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Upper and lower bounds of numerical radius and
an equality condition
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ABSTRACT
In this report, we give an inequality among operator norm and numerical radii
of T and its Aluthge transform. It is a more precise estimation of the numerical
radius than Kittaneh’s result. Then we obtain an equivalent condition that the
numerical radius is equal to the half of operator norm.

This is based on the following paper:
(Y] T. Yamazaki, On upper and lower bounds of the numerical radius and an
equality condition, Studia Math., 178 (2007), 830 89.

1. INTRODUCTION

For a bounded linear operator T on a complex Hilbert space #, we denote the operator
norm and the numerical radius of T' by ||T|| and w(T), respectively. It is well known
that w(T') is an equivalent norm of T' as follows [5, Theorem 1.3-1]:

(11) SIT1 < w(T) < |,

On the second inequality, Kittaneh [8] has shown the following precise estimation of
w(T) by using several norm inequalities and ingenious techniques:

: 1 1
(12) w(T) < SIIT|+ 5722
Obviously, (1.2) is sharper than the right inequality of (1.1). We remark that we can

not compare w(T) with_||T2||%, generally. In fact, let T = (g (1)) Then 0 = HTzug <
010 1

w(T)=3. ButletT= {0 0 1}. Then 715 =w(T) < ||T?|)} = 1.
000

We obtain a sufficient condition of w(T) = L||T|| by (1.1), (1.2) and [8] that is, if
T? = 0, then w(T) = }||T||. But it is not to be a necessary condition. In fact, let
T=1& (g g) Then w(T) = £||T|| = 1, but T? # 0. We remark that some conditions

of w(T) = 3||T|| are known in [5, Theorems 1.3-4 and 1.3-5], but any equivalent condition
has not been known yet.



Let T = U|T| be the polar decomposition of T. The Aluthge transform T of T is
defined by T = |T|3U|T|? in [1]. It is well known the following properties of T: (i)
1T < |7, (i) w(T) < w(T) and (iii) 7(T) = r(T). The first and last properties are
easy by the definition of T, and the second one is shown in [7], [9] _and [11]. Moreover
for a non-negative integer n, we denote n-th Aluthge transform by T, i.e.,

TN
—~

Th= (ﬁrl) and Tb =T,
This was first considered by (7] and [10], independently.

In this paper, firstly, we shall obtain more precise estimation than (1.2). In the

inequality, we use a bigger term || T|| and a smaller one w(T') than w(T'). Moreover the

- proof is very simple and needs only generalized polarization identity. Next, we shall give
an equivalent condition that w(T) = ||T| holds.

2. SHARPER INEQUALITY THAN KITTANEH’S RESULT

In this section, we shall show a sharper estimation of w(T') than Kittaneh’s one (8] as
follows:

Theorem 2.1. For any T € B(H), w(T) < l||T|| + %w(f)

We remark that by the Heinz inequality [6] || A"X B"|| < ||AXB||X||*"" for A, B >0
and r € [0,1], we have

(2.1) w(@) < |T| = IT3U|T3| < ITI0ITE I )E = 72018,

i.e., Theorem 2.1 is sharper than (1.2).
To prove Theorem 2.1, we use the following famous formula which is called the gener-
alized polarization identity:

Theorem A (Generalized Polarization Identity). For each T € B(H) and z,y € H,
1
(Tz,y) = 7({T(z +y),2 +y) - (T(@ - 9),2 - ¥))
+ %(<T(w +iy),z +iy) — (T(z — iy), ¢ — iy)).

Proof of Theorem 2.1. First of all, we note that
(2.3) | | w(T) = sup ||Re(e*T)||
8eR

(2.2)

holds, since
sup Re{e(T'z,z)} = (Tz, )|
8eR .

and
sup |Re(e?*T)|| = sup w(Re(e?T)) = w(T).
8€R feR
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Let T = U|T| be the polar decomposition. Then by (2.2), we have
(e®Tz, z) = (®|T |z, Uz) |
- i((|T|(e"9 + Uz, (6 + U*)a) — (|IT|(e° - U")z, (€ — U™)z)) |
+ %((IT|(e“’ + iUz, (€9 +iU%)) — (|T|( — iUz, (¢ — iU*)a)).

