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Abstract

For a certain quartic polynomial, there exists a homeomorphism
between the set of all components of the filled-in Julia set with the
'Hausdorff metric and some subset of the corresponding symbol space
with the ordinary metric known well. But these sets are not compact
with respect to each metric. We introduce new topologies with respect
to which these sets are compact.

1 Introduction and' the main results

Let C = C U {00} be the Riemann sphere and let f : € — € be a rational
function of degree d > 2. In the theory of the complex dynamics, there are
two important sets called the Fatou set F(f) and the Julia set J(f). The
Fatou set F'(f) is the set of normality in the sense of Montel for the family
{f"}azo, where f* = fo-..o f is n iterates of f. The Julia set J(f) is
the complement C \ F(f). J (f) is either connected or else has uncountably
many connected components. In the case that f is a polynomial, we define
the filled-in Julia set K(f) as

K(f)={z € C: {f*(z)}, is bounded}.

J(f) is the topological boundary of K(f). We call A(f) = C\ K(f) the
attracting basin of the point at infinity.

We often consider another model in order to smnphfy dynamics of f. The
model is the symbol space and the shift map defines a dynamical system on
the symbol space. Let X“ be the countable product of a set X.



Definition 1.1. The symbol space of g-symbols is the countable product
Yy = {1,2,...,q}*. For s = (sp) and t = (t,) € ¥y, a metric p on X, is
defined as

=~ 0(Sn, tn) 1 if k#1,
p(s,t) = ——, where 4(k,l) = { )
; 2 0 if k=1

Then (Z,, p) is a compact metric space. The shift map o : £, — %, is defined
as ‘ . : |

o((so, 81,82, - .. )) = (81,82,...).
The shift map o is continuous with respect to the metric p.

 The connectivity of the Julia set of a polynomial of degree two or more
is affected by the behavior of finite critical points.

Theorem 1.2. Let f be a polynomial of degree d > 2. If all finite critical
points of f are in A(f), then J(f) is totally disconnected. Furthermore f|;s)
is topologically conjugate to the shift map o : ¥4 — L4. On the other hand,
J(f) is connected if and only if all finite critical points of f are in K(f).

If some critical orbits of a polynomial converge to the point at infinity

156

but all critical orbits do not converge to it, then the Julia set is disconnected

and not generally totally disconnected. It is a problem whether dynamics

“of a polynomial on the Julia set can be simplified as dynamics of the shift
map on some symbol space when the Julia set is disconnected and not totally
disconnected. But it is difficult to make points of non-trivial connected com-
ponents of the Julia set correspond to points of some symbol space. Therefore
we consider the set of all components of the Julia set and make it correspond
to some symbol space. On account of the following arguments, we consider
not the set of all components of the Julia set but the set of all components
of the filled-in Julia set. But nothing essentially changes.

Definition 1.3. Let f be a polynomial of degree d > 2. The Green’s func-
tion associated with K(f) is defined as |

— ¥ 1 +| 1
G(z) = lim 108" |f"(2)],

where log*2 = max {log z,0}. G(z) is zero for z € K(f) and G(z) is positive
for z € C\ K(f). Note that G satisfies the identity G(f(2)) =d-G(2).



Definition 1.4. The triple (f,U,V) is a polynomial-like map of degree d if
U and V are topological disks with U ¢ V and f : U — V is a holomor-
phic proper map of degree d. We define the filled-in Julia set K(f) of a
polynomial-like map (f,U,V) as '

K(f)={z€U:{f"(2)} C U}

Definition 1.5. Let X be a metric space. For a compact subset A C X
and d > 0, let A[d] be a d-neighborhood of A. For compact subsets A and
B C X, we define the Hausdorff metric dg as

dir(A, B) = inf{6 : A C B[6] and B C A[d]}.

