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Abstract

Our main objective in this lecture is to present some interesting recent
developments concerning inclusion relationships, coefficient bounds, and
neighborhood properties associated with certain families of univalent and
p-valent analytic functions of compler order. Some of the various analytic
and multivalent function classes, which are considered in this lecture, are
defined by means of the familiar Ruscheweyh derivative operator and its
suitably extended version applicable to p-valently analytic functions. Several
corollaries and consequences of the main results, including relationships with
known results, will also be considered briefly.
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1. Introduction, Deflnitions and Preliminaries

Let T(n, p) denote the class of (normalized) functions f of the form:

f(z) =27 - i a; z* (1.1)

k=n+ip
(ax20; keN\{1,--- ,n+p—-1}; n,peN; N:={1,2,3,---}),
which are analytic and p-valent in the open unit disk
Ui={z:2€C and |z|<1}.
Throughout this presentation, we shall make use of the following simplified notations:

T(n1)=:T(n), Tlp)=T, and T(L)=T1=T(1) =

Following the earlier investigations by Goodman [10] and Ruscheweyh [18] we first define
the (n, 6)-neighborhood of a function f € 7(n) by (see also [2], [3], [4], and [20])

Nos(f) := {g:ge'r(n), 9(2) =2 - Z be 2* and }“: klay ~,b,,|§¢s}. (1.2)

k=n+1 k=n+1
In particular, for the identify function

e(2) = 2, (1.3)
we immediately have

Ny s(e) := {g :9€T(n), g(2) =2— i by 7* and i k|bx| £ 6} . (1.4)

k=n+1 k=n+1

The above concept of (n, §)-neighborhoods was extended and applied recently to families
of analytically multivalent functions by Altintas et al. [6] and to families of meromorphically
multivalent functions by Liu and Srivastava ([12] and [13]) (see also the more recent works
(17] and [23]). Thus, more generally, we can also define the (n, §)-neighborhood of a function
f(2) € T (n,p) (p € N) by means of the following equation:

Nas (f3p) = {y=y€ T(np):g(2) = 2"~ Z b z* and Z k|ax — by éé},
k=n+p k=n+p
(1.5)
so that, obviously,

-/Vn.é(h;P):={g:yET(n,p):g(z)=z’—- i by z* and f: klb,,|§5}, (1.6)

k=n+p k=n+p
where [¢f. Equation (1.3) above]

h(z)=2 (peN) 1.7)
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denotes the corresponding identity function.

In Sections 2 and 3 of this presentation, we propose to investigate the (n, §)-neighborhoods
of several subclasses of the class 7(n) of normalized analytic and univalent functions in
U with negative and missing coefficients, which are introduced here by making use of
the Ruscheweyh derivative operator defined by (1.14) or (1.15) below. The rest of this
paper deals mainly with the coefficient bounds and inclusion relationships involving the
(n, 8)-neighborhoods Ny, s (h; p) and N, 5 (f; p) for two other subclasses of the function class
T (n,p), which are introduced in Section 4 of this presentation.

First of all, we say that a function f € T(n) is starlike of complez order v (y € C \ {0}),
that is, f € S;(7), if it also satisfies the following inequality:

'l
m(1+ [z){((‘;) ]) >0 (€U yeC\{0}). (1.8)
Furthermore, a function f € 7(n) is said to be conver of complex order ~
(v € C\ {0}), that is, f € Ca(7), if it also satisfies the following inequality:

2f"(2)
9%(1-;— [f'()])>0 (zeU; ye C\ {0}). (1.9

The classes Si(y) and C,(y) stem essentially from the classes of starlike and
convex functions of complez order, which were considered earlier by Nasr and Aouf [15]
and Wiatrowski [24], respectively (see also [5], [7], [8], [14] and [16] and the relevant other
citations in each of these works).

Let S;(v, a, i, B) denote the subclass of the function class 7T(n) consisting of functxons
f(z) which satisfy the following inequality:

1 (op2f"(z) + (20u+ o~ )22 f'(2) +2f'(2)
(o e - <s o)
(zeU;yeC\{0}; 0SS 0<BS).