Noting that all inner products of the terminal side are all positive since |T| is positive.
Hence we have '

-Re(ewTa:,a:) = :11-(((6"'9 +U)IT|(e? + U*)z,z) — ((e7% — U)|T|(e® — U™z, x))

IA

(7 + U)IT|(e* + U")a, z)

IN

I(e™ + U)ITI(e® + U))

T E® + U*)(e™® + DT (by [X*X| = |XX*])

el Al T RO I g g e

12IT( + €T + (T

IIT| + Re(e*T))|

IN

1 i
I + 5IRe(e*T)|

< SITI+ 30D by (23))

2
Hence we have the desired inequality. | 0
Corollary 2.2. If T =0, then w(T) = 3T

Proof. The proof is easy by Theorem 2.1 and (1.1). O

Remark. (i) In Corollary 2.2, the conditions T = 0 and w(T) = 3Tl are not equivalent.

In fact,let T =16 (8 (2)) Then w(T) = 1||T|| = 1. Butf=1®09é0.

(ii) Conditions T = 0 and T? = 0 are equivalent as follows: Let T = U|T| be the polar
decomposition of T'. If T' = 0, then

T? = U|T|U|T| = U|T)3T|T|3 = 0.
Conversely, if T? = 0, then by (2.1) we have ||T| < ||T?|1 =o.

Corollary 2.3. For T € B(H), w(T) < Z 2%“’1::1 -

n=1



131

Proof. By using Theorem 2.1 several times, we have

w(T) < ST + su(@)
< 71+ 3 (31T + Jui
= SITI+ ZIF) + Ju(E)

1 1 ~ 1 ~ 1 =~
< = ht d ud
< IT+ ZITN + g Tell + gw(Ts)

< il Il
- a
Let s(T) = f; zlnnrz’*;_‘lu. By (2.1), ||A]| < ||A?]|7 < ||A| hold for any A € B(#H), and
we obtain .
(24) (D) S ull) < I+ 0@ < o) < SIT) + 51720 < T,

where 7(T') means the spectral radius of T'.
It is well known that T is normaloid (i.e., ||T'|| = 7(T)) if and only if |T| = w(T).
Here we give more weaker conditions of normalodity of T than ||T|| = w(T') as follows:

Corollary 2.4. The following conditions are mutually equivalent:
(i) T is normaloid,
(i) |7 = sl(T ), .
(it}) ~(T) = SIT| + u(D),
(iv) s(T) = s(T).
Remark.
(i) In Corollary 2.4, the condition (ii) can not be replaced into more weaker con-

010
dition ||T|| = ||T|| + 3||T?|5. For example, let T = (0 0 1) . Then
’ 000
IT|| = 3TN+ 172013 = 1 but 0 = (T) < |T].
(ii) In Corollary 2.4, the condition (iii) can not be replaced into more weaker condi-

tion r(T) = w(T), either. In fact let T = 16 () 2 ). Then 1 =r(T) = w(T) <
|IT|l = 2. (We call the operator satisfying r(T) = w(T') spectraloid.)
To prove Corollary 2.4, the following formula will be used.

Theorem B ([10]). For any T € B(H), nli_l;ﬁlo 1Tl = r(T).



