
Ifi—1=k theni—1+k(=k+1—-1+k=2k) ¢odd. So,
(Mgrs k) e Fiiffi—1+k€oddandi—1<k.
So,
(Mg, k) = Fiiff i + k ¢ odd and i < k.

We show (2). Suppose that i # k. Then we have k > i, and so kRg.t. On the
other hand, by (1), we have (Mgy,,%) = F;. Hence we obtain (Mg, k) = OF;. Suppose
that ¢ > k. If kRg, k', then we have i > %', and using (1), ¥’ = F;. Hence we obtain
(MGrz, k) l’: DE~ .

Lemma 2.6.

(1) None of the formulas in Gy, is provable in Grz.

(2) S = {Fon}U{OFp+1 D OF% | k=0,1,---,n—1} is a subset of Gy, and a subset
of Gon-1, and /\ S =arz P,

(3) For any A,B € G,, A # B implies AV B € Grz.

(4) For any A,B € Gy, A # B implies B =gz AD B.

(5) n # 0 implies \ G, =gz Op.

Proof. For (1). By Lemma 2.5(2), we have (Mg, i) = OF;41 and (Mgy,, 1) f OF,
and so, (Mg, 1) & OF;41 D OF;. Also by Lemma, 2.5(1), we have (Mg, 1) = F;. Using
Lemma 1.1(1), we obtain (1).

For (2). By an induction on n and Lemma 2.2(4).

For (3). We use an induction on n. If n = 0, then (3) is clear. Suppose that n > 0.
~ We note that F, V F,,_; and (OF,,_; D OF,_3) V F,_; are tautologies. By Lemma 2.2(1),
Fn V_(DFk.H ) DFk) (k = 0,1,"',?’& - 2) and (DFn_l ) DFn_z) \% (DFk_H ) DFk)
(k =0,1,---,n — 3) are tautologies. The other cases can be shown by the induction
hypothesis. Hence we obtain (3).

For (4). By (3).

For (5). By Lemma 2.2(5). =

Lemma 2.7. Let S; and S; be subsets of G,,. Then
1) (AS1) A (A S2) =cr \(S1USy),
@) (AS1) V(A S2) =ars \(81182),
(3) (/\ S1)D (/\ S2) =Grz /\(Sz - S1),

(4) if Sy # 0, then O(/\ 81) =crs OFy, where k = min({i | F; € $;} U {i | OFy41 D

OF; € S1}).
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Proof. (1) is from associative law and commutative law of A. For (2) and (3), we
use Lemma 2.6(3) and Lemma 2.6(4), respectively. We show (4). By Lemma 1.2(1) and

Lemma 2.2(3),
0(/\ S1) =ar /\(@S)
=crs \({OF: | F; € 8;} U{O(0F;4; D OF,) | OF;y; D OF, € S1})

=cr: \({OF; | F € 81} U{OF; | OF,4; > OF, € S}).

Using k = min({i | F; € S;} U {i | OF;4; D OF; € S;}), and Lemma 2.2(1), we obtain
D(/\ Sl) =Grz DFk. -

Lemma 2.8. Let A be a formula in S™(p). Then there exists a subset S of G such
that A =Grz /\ S.

Proof. We use an induction on A. If A = p, then by Lemma 2.6(2) we obtain the
lemma. If A # p, then by the induction hypothesis, Lemma 2.7 and Lemma 2.2(5), we
obtain the lemma. =

Proof of Theorem 2.4. (1) is from Lemma 2.8. The “only if” part of (2) is clear.
We show the “if part” of (2). Suppose that [A S2] <grz [A S1] and S; € S;. By S; € Sa,
there exists a formula A in S; — S,. Using [A S2] <grz [/ S1], we have AS; O A € Grz.
Since A € S, using Lemma 2.6(4), we have A\ Sz D A =gz 4, and so, we have A € Grz.
This is in contradiction with Lemma 2.6(1). A

Theorem 2.4 provides representatives of S*(p)/ =crz. Next, we clarify the structure
(S(p)/ =Grs, <gras). We first introduce an exact model, which is useful to clarify this kind
of structures if the quotient set is finite. Let S be a set of formulas closed under D. A
Kripke model (W, R, P) is said to be an exact model for S in a logic L if the following
two conditions hold:

(1) P maps S onto 2%,

(2) forany A€ S, Ac Liff P(A) =W.