Let f be a quartic polynomial and let c;, c, and c3 be finite critical points
- of f. Suppose that ¢; and c; are in K(f) and c; is in A(f). Let U be a
bounded component of C\ G~*(G(f(cs))) and let Uy and Up be bounded
components of C \ G™}(G(c3)). In other words, U = {z € C : G(2) <
G(f(c3))} and U4 UUp = {z € C : G(2) < G(cs)}, where G is the Green’s
function associated with K(f). Suppose that ¢; is in U4 and ¢, i8 in Up.
Then (f|v,,Ua,U) and (f|vg, Us, U) are polynomial-like maps of degree 2.
Suppose that filled-in Julia sets Ky = K(f|v,) and Kg = K(f|v,) are
connected. _

Let K(f)* be the set of all components of K(f). Since c3 is in A(f), K(f)*
is uncountable. K(f)* becomes a metric space with the Hausdorff metric
duy. We define a map F : (K(f)*,dy) — (K(f)*,dy) a8 F(K) = f(K) for
K € K(f)*. Then F is continuous. |

Let X = {1, 2, 3,4, A, B}* be the symbol space. We define a subset ¥ of
Y¢ as follows: s = (s,) € X if and only if

(S1) if s, = A, then 8,41 = A,
(S2) if s, = B, then 8,1 = B,
(S3) if s, = A and sp— 75 A, then s,_; = 3 or 4,
(S4) if s, = B and s,-1 # B, then s,_; =1 or 2,

(S5) if s € X4 = {1,2,3,4}“, then there exist subsequences (Sn(x))ie; and

(Sh))i21 such that s,x) =1 or 2 for all k > 1 and s, = 3 or 4 for all
[>1. ‘

The author proved the following theorem in [Kal.
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Theorem 1.6. Suppose that a quartic polynomial f, its finite critical points
c1,¢2,¢3 and domains U,Uas,Up are as above. And suppose that filled-in
Julia sets K4 and Kg are connected. Then there exists a homeomorphism
A:(K(f)*,du) = (E,p) such that Ao F =00 A,

Theorem 1.6 means that componentwise dynamics of f on K(f) (of
course, also on J(f)) be simplified as dynamics of the shift map on )L‘ But
(%, p) is not compact. For example a sequence

{s<“>=(1,1~,...,1,B,B,...)}

n times n=0

in ¥ converges to s = (1,1,1,...) but s is not in ¥. Can we define a
topology of ¥ with respect to which the sequence {5}, converges to a
“appropriate” point in ¥, and furthermore ¥ is compact? The meaning of
“appropriate” is explamed in another section. In this paper we answer the
question: :

Theorem 1.7. Let % be as above. Then there exists a topology O of ¥ such
that (X, O) is compact, metrizable, perfect and totally disconnected. Moreover
 the shift map o : (X, 0) — (X, O) is continuous.

By Theorem 1.6, there exists a homeomorphism A : (K(f)*,dy) — (X, p)
such that Ao F = 0o A. Especially A~ : ¥ — K(f)* is bijective. Let G be
the quotient topology of K(f)* relative to A~! and the topology O of T in
Theorem 1.7, that is,

G={G C K(f)": A(G) € O}.
Then A : (K(f)*,G) — (X, O) is a homeomorphism such that Ao FF = oo A.

Corollary 1.8. (K(f)*,G) is compact, metrizable, perfect and totdlly dis-
connected. Moreover F : (K(f)*,G) — (K(f)*,G) is continuous.

2 Definition of a new topology of ¥

We define a topology of X. If s = (4,4, 4,...) € X, we define subsets N, (k)
of ¥ as

N® ={s}u{t=(t,) € :t, =1o0r 2 for n < k}.
Similarly, if s = (B, B, B, ...) € £,
N® = {s}u{t=(t,) €S :t, =3 or 4 for n < k}.
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If s =(s,-..,8,4,4,4,...) € X with 5; # A,

ifn <l
N®—fabudt=@)en:t,=4" "= forn<k.
- = s (ta) l1or2 ifi+1<nm orn=

Similarly, if s = (so, ..., &, B, B, B,...) € £ with s, # B,

| ifn<l
N® = fsult=(t,)eT:t,=4°" UHNR=6H  prn<kl.
g {s} = (t) 3ord ifl+1<n orn=

Finally, if s = (s,) € EN Xy,
N® = {t = (t,) € L : t, = s, for n < k}.

Note that N0 < N{® for all s € ¥ and k > 0. Let N(s) = {N; (k)yeo
and N = {N(s) : s € £}. Then N is a neighborhood system of ¥ and hence
(Z, O) is a topological space, where

O = {0 C X:if s € O, then there exists N € N(s) such that N C O}.
The topology O satisfies Theorem 1.7.