Suppose also that R, (v, a, u, ) denotes the subclass of the function class 7(n) consisting
of functions f(z) which satisfy the the following inequality:

‘-’1; (op 2" (2) + Qap +a - p)zf"(z) + f(2) - l)l <B (1.11)

(z€U; yeC\{0}; 05 uS; 0< B,

The classes Sq (7, @, i, 8) and R (7, @, 4, B) were studied recently by Orhan and Kamali [16].
Next, for the functions f;(z) (7 = 1, 2) given by

fil)=z+Y ay2* (i=1,2), (1.12)

k=2
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we denote by (f * f2)(z) the Hadamard product (or convolution) of f;(z) and f(z), defined
by

o0
(fix f2)(2) =2+ Zam ax2 2¥ =t (fa* f1)(2). (1.13)
k=2
Thus the Ruscheweyh derivative operator

DM T-T (T::T(1)=T{=T(1,l))

is defined by
D f(z) = (iTZ)Tﬁ «f2) (A>-1; feT. (1.14)
or, equivalently, by A
D*f(z) :=z—i('\:f;l)ak Zx A>-1,feT (1.15)
k=2

for a function f € T of the form (1.1). Here, and in what follows, we make use of the
following standard notation for a binomial coefficient:

(:) = e 1) nf" ~"+1D) (ke C neN=NU{0}. (1.16)
In particular, we have
1 p(, )
D f(z) = w— (n € No). (1.17)

Finally, in terms of the Ruscheweyh derivative operator D* (A > —1) defined by (1.14) or
(1.15) above, let S,(v, A, o, 14, B) denote the subclass of the function class 7 (n) consisting of
functions f(2) which satisfy the following inequality:

1 apz® (D f(2))" + (op+ a— u)2 (D f(2))" + 2(D*f(2))’ _
7\ aud (D f(2))" + (a - W(D*f(2)) + (1- o+ wDAf(2)

(2€U; yeC\{0}; A>-1;0<B8511 05 s )

Also let R, (7, A, a, 4, B) denate the subclass of the function class 7(n) consisting of functions
J(2) which satisfy the following inequality:

1<g  (118)

I% (auz2 (D'\f(z))m + (2ap+a— p)z(D'\f(z))” + (D"f(z))' - ll <pB (1.19)

(2€U; yeC\{0}; A>-1,0<BS1 05 pS0).
Various further subclasses of the function class S, (v, A, @, 4, 8) with
Yy=1 and a=u=0 (1.20)
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were studied in many earlier works (cf., e.g., [9], [11], [21] and [22]; see also the references
cited in each of these earlier works). Clearly, in these cases of (for example) the class
Sn(7, A @, p, B), we have the following relationships: '

5(7,0,0,0,1) C S5(v) and Su(7,0,1,0,1) CCa(v) (1.21)
(mneN, yeC\{0}).

2. Inclusion Relationships Involving the (n,d)-Neighborhood N, s(e)

In our investigation of the inclusion relationships involving the (n, §)-neighborhood Ny, 4(e)
defined by (1.4), we shall require the following lemmas.

Lemma 1. Let f € T(n) be defined by (1.1) (with p = 1). Then f is in the class
Sa(7, A, 0, s, B) if and only if

> ('\ : f; 1)'I(k) ax < Blvl, (2.1)

k=n+1
where

n =n(k) == (auk“ +(a— 1~ 20u + apBly )R

+(ap—20—2p+ 1+ (a—p—op)Bl|)k+ (1 -+ pu)(B - 1))-

Proof. We first suppose that f € Su(v, A, @, s, ). Then, by appealing to the condition
(1.18), we readily find that

" (aquzs (D"f(z))i':j- (2ap+ a — w22 (D f(2))" + 2(D*£(2))' _ 1)
aus?(DAf(2))" + (a — Wz(D*f(2) + (1 - o+ WD f(2) |
>-Bhl (z2€V)) (2.2)

or, equivalently, that

m ‘-_ﬂ*-l "1 } ‘

>-Blvl  (z2€0), (2.3)
where we have made use of the explicit representation (1.15) and the definition (1.1) (with
p = 1). We now choose values of z on the real axis and let z — 1— through real values.
Then the inequality (2.3) immediately yields the desired condition (2.1).
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Conversely, by applying the hypothesis (2.1) and letting || = 1, we find that

apz® (D f(2))" + (204 + a — p)22 (D> f(2))" + z(D* f(z))
apz?(DAf(2))" + (@ — p)2(D*f(2)) + (1 — e+ u) D> f(2)

f: ('\+k ) [apk® + (o — p— 20u)k? + (op — 20+ 2u+ 1)k — (1 —a+ p)]ay 2*
_ | k=n+1 k-
1- § ('\:k-l-l) [opk? + (@ — pp— ap)k + (1 — a + p)]ax 2*
k=n+1 -
Blr| [1 -, E;H ('\ :_’f 1) [ouk® + (@~ p— ap)k + (1 — a + p)) ak]
st
1= £ (M) low o+ @-p-ab+ (-t o

k=n+1

< Bhl- (24)

Hence, by the mazrimum modulus principle, we have
f € 8a(7, A 0, 1, B),
which evidently completes the proof of Lemma 1.
Similarly, we can prove the following result.