The condition (2) above is equivalent to

(3) forany A€ S, AD BeLiff P(A) C P(B).

So, P is a homomorphism from (S, R) to (2¥,C), where R = {(4,B) | A D> B € L}.
If an exact model for a set S in a logic L is given, then we can construct a structure
isomorphic to (S/ =r,, <1) as follows. By (3), for any B € [A]=,, we have P(A) = P(B).
Hence we can define a one-to-one mapping f from S/ =, to 2% as f([4]) = P(A). By
(1), f is onto, and so, an isomorphism. Hence (S/ =y, <y) is isomorphic to (2%, C).

So, giving a concrete exact model for S in L is an effective way to clarify a structure
(S/ =1L,<r). Bruijn [2], Hendriks [6] used this model for the set of disjunction free
formulas with finite number of atomic formulas in intuitionistic propositional logic, and
gave precise description on the structure, while Diego [4], Urquhart {12] and (8] treated
the same structure. [9] also used this model for the set of disjunction free formulas with
finite number of atomic formulas in a normal modal logic, called propositional lax logic,
and gave precise description on the structure. Also exact models are useful to clarify such
kind of structures if quotient sets are finite.
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However, if S/ =, is not finite, then there is no exact model for S in L. Suppose that
there is an exact model. Then (S/ =y, <1} is isomorphic to (2%, C). So, 2% is not finite,
and neither is W. So, 2% is not countable. On the other hand, since S is countable, so
are the quotient set and 2". This is a contradiction. Although Nishimura [7] clarified the
structure, with infinite quotient set, for the set of formulas with only two atomic formulas
p and L in intuitionist logic, results on such structures with infinite quotient sets are few.

The quotient set S(p)/ =gz is not finite. This makes our problem difficult. There
is no exact model for S(p) in Grz. So, we modify exact model in order to treat such
infinite case. The idea has already used in general frame described in [3]. The structure
(W, R, Q) in the definition below is called a general frame in [3].

Definition 2.9. A structure (W, R, P, Q) is said to be a general exact model for a set
S of formulas in a logic L if the following four conditions hold:

(1) (W, R, P) is a Kripke model,

(2) Q is a subset of 2%

(3) Im(P)(={P(A) | A€ 8}) = Q

(4) forany A€ S, AcLiff P(A)=W.

Similarly to the description of exact models, we have

Lemma 2.10. Let (W, R, P, Q) be a general exact model for a set S of formulas in a
logic L. Then

(1) we can define a one-to-one mapping f from S/ =, to Q as f([A]) = P(A), and f
is an isomorphism from (S/ =r, <) to (@, C),

(2) (S/ =1, <1) is isomorphic to (Q, C).

[11] constructed the structure (W, R, P) satisfying the first two conditions in Definition
2.9 and

(5) {{w} |w e W} C Im(P),
for the set S of formulas having only n propositional variables p;, - - -, p,. However, he did
not clarify Im(P)(= Q), in a sense, and so, we have not known the structure (S/ =, <r).
After the proof of Theorem 2.13, we will give an example as this reason

We will clarify (S(p)/ =arz, <arz) by giving a concrete general exact model for S(p)
in Grz. Theorem 2.4 and Lemma 2.5 are useful for it. We put

Qsin(S) = {S1 | S1 is a finite subset of S},

Odd2k+1 = {'L € odd I 12> 2k + 1},

eveny = {i € odd | i > 2k},

Ne={i]|i >k},

Qins = {0ddzk+1 | k € N} U {eveny | k € N} U{Ni | k € N},

Qor: = {S1US3 | 81 € Qfin(N), Sz € Qins U {0}}.

Lemma 2.11. S, T € Qinf implies SN'T € Qg,,.
Proof. Below, we only show the case that S € {oddy+; | K € N}. The other cases
can be shown similarly.
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oddag 41 Noddzer; = oddpax{2k+1,2e41}
oddy; Neveny = 0,
oddg;1 N Nogy1 = 0ddmaxizr+1,2e41)

_ 0dd2k+1 if2k+1>2¢
oddzk4+1 N Ny = { {2} Uoddys; if 2k+1 < 2¢.

