Note on a class of convex functions Mugur Acu¹, Shigeyoshi Owa²

ABSTRACT. In this paper we define a general class of convex functions, denoted by $SL^c_{\beta}(q)$, with respect to a convex domain D $(q(z) \in \mathcal{H}_u(U), q(0) = 1, q(U) = D)$ contained in the right half plane by using the linear operator D^{β}_{λ} defined by

$$D_{\lambda}^{eta}:A o A\,,$$
 $D_{\lambda}^{eta}f(z)=z+\sum_{j=2}^{\infty}\left(1+(j-1)\lambda
ight)^{eta}a_{j}z^{j}\,,$

where $\beta, \lambda \in \mathbb{R}$, $\beta \geq 0$, $\lambda \geq 0$ and $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$. This operator generalize the Sălăgean operator and the Al-Oboudi operator. Regarding the class $SL^c_{\beta}(q)$ we give a inclusion theorem, a preserving theorem (we use the Libera-Pascu integral operator) and many particular results.

2000 Mathematical Subject Classification: 30C45

Key words and phrases: Convex functions, Libera-Pascu integral operator, Briot-Bouquet differential subordination, generalized Sălăgean operator

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U, $A = \{f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0\}$, $\mathcal{H}_u(U) = \{f \in \mathcal{H}(U) : f \text{ is univalent in } U\}$ and $S = \{f \in A : f \text{ is univalent in } U\}$.

Let D^n be the Sălăgean differential operator (see [13]) defined as:

$$D^n:A\to A\ , \quad n\in\mathbb{N}\ \ {\rm and}\ \ D^0f(z)=f(z)$$

$$D^1f(z)=Df(z)=zf'(z)\ , \quad D^nf(z)=D(D^{n-1}f(z)).$$

Remark 1.1 If
$$f \in S$$
, $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, $z \in U$ then $D^n f(z) = z + \sum_{j=2}^{\infty} j^n a_j z^j$.

Let $n \in \mathbb{N}$ and $\lambda \geq 0$. Let denote with D_{λ}^n the Al-Oboudi operator (see [7]) defined by

$$D_{\lambda}^n:A\to A$$
,

$$D_{\lambda}^{0}f(z) = f(z) , D_{\lambda}^{1}f(z) = (1-\lambda)f(z) + \lambda z f'(z) = D_{\lambda}f(z) ,$$
$$D_{\lambda}^{n}f(z) = D_{\lambda}\left(D_{\lambda}^{n-1}f(z)\right) .$$

We observe that D_{λ}^{n} is a linear operator and for $f(z) = z + \sum_{j=2}^{\infty} a_{j}z^{j}$ we have

$$D_{\lambda}^{n}f(z)=z+\sum_{j=2}^{\infty}\left(1+(j-1)\lambda\right)^{n}a_{j}z^{j}.$$

The aim of this paper is to define a general class of convex functions with respect to a convex domain D, contained in the right half plane, by using a operator which generalize the Sălăgean operator and the Al-Oboudi operator and to obtain some properties of this class.

2 Preliminary results

We recall here the definition of the well - known class of convex functions

$$S^{c} = CV = K = \left\{ f \in H(U); \ f(0) = f'(0) - 1 = 0, Re\left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0, \ z \in U \right\}.$$

Remark 2.1 By using the subordination relation, we may define the class S^c thus if $f(z)=z+a_2z^2+...,\ z\in U$, then $f\in S^c$ if and only if $\left\{1+\frac{zf''(z)}{f'(z)}\right\} \prec \frac{1+z}{1-z},\ z\in U$, where by "\rightarrow" we denote the subordination relation.

Let consider the Libera-Pascu integral operator $L_a:A\to A$ defined as:

(1)
$$f(z) = L_a F(z) = \frac{1+a}{z^a} \int_0^z F(t) \cdot t^{a-1} dt , \quad a \in \mathbb{C} , \quad Re \ a \ge 0.$$

In the case a=1 this operator was introduced by R.J.Libera and it was studied by many authors in different general cases. In this general form $(a \in \mathbb{C}, Re \ a \ge 0)$ was used first time by N.N. Pascu in [12].

