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1 Introduction
The main purpose of this short paper is to show the existence and the asymptotic
stability of a stationary solution to the initial boundary value problem for a one-
dimensional quantum hydrodynamic model of semiconductors. We also study a
singular limit from this model to the classical hydrodynamic model. This limit is
called a classical limit. In this paper, we briefly discuss the results in our paper [14].

A quantum effect, depending on particle resonant tunneling through potential
barriers and charge density built-up in quantum wells, is not negligible in analysis
on the behavior of electron flow through semiconductor devices as they become
truly minute. The quantum hydrodynamic model is one of several models including
quantum effect and derived from the moment expansion of the Wigner-Boltzmann
equation (see [1, 4] for details).

It is formulated as the system of equations, corresponding to the conservation
law of mass, the balance law of momentum and the Poisson equation

$\rho_{t}+j_{x}=0$ , (l.la)

$j_{t}+( \frac{j^{2}}{\rho}+p(\rho))_{x}-\epsilon^{2}\rho(\frac{(\sqrt{\rho})_{xx}}{\sqrt{\rho}})_{x}=\rho\phi_{x}-j$, (l.lb)

$\phi_{xx}=\rho-D$ . (l.lc)

The equation (l.lb) contains a momentum relaxation term, standing for the momen-
tum change due to collisions of electrons with atoms in the semiconductor crystal,
and a dispersion term based on the quantum (Bohm) potential. The unknown func-
tions $\rho,$ $j$ and di denote the electron density, the electric current and the electrostatic
potential, respectively. The scaled Planck constant $\epsilon$ is equivalent to the Planck con-
stant $\hslash$ , that is, $\epsilon=C\hslash$, where $C$ is a positive constant. The pressure $p$ is supposed
to be

$p=p(\rho)=K\rho$ , (1.2)
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where $K$ is the positive constant. Moreover, $D=D(x)\in B^{0}(\overline{\Omega})$ is a given function,
called doping profile (distribution of the density of positively ionized impurities in
semiconductor devices) and satisfies

inf $D(x)>0$ . (1.3)
$x\in \mathrm{W}$

The system (1.1) is studied over the bounded domain $\Omega:=(0,1)$ . We prescribe
the initial and the boundary conditions to the system (1.1) as

$(p,j)(0,x)=(\rho_{0},j_{0})(x)$ , (1.4)
$\rho(t, 0)=p\iota>0$ , $p(t, 1)=p_{f}>0$ , (1.5)

$(\sqrt{p})_{xx}(t, 0)=(\sqrt{p})_{xx}(t, 1)=0$ , (1.6)
$\phi(t, \mathrm{O})=0$ , $\phi(t, 1)=\phi_{r}>0$ , (1.7)

where $\rho_{l},$ $\rho_{f}$ and $\phi_{f}$ are given constants. Here let us mention about boundary
conditions on the quantum effect. Engineers study two kinds of boundary conditions
for the quantum effect (see [4, 15]). One boundary condition is (1.6), which means
the quantum (Bohm) potential vanishes on the boundary. Another is $p_{x}=0$ on the
boundary. A controversy, which boundary condition is reasonable for the quantum
effect, still continues between researches in physics and engineerings.

In order to construct a classical solution, assume that the compatibility condition
hold at $(t, x)=(\mathrm{O}, 0)$ and $(t,x)=(\mathrm{O}, 1)$ , i.e.,

$\rho(0,0)=p_{l}$ , $p(\mathrm{O}, 1)=\rho_{r}$ , $j_{x}(0,0)=j_{x}(0,1)=0$ ,
$(\sqrt{P})_{xx}(0,0)=(\sqrt{p})_{xx}(0,1)=0$. (1.8)

Moreover the initial data are supposed to satisfy a subsonic condition and a positivity
of the density

$\inf_{x\in\Omega}(p’(p\mathrm{o})-\frac{j_{0}^{2}}{\rho_{0}^{2}})(x)>0$ , $\inf_{x\in\Omega}p\mathrm{o}(x)>0$ . (1.9)

We construct the solution to problem (1.1) and $(1.4)-(1.7)$ around the above initial
data $(\rho_{0},j_{0})$ to satisfy same condition: the subsonic condition and the positivity of
the density

$\inf_{x\in\Omega}(p’(\rho)-\frac{j^{2}}{p^{2}})>0$ , (1.10a)

$\inf_{x\in\Omega}\rho>0$ . $(1.10\mathrm{b})$

An explicit formula of the electrostatic potential

$\phi(t, x)=\Phi[\rho](t, x)$

$:= \int_{0}^{x}\int_{0}^{y}(\rho-D)(t, z)dzdy+(\phi_{r}-\int_{0}^{1}\int_{0}^{y}(\rho-D)(t, z)dzdy)x$ (1.11)
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is given by integrating (l.lc) with the aid of the boundary condition (1.7).