Lemma 2. Let the function f € T(n) be defined by (1.1) ( with p=1). Then f is in the
class Ra(7, A, o, i, B) if only if

> (1A ekt - pm e (-t wila S opl (29

k=n+1
Remark 1. A special case of Lemma 1 when
n=1 u=a=0,vy=1 and B=1-¢ (0Lec<1)
was given by Ahuja [1]. Furthermore, in Lemma 1 with
n=1, u=a=0,y=1 and f=1-c¢c (0=5c<1),
if we set |
A=0 and A=1.
we obtain the relatively more familiar results of Silverman [19].
Our first main result is given by Theorem 1 below.

Theorem 1. If
5= (n+1)B| (2.6)

T (A+n\
n P

87



Some Femilies of Analytic Functions of Complex Order
then
Sﬂ(')" '\s Q, /‘s /3) C Nﬂﬁ(e)a (27)
where
pi= [au(ﬂ +1)° + (B +a — i~ 2ap)(n + 1)?
+ ((a = p—au)Bly|+1-2a+ 25+ op)(n+1)
+(=a+w(Bhl-1)]. (28)

Proof. For a function f € S,(v, A, o, 1, B) of the form (1.1) (with p = 1) and for p defined
already by (2.8), Lernma 1 immediately yields

A+n =

(*5m)e X ansenm
k=n+1

so that

k=n+1
n

On the other hand, we also find from (2.1) that

(*1)r 3 ka5 s

k=n+1

Z G (ATZ:I) p. (2.9)

where |
= [a,u(n +1)? + (apBly| + ¢ — p~ 20p)(n+1)

+((a=p—-ambiyl+1-2a+2u+ op)

(1—a+p)Blyl—-1) |
( n“+ : )] (2.10)
that is, that
Z kay < ﬁ(':\"fr”: D =y, (2.11)
k=n+1 n ) p

which, in view of the definition (1.4), proves Theorem 1.
In a similar manner, by applying Lemma 2 instead of Lemma 1, we can prove Theorem 2
below.
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Theorem 2. If

5= Bl , (2.12)

(A:n) loutn +1 + (@~ p—op)n+1) + (1 ~ a+ )]

then
Rﬂ('y’ A’ Q, [k, ﬂ) C Nﬂ,5(e)'

3. Neighborhood Properties for the Function Classes
SO A\, pB) and RO(v,)a, u,b)

In this section, we determine the neighborhood for each of the function classes

SP(v \a,p,B) and R (v, e, uB),
which we define here as follows.
Definition 1. A function f € T(n) is said to be in the class S& (v, A, a, s, B) if there
exists a function
9 € Sa(7, A, 2, 1, B)
such that the following inequality holds true:

f(z) _
o)

Definition 2. A function f € T(n) is said to be in the class RY (v, A, o, s, B) if there

exists a function
9 € Ra(7: A a8, 8)
such that the inequality (3.1) holds true.

Theorem 3. If g € Sa(7, A, o, s, B) and

<1-b (z2€VU; 0Sb<). (3.1)

i (A + n) 5p
e [(*n‘,'; ")o- o] @
then
Nos(a) € 59,3, 0,1, 8), @y

where p is given already by (2.8).
Proof. Assuming that f € N, s(g), we find from the definition (1.2) that

Y lax— bl S 6, (34)

k=n+1
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which readily implies the following coefficient inequality:

> m-biS - mem. (35)

k=n+1
Since g € Sa(7, A, o, 1, B), we have [¢f. Equation (2.9)].

z by = (Aiizzl) p, (3.6)

=n+1
n
so that
> ag — b
9y il
9(2) 1- § be
k=n+1
5 (A + n) 5p
- =:1-1b, (3.7)

LTS e 040

provided that b is given precisely by (3.2). Thus, by Definition 1, we conclude that
f€ Si(zb)('Y, Ao, u, B)
for b given by (3.2). This evidently completes the proof of Theorem 3.

The proof of Theorem 4 below is much akin to that of Theorem 3, and so the details
involved are being omitted here.