Lemma 2.12. Qg is closed under N.
Proof. Let S and T be any sets in Qgr,. Then there exist S;, Ty € Qfin(N) and
Sz, T2 € Qins U {0} such that S =S; US; and T = T; U T;. So,

SNT = (Sl USg) ﬂ(T1 UTg) = (Sl ﬂ(Tl UTz)) U (SgﬂTl) U(Sg nTz).

We put U = (S; N (T, UT;))U(S2NT,), and note that U € Qy;n(N). If either S; or T
is @, then we have SN'T = UUD € Qgyr,. So, we assume that Sz, Tz € Qins. By Lemma
2.10, there exist U; € Qfin(N) and Uz € Qjns such that S; N Ty = Uy U Uy, Clearly,
(UUUy) € Qfin(N),and s0, SNT =U U (S; NT2) = (UUU) UU; € Qors. -

Theorem 2.13. The structure (Wayz, Rgrzy Porz, Qarz) 45 a general exact model for
S(p) in Grz. A

Proof. The conditions (1) and (2) in Definition 2.9 are clear. So, it is sufficient to
show the following:

(3) Im(PGrz) = QGrz’

(4) A € Grz iff Pg,,(A) = Wag,,.
We show (3). Suppose that S € Im(Pg,,). Then there exists a formula A such that
Pori(A) = S. Let be that n = max{d(A),1}. Then using Lemma 2.8, there exists a

subset S; of G, such that A =g, /\ S;. So,
Pors(A) = {k | (Mcrs, k) = [\ S1} = {k | (Mgrs, k) I= B, for any B € S;}

= [ {k | (Mars,k) = B} = (] Pors(B)-
BeS; BES;

By Lemma 2.5, we have :

(5) PGrz(DFk+1 D DFk) =N -— {k} = {2 ] 0<i< k} UNgs1 € Qorzs

(6) PGrz(sz) = {’l, I 1< Qk} Uodd; € Qgyz,

(7) Pgra(For+1) = {i | i < 2k + 1} Ueveny € Qgr,.
So, for any formula B € G, we have Pg,,(B) € Qgr., and using Lemma 2.11, we obtain
S = PGrz(A) € Qarz-

Suppose that S € Qgy,. Then there exist S; € Qin(N) and S; € Qins U {0} such
that S = S; US;. On the other hand, by Lemma 2.5, (5), (6) and (7), we have

PGrz(Dp) = 0:

PGrz((DFk+1 > DFk) ) Dp) = {k}7 :

P (For, D Op) = N — ({¢ | © < 2k} U odd;) = eveny,

Pery(Fag41 D Op) =N — ({i | i < 2k + 1} U eveny) = oddgi+1.
Also,

For:((For © Op) V (Fag41 D Op)) = Ny,
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Parz((Fak+1 D Op) V (Fakt2 D Op)) = Nog1. ‘
Here we note that Sy = Pg,,(B) for some B € S(p). We also note for any formulas C

and D,
PGrz(C) U PGrz(D) = {z l (MGrz: 7’) '= C} U {Z I (MGrzvi) }: D}
= {i | (Mgys,i) = C V D} = Pg,,(C v D).

Hence

8=85,U8;= ( U {k}) U PGrz(B) = ( U PG'rz((DFkH ) DFk) 2 DP))) U PGrz(B)
keSS, k€S,

= Per,(\/{(OF41 D OF,) D Op | k€ 81} V B).

If S; = 0, then the set above is Pg,,(B), and hence S € Im(Pg,,); if not, we have
V{(OFk41 D OF;) D Op| k € 81} € S(p), and hence we obtain S € I'm(Pg).

We show (4). Form Lemma 1.1, we have the “only if” part. Suppose that A €
S™(p) — Grz. Then A #grz A 0. Using Lemma 2.8, there exists a non-empty subset S of
G, such that A =g, A S. Since S # 0, using Lemma 2.6(1), (Mgr., k) = \S for some
k € Wgr,. By A D AS and the “only if” part of (4). we have Pgr.(A D AS) = War,,
and so, (Mgrz, k) = A. Hence Pgr.(A) # Wers. : -

From the theorem above, we can see that the set {3n | n € N} does not belongs to
Q(= Im(P)), while from [11] we can’t see it directly.