Proof. (i) == (ii), (iii) and (iv) are obvious by (2.4) and r(T) = r(T) < s(T) < s(T) <
I71- |

Proof of (ii) = (i). By the definition of s(T),

1 1 =
(25) o) = 3ITI + ()
holds. Then by the assumption (ii), we have

' 1 1 =
(T) = 2|1T)) + 53(F) = |7
and s(F) = | 7). )
On the other hand, since the inequality ||T’|| < ||T’|| always holds, then we have
so(T) <|IT|| < |7l = s(D),

and we have s(T) = ||T|| = |T|. By using the same technique, we have \T| = ||ﬁ|| for
all n € N. Hence by Theorem B, we have

IT) = lim |Z5] = r(T),
that is, T is normaloid.
Proof of (iii) = (i). By (iii) and r(T) = r(T), we have
1 1 =~ 1 1 ~ 1 1
@ = SIT0+ 5w 2 ST+ ) = 2T+ (D),
that is, 7(T) > ||T|| then #(T) = ||T|.

Proof of (iv) = (ii). ‘By (2.5) and the assumption (iv), i.e., s(T) = s(T), we have
(ii). : a

In [2], Ando shows that W(T) = W(T) is equivalent to coo(T) = W(T) (i.e., T is
convexoid) for any matrix T', where coo(T") means the convex hull of the spectrum of T
The author thinks that this is a parallel result to the equivalence between (i) and (iv).

So the author expects that s(T") has some interesting properties.

3. EQUIVALENT CONDITION OF w(T) = 1||T|

In Corollary 2.2, we have obtained a sufficient condition that w(T) = %||T}|| holds.
Some conditions of w(T") = L||T'|| are known in [5, Theorems 1.3-4 and 1.3-5]. But it has
not been known any equivalent condition of w(T) = }||T|. In this section, we give an
equivalent condition of w(T") = £||T|| holds as follows:

Theorem 3.1. Let T € B(H). The following conditions are equivalent:
() w(T) = 3], |
(i) IT|| = |Re(e®T)|| + || Im(e®*T)|| for all 8 € R.

We remark that the condition (ii) should not be replaced into “||T| = ||Re(e*T)| +
IIm(e®T)|| for some § € R.” Because if T is a non-zero self-adjoint operator, then
ITHl = |IReT|| + [ImT'|| = [|ReT||, but w(T) = |T|| > | T|I.

To prove Theorem 3.1, we need the following theorem:
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Theorem C ([3]). Let A, B € B(H) be non-zero. Then the equation |4 + BI] |All +
|B| holds if and only if |A|||B|| € W(A*B).

Proof of Theorem 3.1. Let €T = Hy + 1Ky be the Cartesian decomposition of e®T. We
remark that

(3.1) K9 = HG—%v

because !0~ 3T = —ie®T = K, — iH, holds.
Proof of (i) = (ii). Since w(T") = sup | He| = sup | Kol by (2-3) and (3.1), we have

IT|| = le®T|| = || Ho + iKoll < ||Holl + || Ksll < w(T) +w(T) = T
Hence we have (ii).
Proof of (ii) = (i). For any 8 € R, (ii) ensures ||Hs|||| Ks|| € W (H; (iKs)) by Theorem

C, i.e., —i| Hs||| Kol| € W(HsKs). Since —i||Hy||||Ks|| is a purely imaginary number and
Im(HyKy) = Im(HpKj) holds for all § € R, we have

| Holl| Koll = w(HoKp) = ||Im(HoKo)|| = ||Im(HoKo)l.
Then for all § € R, we have the following conditions

{ | Hol| + [ Koll = IT|
| Ho|l| Kol = [[Tm(HoKo)ll,

that is,

1Tl + VITI? - 4lIm(HoKo)| |71 = VITI? — 4[Im(HoKo)|
2 2 ’

and | Kj|| is another of the above. We remark that these values do not depend on
8 € R. So the function ||Hs|| on 8 € R takes only two values by (3.1). Here by the easy
calculation, we have

1 Hell =

Hy = Hycos 9 Kpsiné.-

Hence by the continuity of operator norm, the function ||Hp|| is continuous on 8 € ]R
Therefore the function ||Hy|| must take only one value by intermediate value theorem,
ie.,

' 1
I1Eall = 1Kl = 317k

Hence we have (i). a
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