Theorem 4. If g € Ru(7, M o, 4, 8) and

(A+ )6[au(n+1)3+(a p-op)(n+1)2+(1-a+p)(n+1))

b=1- )
(n+1) [(A + ") fep(n + 18 + (@ — - ap)(n+1)2 + (1 — o+ w)(n +1)] - ﬂm]
(3.8)
then
N, 5(g) c RO (7, )\ a, 1, B). (3.9)

Remark 2. A special case of Theorem 3 when & = x4 = 0 was proven recently by
Murugusundaramoorthy and Srivastava {14].
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4. A Set of Coeflicient Bounds for the Function Classes
Him(A,b) and L m (2, b 1)

With a view to introducing the function classes
Hom(Wb) 80d £ (05 ),

we begin by considering the Hadamard product (or convolution) of the function f € T(n, p)
given by (1.1) and the function g € T(n, p) given by

g(2) = 2° - Z bez* (b 20;npeN), (4.1)

k=n+p

which is defined (as usual) by

00
(f*9)@) =2+ ) axbed* = (9% f)(2). (4.2)
k=n-+p
We next introduce an eztended linear derivative operator of the Ruscheweyh type given
already by (1.11) or (1.12) above:

DMV T, =T, (7 :==T(,p)),
which is defined here by the following convolution:

»
DMf() = r e * S (A>-pi fET). (43)
In terms of the binomial coefficients in (1.16), we can rewrite (4.3) as follows:
A+k-1
s =2- % (15 at 0>mren). (44
k=1+p p

In partlcu]ar, when A = n (n € N), it is easily observed from (4.3) and (4.4) that
zp(zn—pf(z))(ﬂ)

D™ f(2) = (neN:=NU{0}; peN), (4.5)
so that
DY f(z) = (1~ p)f(2) + 2f'(2), (4.6)
2f() = L2DE7D) 1) 4 (2 pjap'(a) + 2 17(0) (@
and so on. In fact, by comparing the definitions (1.14) and (4.3), we readily have
DMf(z) = D*f(z) (A>-1; f€T). (4.8)

By using this extended Ruscheweyh derivative operator
DMf(2) (A>-p;p€eN)
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given by (4.4), we now introduce a new subclass #5 (), b) of the p-valently analytic function
class 7(n,p), which includes functions f(z) satisfying the following inequality:

; (Z(Wf(z»(mﬂ) —(p- m))
b\ (Df(z)™

(2€U; peN, meNy; A €R; p> max(m,-)); be C\ {0}).
We also denote by L5, (A, b; u) the subclass of T(n,p) consisting of functions f(z) which
satisfy the inequality (4.10) below:

» ()
%(p(l - u) (E-f@) +u(D*?£(2) ™ - (o - m))

(2eU; peN, meNg; A€eR; p>max(m,-)A); pu20; be C\ {0}).
Our definitions of the function classes
Ham(Ab) and L (A b p)

are motivated essentially by two earlier investigations [4] and [14], in each of which
further details and references to other closely-related subclasses can be found. In
particular, in our definition of the function class L}, .,(, b; u) involving the inequality (1.13),
we have relaxed the parametric constraint 0 £ u £ 1, which was imposed earlier by
Murugusundaramoorthy and Srivastava (14, p. 3, Equation (1.14)] (see also Remark 5 be-
low).

We now prove the following results which yield the coefficient inequalities for functions in
the subclasses (see also [17])

7“3’.,'»()\1 b) and Cﬁ,m(A1 b; ).
Theorem 5. Let f(2) € T(n,p) be given by (1.1). Then f(2) € HE (), b) if and only if

f: (A:f;l) (,’;) (k + [b] - p) ax < [b] (:z) (4.11)

k=n+p

Proof. Let a function f(z) of the form (1.1) belong to the class #5 (), b). Then, in view
of (4.4), (4.9) yields the following inequality:

£ (4 ) (o

R k=n+p k- b 4

(3)-2, (55 )@

Putting 2 = r (0 £ r < 1) in (4.12), we observe that the expression in the denominator on
the left-hand side of (2.2) is positive for r = 0 and also for all » (0 < r < 1). Thus, by letting
r — 1— through real values, (4.12) leads us to the desired assertion (2.1) of Theorem 5.