Corollary 2.14. (S(p)/ =Grs, <ars) s isomorphic to (Qgrs, C).
Also by sketching the proof of Theorem 2.13, we also have

Theorem 2.15. Let be that M3,, = (W&,,, R%,,, P&.,), where W%, ={i|0<i<
n}l Rgrz = RGrz N ( g'rz X Wgrz) and P&er(p) = PGN’(p) n Wgrz Then
(1) M., is an ezact model for S"(p) in Grz,
- (2) (S"(p)/ =Grz, <grz) is isomorphic to (2Wér:, C),
(3) for any A € 8™(p), A=ara \{F(K) | (MG, k) - A}, where

f(k)"‘ DFk-H ) DFk szSk‘Sn—2
| Fx ifn—1<k<n.

3 The structure (S(1)/ =qL, <qL)

In this section, we treat the structure (S(l)/ =qL,<cL) as in the previous section. In
[1], we can see many useful results for our study, and most of the result here can be
given by considering carefully the correspondence between proofs in [1] and the structure.
However, since [1] does not aim at the structure, there are notions that we do not need.



Also we would like to compare the structures here with the one in the previous section.
So, we treat the structure in a similar way to the previous sections. Some lemmas below
can be proved using results in [1] but we will give their proof directly in the case that we
have to define new notions in order to use the result in [1] and the case that it seems to
be better in order to compare the structure with the one in the previous section.

- First, we construct representatives in the quotient set 8"(L)/ =qL.

Definition 3.1. The sets G% (n = 0,1,2,---) of formulas are defined as G; =
{ori,o"L>orvil,... 0L > 1}

Lemma 3.2. For k>0, O(0k1L > 0OF 1) =g, OFFLL.
Proof. By Lemma 1.2(3) and the axiom L. 4

Théorem 3.3.
(1) 8"(1)/ =ar. = {IA\S]|SC G}
(2) For any subsets S; and S; of G}, S; C Sy iff [/\ Sa] <aL [/\ S1).

Theorem 3.3 can be proved using the lemma in [1] below, but we have to check depth
of formulas and independence of the elements in Gj,.

Lemma 3.4([1)). If A is a formula in S(L), then there exists a truth-functional
combination B of formulas of the form O% L such that A =gy, B.

Here we prove Theorem 3.3 in a similar way to section 2. Some lemmas we will show
are useful to the investigation in section 4.

We define the Kripke model Mg, = (Wgr, RaL, Por), where Wgr, = N, Rgp =
{(k,£) | k > £} and Pgr(A) = 0 for any propositional variable A.

Lemma 3.5. (Mg, k) E 'L iff i > k.
Proof. By an induction 5. . -

[1] introduced two notions rank and trace, and using the result in [1], we can show
that the rank of k € Wgy, is k and that the trace of a formula A is Pgr(A). As the result,
the lemma above is just the lemma in [1](Lemma 5 in Chapter 7).

Lemma 3.6.

(1) None of the formulas in G}, is provable in GL.

(2) Fork <n, A{O"L,O"L > O 11, ... OF1L D O%L} =¢ OFL.

(3) For any A,B € G}, A # B implies AV B € GL,

(4) For any A,B € G}, A # B tmplies B =g, AD B.

Proof. By Lemma 3.5 and Lemma 1.1(2), we have (1). By Lemma 1.2(2), we have
(2) and (3). By (3), we have (4). n
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Lemma 3.7. Let S; and S, be subsets of G;. Then

1) (ASD) A (A\S2) =cr A(S1U8y),
@) (/\S1) V(A S2) =er A\(S1N8y),

3) (A S1) > (A\S2) =cr A(S2 -8,

(4) if S1 # 0, then O(/\ S1) =er T* L, where k = min({n+1|0O"L € S;}U{i+1|
Ol > 0L € S1}).