The researchers in semiconductors pay more attentions to the quantum model
recently as they become minute. The pioneering works in mathematics are given
by J\"ungel and Li $[6, 7]$ . Both of papers adopt the boundary condition $\rho_{x}(t, 0)=$

$\rho_{x}(t, 1)=0$ for the quantum effect, instead of (1.6). They establish the existence of
the stationary solution in [6]. Precisely, it is proved that: for a given electric current

$\tilde{j}$ , there exists a certain value of the boundary potential $\phi_{f}$ such that the stationary
solution exists. However, the engineering experiments measure the electric current

$\tilde{j}$ for the given potential $\phi_{f}$ on the boundary. Therefore, it is necessary to reconsider
this problem to cover the problem in physics and engineerings. The stability of the
stationary solution is shown in [7] under the flatness assumption of the doping profile,
i.e., $|D(x)-\rho_{\iota}|\ll 1$ . This assumption is too narrow to cover actual semiconductor
devices. For instance the typical example of the doping profile, drawn in [4], does
not satisfies this assumption. The asymptotic stability of the stationary solution
for the non-flat doping profile had been an open problem, which is solved by the
authors in [14].

Notation. For a nonnegative integer $l\geq 0,$ $H^{l}(\Omega)$ denotes the l-th order Sobolev
space in the $L^{2}$ sense, equipped with the norm $||\cdot||_{l}$ . We note $H^{0}=L^{2}$ and
$||\cdot||:=||\cdot||_{0}$ . $C^{k}([0, T];H^{l}(\Omega))$ demotes the space of the $k$-times continuously
differentiable functions on the interval $[0,T]$ with values in $H^{l}(\Omega)$ . For a nonnegative
integer $k\geq 0,$ $B^{k}(\overline{\Omega})$ denotes the space of the functions whose derivatives up to k-th
order are continuous and bounded over $\overline{\Omega}$, equipped with the norm

$|f|_{k}:= \sum_{i=0}^{k}\sup_{x\in\pi}|\partial_{x}^{1}f(x)|$ .

Throughout the present paper $C$ and $c$ denote various generic positive constants.

2 Asymptotic stability of stationary solution
This section is devoted to considering the unique existence and the asymptotic
stability of a stationary solution $(\tilde{p},\tilde{j},\tilde{\phi})$ , which is a solution to (1.1) independent
of a time variable $t$ , satisfying a system of equations

$\tilde{j}_{x}=0$ , (2.1a)

$(K- \frac{\tilde{j}^{2}}{\tilde{\rho}^{2}})\tilde{\rho}_{x}-\epsilon^{2}\tilde{\rho}(\frac{(\sqrt\rho_{xx}\circ}{\sqrt{\tilde{p}}})_{x}=\tilde{\rho}\tilde{\phi}_{x}-\tilde{j}$ , (2.1b)

$\tilde{\phi}_{xx}=\tilde{\rho}-D$ (2.1c)
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and boundary conditions

$\tilde{p}(\mathrm{O})=p\iota>0$ , $\tilde{\rho}(1)=\rho_{f}>0$ , (2.2)
$(\sqrt{\tilde{\rho}})_{xx}(0)=(\sqrt{\tilde{\rho}})_{xx}(1)=0$ , (2.3)

$\tilde{\phi}(0)=0$ , $\tilde{\phi}(1)=\phi_{f}>0$ . (2.4)

Dividing the equation (2.1b) by $\tilde{p}$ and integrating the resultant equality over the
domain $\Omega$ give the current-voltage relationship

$\phi_{f}=F(\rho_{r},\tilde{j})-F(p_{\mathrm{t}},\tilde{j})+\tilde{j}\int_{0}^{1}\frac{1}{\tilde{p}}dx$ . (2.5)

The strength of the boundary data

$\delta:=|\rho_{r}-p\iota|+|\phi_{f}|$ (2.6)

plays a crucial role in the following analysis.