3 Appropriateness of the convergence with
respect to O

We can formulate A : K(f)* — X concretely. Refer to [Ka] for the detailed
proof. Let U, Uy, U, K4 and Kp be the same as the section 1. There exist
forward invariant rays R4; and Rp; under f such that R4, lands at a point on
0K 4 and Rp; lands at a point on K 5. These landing points are repelling or

parabolic fixed points of f. Let R 42 and Rps be components of f~ 1(R4;) and
" f~Y(Rp:) which satisfy RasN U4 # 0 and RaNUp # 0 and differ from R4y
and Rp, respectively. We set V4 = U\ (K4URa) and Vg = U\ (KpURp:).
Let Iy, I, I3 and I, be branches of f~! such that

I1:VA—)U1, I2:VA—+U2,
I31VB-—>U3, I4ZVB-—>U4,
where U, and U, are components of Uy \ K4 U R41 U Raz respectively. Sim-
ilarly, Us and Uy are components of Up \ Kp U Rp1 U Rp; respectively. We
define A : K(f)* — L as follows: for K € K(f)*,
i if f{K) CU,
A(K)]l.=¢ A if ff(K)= K,
B if f*(K)= K,



where n > 0 and ¢ = 1,2,3,4. We can also formulate A~! : £ — K(f)* as
follows: if s, = A and s,—; # A,

1(3) Iy 0- Ian—1(KA)-
If s, =B and s,—; # B,
A (s) =TI 0- 01, ,(Ks).

If s € ¥4, there exists a subsequence (sn(l)),_ such that sn@) = 1 or 2 and

160

Sn(t)-1 = 3 or 4. We set K. O = Iggo---ol, 1(U 4). Then KW « kO and

(o o}

A(e) = KD.

=1

Note that 1,2, )is a one-point set since each I, decreases the Poincaré

distance on V4 or VB
We reconsider the sequence

o0
() — ( |
s =(1,1,...,1,B,B,...)
n times ‘n=0

in ¥. It converges to s = (1,1,1,...) € X with respect to p. However, it
converges to s = (A, A, A,...) € X with respect to @. We check that the
convergence with respect to O is “appropriate”. By definition of A~1,

A Y s™) =L o-. o [,(Kp).

n times

Let K™ = A~1(s(™). Since I; decreases the Poincaré distance on Vj, the

- sequence {K™}2, C K(f)* converges to not K4 € K(f)* but a one-point
- set K = {(} with respect to the Hausdorff metric dg;. The point ¢ is actually

in 0K 4, and therefore K ¢ K(f)*. We expect that {K(™}2 ; converges to :

K 4 with respect to G. In fact,

(n) — ~1(s(m)y — A1 (n) A(g) =
Jim KO = lim A7) = A7 (Jim o) = A7) = K
since A~ : (2,0) — (K(f)*,G) is continuous. Therefore we express that
the convergence of {s(™}2, with respect to O is “appropriate” in the sense
that {K (m)}e  converges to K4 with respect to G.
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4 Applications

For a rational function of degree at least two, the backward orbit of a point
in the Julia set and the set of all repelling periodic points are dense in the
Julia set:

Theorem 4.1. Let g be a rational function of degree at least two. If z €
J(g), then

J(@) =Jo™* .
k=1

Theorem 4.2. Let g be a rational function of degree at least two. Then

J (9) = {repelling periodic point of g}.
We obtain analogies of Theorem 4.1 and 4.2.
Theorem 4.3. Let (2, 0) be as in Theorem 1.7 and let s € L. Then

X = D o*k(s),
k=1

where the closure is taken in (X, 0).

Remark 4.4. The closure of the backward orbit of s € ¥ under o does not
necessarily coincide with X in (X, p). For example,

(4,4,4,..)¢Jo™*((B,B,B,...)),
k=1

where the closure is taken in (Z, p).

Corollary 4.5. Let (K(f)*,G) be as in Corollary 1.8 and let K € K(f)*.
Then

K() = | (),
k=1

where the closure is taken in (K(f)*,G).
Theorem 4.6. Let (X, O) be as in Theorem 1.7. Then

Y = {periodic point of ¢ in X},

where the closure is taken in (X,0).
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Remark 4.7. The closure of the set of all periodic points of ¥ does not co-
incide with ¥ in (Z, p) since t = (fo,t1,...,t, 4,4, 4,...) with ¢, # Ais an
isolated point in (X, p).

Corolla;ry 4.8. Let (K(f)*,G) be as in Corollary 1.8. Then

K(f)* = {periodic point of F in K(f)*},

where the closure is taken in (K(f)*,9).
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