<1 (4.9

<p-m (4.10)

>—|b| (zeU). (4.12)
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Conversely, by applying (4.11) and setting |z| = 1, we find by using (4.4) that

2 (D’\‘pf(z))(m+1)
@ty P
< (A+k-1)\[k -
2005 ()

O -
02,0156
EGRAGESIEN

Hence, by the mazimum modulus principle once again, we infer that f(2) € HZ (A, b), which
completes the proof of Theorem 5.

= 8. (4.13)

Remark 3. In the special case when
m=0,p=1 and b=py (0<BS1; v€C\{0}), (4.14)

Theorem 1 corresponds to a result given earlier by Murugusundaramoorthy and
Srivastava (14, p. 3, Lemma 1].

By using the same arguments as in the proof of Theorem 5, we can establish Theorem 6
below.

_ Theorem 8. Let f(z) € T(n,p) be given by (1.1). Then f(2) € LB, (), b; u) if and only

if
k.i:: (e (e TPCE B
=p-m) [Ibl——_l*” (p)]- | (4.15)

m! m

Remark 4. Making use of the same parametric substitutions as mentioned above in (2.3),
Theorem 2 yields another known result due to Murugusundaramoorthy and Srivastava [14,
p. 4, Lemma 2J.
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5. Inclusion Relationships Involving the (n,§)-Neighborhood M, ;(h; p)

In this section, we establish several inclusion relationships for the function classes
Hom(A D) and L () b;p)
involving the (n, §)-neighborhood defined by (1.6).

Theorem 7. If

. @ean(r)
(n+ [B) ()\-%-n:p-—l) (n+

m

p) (> [bl), (5.1)

then
’H:,m(A7 b) - Nn,J(h; p)' (52)

Proof. Let f(z) € #H} (), b). Then, in view of the assertion (4.11) of Theorem 5, we have
Atn+p-1\(n+p\ &~ . (P ‘
e (TP (PF) 3 sl (7). (53)

k=n-+p
This yields
& w ()
a < — : (5.4)

Applying the assertion (4.11) of Theorem 5 again, in conjunction with (5.4), we observe that

An+p—1\/n+p\
()R X e

k=n+p

<o (p)+e-m (PN () 3w

<18 (2) + - o) ) (")
i)

. ot ) (,\+n:p—l) (n+p)

m
-n () (35)
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Hence we have

z‘”: kay < b +n) (:1) =6 (p>|b]), (5.5)
e ) (M) (1)

which, by virtue of (1.6), establishes the inclusion relation (5.2) of Theorem 7.

In an analogous manner, by applying the assertion (4.15) of Theorem 6 instead of the
assetion (4.11) of Theorem 5 to functions in the class £2,,,,(), b; 1), we can prove the following
inclusion relationship.

Theorem 8. If
w-mm+p) U+ (2]
6=[l‘(n+p-1)+1] (“:};P-—lr)n(n;p) (s>1) (58)
then

q,m(’\: b; l‘) C -N’n,i(hi D).

Remark 5. Applying the parametric substitutions listed in (4.14), Theorems 7 and 8
would yield the known results due to Murugusundaramoorthy and Srivastava [14, p. 4,
Theorem 1; p. 5, Theorem 2]. Incidentally, just as we indicated in Section 4 above, the
condition 4 > 1 is needed in the proof of one of these known results {14, p. 5, Theorem 2].
This implies that the constraint 0 < £ 1 in [14, p. 3, Equation (1.14)] should be replaced
by the less stringent constraint u 2 0 (see also [17, p. 5, Remark 3)).

6. Further Neighborhood Properties Involving N, s(f;»)
In this last section, we determine the neighborhood properties for each of the following
(slightly modified) function classes:
Hym(Ab) and  Lhe( b p).

Here, by definition, the class 2% (), b) consists of functions f(z) € T(n,p) for which there
exists another function
9(2) € H} (2, D)

such that
1) _,
9(2)

Analogously, the class £2:% (), b; 1) consists of functions f(z) € T(n, p) for which there exists

another function
9(z) € L3, (A b; )

<p—a (2€U;0La<p). (6.1)
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satisfying the inequality (6.1).

The proofs of the following results (Theorems 9 and 10) involving the neighborhood prop-
erties for the classes
Hem(AMb) and LR (A, b p)
are similar to those given already by Altintag et al. [4] and, more recently, by
Murugusundaramoorthy and Srivastava [14]. We, therefore, choose to skip their proofs here.

Theorem 9. Suppose that
9(2) € Hh (A, 0).