Proof. (1),(2) and (3) can be shown similarly to Lemma 2.7. (4) can also be shown,
but we use Lemma 3.2 and Lemma 1.2(2) instead of Lemma 2.2(3) and Lemma 2.2(1). -

Lemma 3.8. Let A be a formula in S*(L). Then there ezists a subset S of G}, such

that A =qQL /\ S.
Proof. We use an induction on A. If A= 1, then by Lemma 3.6(2),

/\G:l = /\{Dnl’ o"L> Dn-l-l-v Y 0L> ‘L} =GL 1=A

If A # L, then by the induction hypothes1s, Lemma 3.7 and Lemma 3.6(2), we obtain
the lemma -

Similarly to Theorem 2.4, Theorem 3.3 is proved by Lemma 3.8, Lemma 3.6(1) and
Lemma 3.6(4).
Next, we clarify the structure (S(1)/ =gL, <gL) by giving a concrete general exact
model for S(1) in GL. We put
QoL = {81US; | 81 € Qfin(N),S2 € {Ni | k € N} U {0}}.

Lemma 3.9. Qg is closed under N.

Proof. Let S and T be any sets in Qgz. Then there exist S;, Ty € Qfin(N) and
S;, Tz € {N | k € N}U{0} such that S = S;US; and T = T,UT;. Similarly to the proof
of Lemma, 2. 11 SNT = UU(SgnTz) where U = (Slﬂ(T1UT2))U(SgnT1) € Qfm(N)
On the other hand we have S; N T, € {Ny | k € N}U {0} since N; \N; = Nypax(i ) and
N;N@=0. Hence SNT € Q¢;.

Theorem 3.10. The structure (Wgr, Ror, Por, Qcr) 15 a general ezact model for
S(1) in GL.

Proof. The conditions (1) and (2) in Definition 2.9 are clear. Also (4) in Definition
2.9 can be shown similarly to the proof of Theorem 2.13 using Lemma 3.6(1) and Lemma
3.8. So, it is sufficient to show

(3) Im(Per) = Qo
Suppose that S € Im(Pgr;). Then there exists a formula A such that Pgp(A4) =
Let be that n = d(A). Then using Lemma 3.8, there emsts a subset S, of G}, such that
A=qL /\ S:. So, similarly to Theorem 2.13, we have Pgr(A ﬂ Pg(B). By Lemma

BeS;
3.5, we have

(5) PGL'(D’“'H_L D l:lk_L) =N—-{k}={i|0<i<k}UNiy € Qqr,
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(6) PGL(Dk.l.) = {Z l 1< k}} € Qar.
So, for any formula B € G, we have Pgr(B) € Qgr, and using Lemma 3.9, we obtain
S = PGrz(A) € Qore-

Suppose that S € Qgz. Then there exist S; € Qin(IN) and S; € {Ni | k € N} U {0}
such that S = S; US,. On the other hand, by Lemma 3.5, (5) and (6), we have

(7) Par(L) =0,

(8) Por((0*+11 > 0¥ 1) > 1) = {k} € Qo

(9) Por(OFL > 1) = Ny € Qgi.
Here we note that S; = Pgr(B) for some B € S(L). Also similarly to Theorem 2.14, for
any formulas C and D, Pgr(C) U Pgr(D) = Pgr(C V D). Hence

S=81USy=(|J{k})UPsr(B) = (|J Par((@*'L>O*L) D> 1)U PG;Z(B)
kEeS; k€S
= Por,(\/{(@*"'L D O*L) D L | k€ 1}V B).

Hence we obtain S € Im(Pgyr). -

Considering the relations that the rank of k € Wy is k and that the trace of a formula
Ais Pgr(A), the conditions (4), (8) and /m(Pgr) € Qar, in the proof above, have been
shown in [1].

Corollary 3.11. (S(1)/ =qr, <aL) is isomorphic to {QarL, C).
Also by sketching the proof of Theorem 3.10, we also have

Theorem 3.12. Let be that M&, = (W&, R%., P&,), where W&, = {i| 0 < i <n},
R%; = Rgp N (W&, x Wg&,) and P3.(q) = Psr(q) for any q. Then

(1) Mg, is an exact model for S"(1) in GL,

(2) (S*(L)/ =L, <qL) is isomorphic to (2Wér, C),

(3) for any A € 8*(1), A=cr, \{f(k) | (MZy,k) = A}, where

okt o0OF L f0<k<n-—1

f(k)x{ okt if k =n.