Lemma 2.1. Let the doping profile and the boundary data satisfy conditions (1.3),
(1.5) and (1.7). For an arbitrary $\rho_{\mathrm{t}}$ , there exist positive constants $\delta_{1}$ and $\epsilon_{1}$ such that
if $\delta\leq\delta_{1}$ and $\epsilon\leq\epsilon_{1}$ , then the stationary problem $(2.1)-(2.4)$ has a unique solution
$(\tilde{p},\tilde{j},\tilde{\phi})\in B^{4}(\overline{\Omega})\cross \mathcal{B}^{4}(\overline{\Omega})\cross B^{2}(\overline{\Omega})$ satisfying the conditions (1.10). In addition, the
electric current $j$ is written by the formula,

$\tilde{j}=J[\tilde{p}]:=2B_{b}\{\int_{0}^{1}\tilde{p}^{-1}dx+\sqrt{(\int_{0}^{1}\tilde{\rho}^{-1}dx)^{2}+2B_{b}(\rho_{f}^{-2}-\rho_{l}^{-2})}\}^{-1}$ , (2.7)

$B_{b}:=\phi_{f}-\{\log\rho_{r}-\log\rho\downarrow\}$ .

The proof of the existence of the stationary solution $(\tilde{\rho},\tilde{j},\tilde{\phi})$ is given by the
Leray-Schauder fixed point theorem. The uniqueness is proved by the elementary
energy method. At $1\mathrm{a}s\mathrm{t}$ , we get the formula (2.7) by solving the current-voltage
relationship (2.5) with respect to $\tilde{j}$ .

In order to state the stability theorem of the stationary solution, we give a
definition of the function spaces as

$\overline{X}_{1}^{l}([0, T]):=\bigcap_{k=0}^{[:/2]}C^{k}([0,T];H^{l+i-2k}(\Omega))$ for $i,$ $l=0,1,2,$ $\cdots$ ,

$\overline{\mathfrak{X}}_{i}([0, T]):=\overline{\mathfrak{X}}_{1}^{0}([0,T])$ for $i=0,1,2,$ $\cdots$ ,
$\mathfrak{Y}([0, T]):=C^{2}([0, T];H^{2}(\Omega))$ ,

where $[\mu]$ denotes the largest integer which is less than or equal to $\mu$ .
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Theorem 2.2. Let $(\tilde{\rho},\tilde{j},\tilde{\phi})$ be the stationary solution of $(2.1)-(2.4)$ . Suppose that
the initial data $(\rho_{0}, j_{0})\in H^{4}(\Omega)\cross H^{3}(\Omega)$ and the boundary data $p\iota,$ $p_{r}$ and $\phi_{r}$ satish
(1.5), (1.7), (1.8) and (1.9). Then there exists a positive constant $\delta_{2}$ such that if
$\delta+\epsilon+||(p_{0}-\tilde{\rho},j_{0}-\tilde{j})||_{2}+||(\epsilon\partial_{x}^{3}\{\rho_{0}-\tilde{\rho}\}, \epsilon\partial_{x}^{3}\{j_{0}-\tilde{j}\}, \epsilon^{2}\partial_{x}^{4}\{\rho_{0}-\tilde{\rho}\})||\leq\delta_{2}$ , the
initial boundary value problem (1.1) and $(1.4)-(1.7)$ has a unique solution $(\rho,j, \phi)$

in the space $\overline{X}_{4}([0, \infty))\cross\overline{\mathfrak{X}}_{3}([0, \infty))\cross \mathfrak{Y}([0, \infty))$ . Moreover, the solution $(\rho,j, \phi)$

verifies the additional $regular\dot{\eta}ty\phi-\tilde{\phi}\in\overline{\mathfrak{X}}_{4}^{2}([0, \infty))$ and the decay estimate

$||(\rho-\tilde{\rho},j-\tilde{j})(t)||_{2}+||(\epsilon\partial_{x}^{3}\{\rho-\tilde{p}\},\epsilon\partial_{x}^{3}\{j-\tilde{j}\},\epsilon^{2}\partial_{x}^{4}\{\rho-\tilde{\rho}\})(t)||+||(\phi-\tilde{\phi})(t)||_{4}$

$\leq C(||(\rho_{0}-\tilde{\rho},j_{0}-\tilde{j})||_{2}+||(\epsilon\partial_{x}^{3}\{p_{0}-\tilde{\rho}\},\epsilon\partial_{x}^{3}\{j_{0}-\tilde{j}\}, \epsilon^{2}\partial_{x}^{4}\{\rho_{0}-\tilde{p}\})||)e^{-\alpha_{1}t}$,
(2.8)

where $C$ and $\alpha_{1}$ are positive constants, independent of $t$ and $\epsilon$ .
In the proof of Theorem 2.2, we first obtain the elliptic estimate from the formula