Also let 6 (n + [b) (A+n+p—-1)(n+p)
a=p— i i - (6.2)
o) [er ) (T2 (M) (2)]
Then
Nas(9;9) C HRG (A, ).
Theorem 10. Suppose that
9(2) € Lo (X s ).
Also let
S(n+p—1)+1] (A+n:—p— 1) (n+:;-— 1)
a=p—(n+p) [[p(n+p—1)+1] (/\+n:p—1) (n+:;—1) -(p—m){l—bl;n'.'il+ (5‘)}]
(6.3)
Then

Nas(9:9) C L3R5 (M b s).

Acknowledgements

It is a great pleasure for me to express my sincere thanks to the members of the Organizing
Committee of this RIMS (Kyoto University) International Short Joint Research Workshop
on Calculus Operators in Univalent Function Theory (especially to Professor Shigeyoshi
Owa) for their kind invitation and excellent hospitality. Indeed I am immensely grateful
also to many other friends and colleagues in Japan for their having made my visit to Japan
in May 2006 a rather pleasant, memorable, and professionally fruitful visit. The present
investigation was supported, in part, by the Natural Sciences and Engineering Research
Council of Canada under Grant OGP0007353.



H. M. Srivastava

References

[1] O. P. Ahuja, Hadamard products of analytic functions defined by Ruscheweyh derivatives, in Current
Topics in Analytic Function Theory (H. M. Srivastava and S. Owa, Editors), pp. 13-28, World Scientific
Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

[2] O.P. Ahuja and M. Nunokawa, Neighborhoods of analytic functions defined by Ruscheweyh derivatives,
Math. Japon. B1 (2003), 487-492.

[3] O. Altintag and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat.
J. Math. and Math. Sci. 19 (1996), 797-800.

[4] O. Altintag, 0. Ozkan and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative
coeflicients, Appl. Math. Lett. 18 (3) (2000), 63-67.

[6] O. Altintag, 0. Ozkan and H. M. Srivastava, Majorization by starlike functions of complex order,
Complex Variables Theory Appl. 46 (2001), 207-218.

[6] O. Altintag, 0. Ozkan and H. M. Srivastava, Neighborhoods of & certain family of multivalent functions
with negative coefficients, Comput. Math. Appl. 47 (2004), 1667-1672.

[7] O. Altintag and H. M. Srivastava, Some majorization problems associated with p-valently starlike and
convex functions of complex order, East Asian Math. J. 17T (2001), 175-183.

[8] M. K. Aouf, H. M. Hossen and H. E. El-Attar, Certain classes of analytic functions of complex order
and type beta with fixed second coefficient, Math. Sci. Res. Hot-Line 4 (4) (2000), 31-45.

[9] P. L. Duren, Univalent Functions, A Series of Comprehensive Studies in Mathematics, Vol. 259,
Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

[10] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.

(11] A. W. Goodman, Univalent Functions, Vol. I, Mariner Publishing Company, Tampa, Florida, 1983.

[12] J-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the
generalized hypergeometric function, Math. Comput. Modelling 39 (2004), 21-34.

[13] J.-L. Liu and H. M. Srivastava, Subclasses of meromorphically multivalent functions associated with a
certain linear operator, Math. Comput. Modelling 39 (2004), 35-44.

[14] G. Murugusundaramoorthy and H. M. Srivastava, Neighborhoods of certain classes of analytic functions
of complex order, J. Inequal. Pure Appl. Math. 5 (2) (2004), Article 24, 1-8 (electronic).

[15] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.

[16] H. Orhan and M. Kamali, Starlike, convex and close-to-convex functions of complex order, Appl. Math.
Comput. 135 (2003), 251-262.

[17) R. K. Raina and H. M. Srivastava, Inclusion and neighborhood properties of some analytic and
multivalent functions, J. Inequal. Pure Appl. Math. 7 (1) (2006), Article 5, 1-6 (electronic).

[18] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-527.

(18] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.

{20] H. Silverman, Neighborhoods of classes of analytic functions, Far East J. Math. Sci. 8 (1995), 165-169.

[21] H. M. Srivastava and S. Owa (Editors), Univalent Functions, Fractional Calculus, and Their
Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York,
Chichester, Brisbane and Toronto, 1989.

[22] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific
Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

[23] H. M. Srivastava and J. Patel, Some subclasses of multivalent functions involving a certain linear
operator, J. Math. Anal. Appl. 810 (2005), 209-228.

[24] P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. L6dz
Nauk. Mat.-Przyrod. (2) 39 (1970), 75-85.

97