Definition 2.1 [6] Let $\beta, \lambda \in \mathbb{R}$, $\beta \geq 0$, $\lambda \geq 0$ and $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$. We denote by D_{λ}^{β} the linear operator defined by

$$D_{\lambda}^{eta}:A o A\,,$$
 $D_{\lambda}^{eta}f(z)=z+\sum_{j=2}^{\infty}\left(1+(j-1)\lambda
ight)^{eta}a_{j}z^{j}\,.$

Remark 2.2 It is easy to observe that for $\beta = n \in \mathbb{N}$ we obtain the Al-Oboudi operator and for $\beta = n \in \mathbb{N}$, $\lambda = 1$ we obtain the Sălăgean operator.

The next theorem is result of the so called "admissible functions method" introduced by P.T. Mocanu and S.S. Miller (see [9], [10], [11]).

Theorem 2.1 Let h convex in U and $Re[\beta h(z) + \gamma] > 0$, $z \in U$. If $p \in H(U)$ with p(0) = h(0) and p satisfied the Briot-Bouquet differential subordination

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z), \quad then \ p(z) \prec h(z).$$

3 Main results

Definition 3.1 Let $q(z) \in \mathcal{H}_u(U)$, with q(0) = 1 and q(U) = D, where D is a convex domain contained in the right half plane, $\beta, \lambda \in \mathbb{R}$, $\beta \geq 0$ and $\lambda \geq 0$. We say that a function $f(z) \in A$ is in the class $SL^c_{\beta}(q)$ if $\frac{D^{\beta+2}_{\lambda}f(z)}{D^{\beta+1}_{\lambda}f(z)} \prec q(z)$, $z \in U$.

Remark 3.1 Geometric interpretation: $f(z) \in SL^c_{\beta}(q)$ if and only if $\frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)}$ take all values in the convex domain D contained in the right half-plane.

Remark 3.2 It is easy to observe that if we choose different function q(z) we obtain variously classes of convex functions, such as (for example), for $\beta = n \in \mathbb{N}$ the class $SL_n^c(q)$ (see [3]), for $\lambda = 1$ and $\beta = 0$, the class of convex functions, the class of convex functions of order γ (see [8]), the class of convex functions with respect to a hyperbola (see [5]), and, for $\beta = n \in \mathbb{N}$ and $\lambda = 1$, the class of n-convex functions (see [2]), the class of n-convex functions with respect to a hyperbola (see [1]), the class of n-convex functions with respect to a convex domain contained in the right half-plane(see [2]), for $\beta \in \mathbb{R}$ and $\lambda = 1$, the class $S_{\beta}^c(q)$ of the β -q-convex functions (see [4]).

Remark 3.3 For $q_1(z) \prec q_2(z)$ we have $SL^c_{\beta}(q_1) \subset SL^c_{\beta}(q_2)$. From the above we obtain $SL^c_{\beta}(q) \subset SL^c_{\beta}\left(\frac{1+z}{1-z}\right)$.

Theorem 3.1 Let $\beta, \lambda \in \mathbb{R}$, $\beta \geq 0$ and $\lambda > 0$. We have

$$SL^c_{\beta+1}(q)\subset SL^c_{\beta}(q)$$
.

Proof. Let
$$f(z) \in SL^c_{\beta+1}(q)$$
, $f(z) = z + \sum_{i=2}^{\infty} a_i z^i$.