(1.11), and then we construct the unique existence of the time local solution by using
an similar iteration method as in [8, 9, 13]. Next, an energy form is introduced in
order to obtain the basic estimate. Moreover, apply the energy method to the system
of the equations for the perturbation from the stationary solution to get the higher
order estimates. Then the existence of the time global solution follows from the
combination of the existence of the time local solution and an a-priori estimate.
Finally, the decay estimate (2.8) is shown by the uniform estimates thus obtained.

Remark 2.3. In the above theorem, we do not need the flatness assumption of
doping profile. Moreover, the condition $\epsilon\ll 1$ is reasonable since the system (1.1)
is derived under this condition (see [1, 4] in details),

$- 3$ Classical limit
In this section, we consider the singular limit of the solution $(\rho,j, \phi)$ to the problem
(1.1) and $(1.4)-(1.7)$ as the parameter $\epsilon$ tends to zero. This problem is called a
classical limit. Hereafter, solutions to (1.1) and $(1.4)-(1.7)$ are written with the
suffix $\epsilon$ as $(\rho^{\epsilon},j^{\epsilon}, \phi^{\epsilon})$ . On the other hand, $(p^{0},j^{0}, \phi^{0})$ stands for a solution to the
hydrodynamic model

$\rho_{t}^{0}+j_{x}^{0}=0$ , (3.1a)

$j_{t}^{0}+( \frac{(j^{0})^{2}}{\rho^{0}}+p(\rho^{0}))_{x}=p^{0}\phi_{x}^{0}-j^{0}$ , (3.1b)

$\phi_{xx}^{0}=p^{0}-D$ , (3.1c)

which is obtain by substituting $\epsilon=0$ in (1.1). For the derivation of (3.1), see
$\mathrm{B}\mathrm{l}\emptyset \mathrm{t}\mathrm{e}\mathrm{k}\mathrm{j}\mathrm{a}\mathrm{e}\mathrm{r}[2]$. The initial and the boundary data to (3.1) are same as those to (1.1)
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except the boundary data (1.6) for the quantum effect, i.e., (1.4), (1.5) and (1.7).
The unique existence and the asymptotic stability of a stationary solution to (3.1),
verifying the subsonic condition (1.10a) and the positivity of the density (1.10b), are
shown in $[5, 13]$ . These results are stated in Lemmas 3.1 and 3.2 below. Note that
the stationary solution $(\tilde{\rho}^{0},\tilde{j}^{0},\tilde{\phi}^{0})$ to (3.1), independent of time value $t$ , satisfies the
system of equations

$\tilde{j}_{x}^{0}=0$ , (3.2a)

$\{K-(\tilde{j}^{0}/\rho)^{2}\triangleleft\}\rho_{x}=\tilde{p}^{0}\tilde{\phi}_{x}^{0}\triangleleft-\tilde{j}^{0}$ , (3.2b)

$\tilde{\phi}_{xx}^{0}=\rho-\triangleleft D$ (3.2c)

with the boundary conditions (2.2) and (2.4).

Lemma 3.1. Let the doping profile and the boundary data satisfy conditions (1.3),
(1.5) and (1.7). For an arbitrary $p_{1}$ , there exists a positive constant $\delta_{3}$ such that
if $\delta\leq\delta_{3}$ , then the stationary problem (2.2), (2.4) and (3.2) has a unique solution
$(\tilde{\rho}^{0},\tilde{j}^{0},\tilde{\phi}^{0})(x)$ satisfying the conditions (1.10) in the space $B^{2}(\overline{\Omega})$ . Moreover the
stationary solution satisfies the estimates