4 GL-provability of formulas in S(1) in Grz

Comparing (S(p)/ =crs <arz) With (S(L)/ =gL, <cL), we can see some kinds of corre-
spondence between them. We show one kind of correspondence by giving a way to express
the GL-provability of formulas in S(.L) in Grz. More precisely, we give a mapping g from
S(L) to S(p) satisfying for any formula A € S(L),

A € GL iff g(A) € Grz.
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On the other hand, Goldblatt [5] gave a mapping *, satisfying for any formula A,
A* € GL iff A € Grz.

From this, we can know the Grz-provability of any formulas in GL. Our result is a kind
of the converse of his result with restriction.

Definition 4.1. A list go, g1, - - - of mappings from S(.L) to S(p) are defined inductively
as follows:

(1) gt(-L) = D-Fi)

(2) gi(B ® C) = g,(B) ® g‘i(c)v for ® € {/\)Vv D};

(3) 9:(0B) = Og;41(B).

Also we put g;(S) = {g:(4) | A € S}. The mapping go transforms the formula
0(0OL > 1) D 01, an instance of the axiom L, into a formula

g(0(0L D 1) D Ol)=0(00(F, > 0OFR) > 0F) > 00R).

Here we note that the image is similar to O(Q(F; D OF;) D F) D OF}, an instance of
the axiom grz, and that the image and the instance are equivalent in Grz. The mappings
g; also have the same property since

g(0(0L > 1) >0L) =0(00(F4: D OFy,) D 0OFy,;) DO0F,,).

Lemma 4.2.

(1) g:(O%L) = O Py =gre OFyi.

(2) g:(O*1L D OFL) =Grz OFkyig1 O OFy.

Proof. We have (1) by an induction on k. By (1), we have (2). .

Theorem 4.3. For any formula A € S(1), and for any 1,
A € GL iff g;(A) € Grz.

To prove the theorem above, we define a mapping h and show three lemmas.

Definition 4.4. For a subset S of Gy, we put
hi(S) = {Fnts | O"L € S} U {Foyitr | D"L € S}

U H{sm(@*Loot) okl oot L e s
k=1

Lemma 4.5. Let S and S; be subsets of G},. Then for any t,

(1) hi(S) C Gryit1,

(2) A9i(8) =arz A i(8),

(3) S # S, wmplies A\ hi(S) Fare N hi(S1).

Proof. (1) is clear from the Lemma 4.2. (2) is from Lemma 2.2(2). We show (3).
Suppose that S # S;. Then either SZ S; or S; € S. Using (1) and Theorem 2.4(2), we
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(S1)] or [A hi(S1)] Lare [A Ri(S)]. So, either (A h;i(S)) D

have either [A ;i (S)] £arz [ P
)) D (Ahi(8))) € Grz. Hence A hi(S) #ZGrza APi(S1). -

(A Ri(81))]) & Grz or (A hi(S:

Lemma 4.6. Let S; and S, be subsets of G},. Then for any 1,
(1) (A R(S) A (/\ 1i(82)) Zces [\ Bi(S1US2),
2) (A\P(81) V (/\ hi(S2)) =ars [\ 151N S2),

(3) (A Ri(81)) D (A hi(S2)) Zcre /\ Bi(S2 — S1),

(4) if Sy # 0, then D(/\ hi(S1)) =@re OF;, where k = min({n+i | O"L € S;}U{j+1 |
L o0l €8y)).

Proof. We note that h,(Sl) U h,,(SQ) = h,-(Sl U SQ), h,(Sl) N h,(82) = h,'(Sl N S2) and
hi(S2) — hi(S1) = hi(Sz — S1). So, using Lemma 2.7 and Lemma 4.5(1) we obtain (1), (2)
and (3). _

We show (4). By Lemma 2.7(4) and Lemma 4.5(1), l‘_‘l(/\ hi(S1)) =arz OF, where
k= min({j l F_’, € h,(Sl)} U {j I DE7-+1 D DF} € h,(Sl)}) So, k = min({n+z' I S
Sl}U{j‘i‘i | ot o Djlesl}). -

Lemma 4.7. Let A be a formula in S™(L) and let S be a subset of Gy,. Then for any
i
A=ar )\ S iff 9:(A) =cra N 9:(8)