$0<c\leq\tilde{\rho}^{0}\leq C$ , $|\tilde{j}^{0}|_{0}\leq C\delta$, $|\tilde{\rho}^{0}|_{2}+|\tilde{\phi}^{0}|_{2}\leq C$, (3.3)

where $c$ and $C$ are positive constants independent of $\rho_{f}$ and $\phi_{f}$ .
Lemma 3.2. Let $(\rho^{\triangleleft},\tilde{j}^{0},\tilde{\phi}^{0})$ be the stationary solution of (2.2), (2.4) and (3.2). Sup-
pose that the boundary data $\rho\iota,$ $\rho$, and $\phi_{f}$ satisfy (1.5) and (1.7) In addition, assume
that the initial data $(\rho_{0},j_{0})\in H^{2}(\Omega)$ satisfy the condition (1.10) and the compatibility
condition $p_{0}(0)=\rho_{1},$ $\rho_{0}(1)=\rho_{r},$ $j_{0x}(0)=j_{0x}(1)=0$ . Then there exists a positive
constant $\delta_{4}$ such that if $\delta+||(p_{0}-\tilde{\rho}^{0},j_{0}-\tilde{j}^{0})||_{2}\leq\delta_{4}$, the initial boundary value prob-
lem (1.4), (1.5), (1.7) and (3.1) has a unique solution $(\rho^{0},j^{0}, \phi^{0})(t, x)\in \mathfrak{X}_{2}([0, \infty))$ .
Moreover, the solution $(\rho^{0},j^{0}, \phi^{0})$ verifies the additional regularity $\phi-\tilde{\emptyset}\in X_{2}^{2}([0, \infty))$

and the decay estimate

$||(\rho^{0}-\rho^{\triangleleft},j^{0}-\tilde{j}^{0})(t)||_{2}+||(\phi^{0}-\tilde{\phi}^{0})(t)||_{4}\leq C||(p_{0}-\tilde{p}^{0},j_{0}-\tilde{j}^{0})||_{2}e^{-\alpha_{2}t}$, (3.4)

where $C$ and $\alpha_{2}$ are positive constants independent of $t$ .
In Lemma 3.2, the function spaces $\mathfrak{X}_{2}$ and $X_{2}^{2}$ are defined by

$X_{2}([0, T]):= \bigcap_{k=0}^{2}C^{k}([0, T];H^{2-k}(\Omega))$ , $\mathfrak{X}_{2}^{2}([0, T]):=\bigcap_{k=0}^{2}C^{k}([0,T];H^{4-k}(\Omega))$ ,

respectively.
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Here we mention several results on the non-quantum model (3.1). Degond and
Markowich [3] show the unique existence of the $\mathrm{s}\mathrm{t}\mathrm{a}_{v}^{+}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{y}$ solution, satisfying the
subsonic condition (1.10a), to the one-dimensional non-quantum model with the
Dirichlet boundary condition. Li, Markowich and Mei [10] study the asymptotic
stability of the stationary solution. In their result, it is assumed that the Doping
profile is flat. For the non-flat doping profile, the asymptotic stability of the station-
ary solution is considered under the periodic boundary condition by Matsumura and
Murakami [12]. In the recent result [5], Guo and Strauss have shown the aeymptotic
stability of the stationary solution for the Dirichlet boundary condition with the
non-flat doping profile. Concerning this, also see [13].

We can expect that the solution to (1.1) converges that to (3.1) ae $\epsilon$ tends to
zero. In order to prove this expectation, it is firstly studied that the stationary
solution $(\tilde{p}^{e},\tilde{j}^{\epsilon},\tilde{\phi}^{\epsilon})$ to the problem $(2.1)-(2.4)$ approaches the stationary solution
$(\tilde{p}^{0},\tilde{j}^{0},\tilde{\phi}^{0})$ to the problem (2.2), (2.4) and (3.2) ae $\epsilon$ tends to zero. After that, we
investigate the convergence of non-stationary solutions. The former result follows
from the standard energy method.
Lemma 3.3. Suppose that the same assumptions in Lemmas Z.l and S.l hold. Let
$(\tilde{\rho}^{0},\tilde{j}^{0},\tilde{\phi}^{0})$ be the stationary solution to (2.2), (2.4) and (3.2), and $(\tilde{\rho}^{\epsilon},\tilde{j}^{e},\tilde{\phi}^{\epsilon})$ be
the stationary solution to $(2.1)-(2.4)$ . For an arbitrary $p_{l},$ there exists a positive
constant $\delta_{5}$ such that if $\delta+\epsilon\leq\delta_{5}$ , then the stationary solution $(\tilde{p}^{e},\tilde{j}^{\epsilon},\tilde{\phi}^{\epsilon})$ to $(2.1)-$

(2.4) converges the stationary solution $(\tilde{\rho}^{0},\tilde{j}^{0},\tilde{\phi}^{0})$ to (2.2), (2.4) and (3.2) as $\epsilon$ tends
to zero. Precisely,