Proof. We use an induction on A.
Basis(A = l): By Lemma 3.6(2), we have A= 1 =qL /\G;. By Lemma 4.5(2),
Lemma 4.6(4), we have

N\ 9:(G}) =cra /\ hi(G}) =are OF; = gi(L) = gi(4).
So, if S = G2, then we have both of A =g /\s and gi(A) Sars [\ 9:(S). If not, then
by Theorem 3.3(2), A ZaL /\ S, and by Lemma 4.5(2) and Lemma 4.5(3),

/\gz(S =Grz /\h $Grz /\h —Grz /\gz(G =Grz gt(A)

and 80, gz(A) fi-Grz Agl(s)
Induction step(A # L): We divide the cases.
The case that A = A; A A3: We note A;, A; € S"(L). So, by Lemma 3.8, there exist

subsets S;,S2 of G such that A; =qr /\81 and A; =qL /\Sg. Using the induction
hypothesis, g;(A1) =ara /\gz’(sl) and g;(A2) =Grs /\gi(sz)- By Lemma 3.7(1),

| A= Al A Az =gL (/\ Sl) A (/\ S2) =QL /\(Sl U Sg)
Also by Lemma 4.5(2) and Lemma 4.6(1),
gi(A) = 6i(A1) A gi(A2) Zars (/\ 51(81)) A (\ 9:(52)) =ara (/\ Bi(81)) A (\ hi(S2))
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=Grz /\ hi(S1US3) =gra /\91(51 US,).

So, considering the cases that S = S; US, and that S # S; U Sy, we obtain the lemma
similarly to Basis.

The case that A = A; V A, can be shown similarly, but we use Lemma 3.7(2) and
Lemma 4.6(2) instead of Lemma 3.7(1) and Lemma 4.6(1). Also the case that A= A; D
Ay we use Lemma 3.7(3) and Lemma 4.6(3) instead of them.

The case that A = OA;: Similarly to the above cases, there exists a subset S; of G} _,

such that for any k, A; =qL /\81 and gx(A1) =Gra /\gk(Sl).
If S1 {, then we have

A=D0A, =qL D/\(Z)EGL OLl>l)=aLlDl=qaL /\(b
and
gi(A) = Ogiy1(A1) =ar= O /\gi+1(0) =0 /\ 0 =Gra /\ hi(0) =Gra /\gi(@)

So, considering the cases that S = () and that S # (), we obtain the lemma similarly to

Basis.
If S; = {O"11}, then we have

A=0A,=q. 0 /\{Dn-ll} =GL /\{D"_L}

and
9i(4) = i(0A1) = Ogia (A1) Scee O A\ gia ({0 1})

=Grz Dgz+1(|3" I-L) =Grz gz(Dn-l— =Grz /\gz {Dn-L}) =Grz /\h {Dn-]-})

So, consxdenng the cases that S = {O"L} and that S # {O"L}, we obtam the lemma
- similarly to Basis.

Suppose that S; ¢ {0,{0"!L1}} = P({O""'L}). Then we have S; ¢ {O"'L}.
Since 8; C G},_;, we have § # S; — {O"'1} C {O~'L > O"!l,..-,0L D> L}. So,
there exists the minimum & of {¢ | O‘L D 0! € S;}. By Lemma 3.7(4) and Lemma
3.6(2),

A= DA] =qr O /\Sl =GL Dk_l_

=cGL /\{El".L, 0"l > D""l_]_, e oktly 5 Dk_L}'
Also by Lemma 4.5(2) and Lemma 4.6(4),
9i(4) = g:(0A1) = Ogis1(A1) Sars O /\ gi41(S1) Zara O /\ Pi+1(81) =Grz OFi4s
=Grz /\{F”““’ Foyi, OF 1 D OF i1, -+, OFk4441 D OFy}
=Grz /\ hi({Dn'L’ Dn']' > Dn—l-L) "ty Dk+1.L D) Dk—L}) N

=Grz /\gi({Dn_L, o L D"'-l_[_, ey Dk'H‘_L ») Dk_L}).
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So, considering the case that S = {071, 0" > O*!Ll ... O] > OF1} and the
other case, we obtain the lemma similarly to Basis. -

Considering the case that S = () in Lemma 4.7, we obtain Theorem 4.3.
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