$||\tilde{\rho}^{e}-\tilde{\rho}^{0}||_{1}+|\tilde{j}^{\epsilon}-\tilde{j}^{0}|+||\tilde{\phi}^{e}-\tilde{\phi}^{0}||_{3}\leq C\epsilon$ , (3.5)

$||(\partial_{x}^{2}\{\tilde{p}^{e}-\tilde{\rho}^{0}\},$ $\partial_{x}^{4}\{\tilde{\phi}^{e}-\tilde{\phi}^{0}\},\epsilon\partial_{x}^{3}\tilde{\rho}^{\epsilon},\epsilon^{2}\partial_{x}^{4}\tilde{p}^{\epsilon})||arrow 0$ as $\epsilonarrow 0$ , (3.6)

where the positive constant $C$ is independent of $\epsilon$ .
The classical limit of the non-stationary problem is summarized in the next

theorem.
Theorem 3.4. Assume that the same conditions in Theorem 2.2 and Lemma $S.Z$

hold. Then there exists a positive constant $\delta_{6}$ such that if
$\delta+\epsilon+||(\rho_{0}-\rho^{\triangleleft},j_{0}-\tilde{j}^{0})||_{2}+||(p_{0}-\tilde{\rho}^{\epsilon},j_{0}-\tilde{j}^{e})||_{2}$

$+||(\epsilon\partial_{x}^{3}\{\rho_{0}-\tilde{\rho}^{e}\}, \epsilon\partial_{x}^{3}\{j_{0}-\tilde{j}^{\epsilon}\},\epsilon^{2}\partial_{x}^{4}\{\rho_{0}-\tilde{\rho}^{\epsilon}\})||\leq\delta_{6}$, (3.7)

then the time global solution $(f,j^{\epsilon}, \phi^{\epsilon})$ to (1.1), $(1.4)-(1.7)$ appfoaches the solution
$(\rho^{0},j^{0}, \phi^{0})$ to (1.4), (1.5), (1.7) and (3.1) as $\epsilon$ tends to zero. Pfecisely,

$||(\rho^{\epsilon}-\rho^{0},j^{e}-j^{0})(t)||_{1}+||(\phi^{\epsilon}-\phi^{0})(t)||_{3}\leq\sqrt{\epsilon}Ce^{\beta t}$ for $t\in[0, \infty)$ , (3.8)

$\sup_{t\in[0,\infty)}\{||(\rho^{\epsilon}-\rho^{0},j^{\epsilon}-j^{0})(t)||_{1}+||(\phi^{\epsilon}-\phi^{0})(t)||_{3}\}arrow 0$ as $\epsilonarrow 0$ , (3.9)

where $\beta$ and $C$ are positive constants independent of $\epsilon$ and $t$ .
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The outline of the proof is as follow. First, the estimate (3.8) is obtain by the
energy method and the Gronwall inequality. Next, we show the convergence of the
density $\rho^{\epsilon}$ in (3.9) only since the others are similarly shown. Let $\gamma:=1/4$ and
$T_{1}:=\{\log 1/\epsilon^{(1/4)}\}/\beta$ . For $t\leq T_{1}$ ,

$||$ $(\rho^{e}-\rho^{0})(t)||_{1}\leq\sqrt{\epsilon}Ce^{\beta T_{1}}\leq C\epsilon^{1/4}$ (3.10)

holds by substituting $t=T_{1}$ in the estimate (3.8). For $T_{1}\leq t$ , use the estimates
(2.8), (3.4) and (3.5) to obtain

$|1$ $(p^{\epsilon}-\rho^{0})(t)||_{1}\leq C||(\rho^{\epsilon}-\tilde{\rho}^{\epsilon},\rho^{0}-\rho^{\triangleleft},\tilde{\rho}^{e}-\tilde{p}^{0})(t)||_{1}$

$\leq C(e^{-\alpha_{1}T_{1}}+e^{-\alpha_{2}T_{1}}+\epsilon)\leq C(\epsilon^{a_{1}/4\beta}+\epsilon^{\alpha_{2}/4\beta}+\epsilon)$ . (3.11)

These estimates mean $\sup||(p^{\epsilon}-p^{0})(t)||_{1}$ converges to zero as $\epsilon$ tends to zero.

Remark 3.5. The convergence of the stationary solution in Lemma S. $S$ ensures that
we can take the initial data $(\rho 0,j_{0})$ verifying the condition (3.7) in Theorem S.4 if
the constant $\epsilon$ is sufficient small.
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