With notation

$$p(z) = \frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}, p(0) = 1,$$

we obtain

(2)
$$\frac{D_{\lambda}^{\beta+3}f(z)}{D_{\lambda}^{\beta+2}f(z)} = \frac{D_{\lambda}^{\beta+3}f(z)}{D_{\lambda}^{\beta+1}f(z)} \cdot \frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta+2}f(z)} = \frac{1}{p(z)} \cdot \frac{D_{\lambda}^{\beta+3}f(z)}{D_{\lambda}^{\beta+1}f(z)}$$

We have

$$\frac{D_{\lambda}^{\beta+3}f(z)}{D_{\lambda}^{\beta+1}f(z)} = \frac{z + \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+3} a_{j}z^{j}}{z + \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1} a_{j}z^{j}}$$

and

$$\begin{split} zp'(z) &= \frac{z\left(D_{\lambda}^{\beta+2}f(z)\right)'}{D_{\lambda}^{\beta+1}f(z)} - \frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} \cdot \frac{z\left(D_{\lambda}^{\beta+1}f(z)\right)'}{D_{\lambda}^{\beta+1}f(z)} \\ &= \frac{z\left(D_{\lambda}^{\beta+2}f(z)\right)'}{D_{\lambda}^{\beta+1}f(z)} - p(z) \cdot \frac{z\left(D_{\lambda}^{\beta+1}f(z)\right)'}{D_{\lambda}^{\beta+1}f(z)} \\ &= \frac{z\left(z + \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+2}a_{j}z^{j}\right)'}{D_{\lambda}^{\beta+1}f(z)} - p(z) \cdot \frac{z\left(z + \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1}a_{j}z^{j}\right)'}{D_{\lambda}^{\beta+1}f(z)} \\ &= \frac{z\left(1 + \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+2}ja_{j}z^{j-1}\right)}{D_{\lambda}^{\beta+1}f(z)} - p(z) \cdot \frac{z\left(1 + \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1}ja_{j}z^{j-1}\right)}{D_{\lambda}^{\beta+1}f(z)} \end{split}$$

$$(3) \ zp'(z) = \frac{z + \sum_{j=2}^{\infty} j \left(1 + (j-1)\lambda\right)^{\beta+2} a_j z^j}{D_{\lambda}^{\beta+1} f(z)} - p(z) \cdot \frac{z + \sum_{j=2}^{\infty} j \left(1 + (j-1)\lambda\right)^{\beta+1} a_j z^j}{D_{\lambda}^{\beta+1} f(z)}.$$

Also, we have

$$z + \sum_{j=2}^{\infty} j \left(1 + (j-1)\lambda \right)^{\beta+1} a_j z^j = z + \sum_{j=2}^{\infty} \left((j-1) + 1 \right) \left(1 + (j-1)\lambda \right)^{\beta+1} a_j z^j$$
$$= z + \sum_{j=2}^{\infty} \left(1 + (j-1)\lambda \right)^{\beta+1} a_j z^j + \sum_{j=2}^{\infty} (j-1) \left(1 + (j-1)\lambda \right)^{\beta+1} a_j z^j$$

$$\begin{split} &= D_{\lambda}^{\beta+1} f(z) + \sum_{j=2}^{\infty} (j-1) \left(1 + (j-1)\lambda\right)^{\beta+1} a_{j} z^{j} \\ &= D_{\lambda}^{\beta+1} f(z) + \frac{1}{\lambda} \sum_{j=2}^{\infty} \left((j-1)\lambda\right) \left(1 + (j-1)\lambda\right)^{\beta+1} a_{j} z^{j} \\ &= D_{\lambda}^{\beta+1} f(z) + \frac{1}{\lambda} \sum_{j=2}^{\infty} \left(1 + (j-1)\lambda - 1\right) \left(1 + (j-1)\lambda\right)^{\beta+1} a_{j} z^{j} \\ &= D_{\lambda}^{\beta+1} f(z) - \frac{1}{\lambda} \sum_{j=2}^{\infty} \left(1 + (j-1)\lambda\right)^{\beta+1} a_{j} z^{j} + \frac{1}{\lambda} \sum_{j=2}^{\infty} \left(1 + (j-1)\lambda\right)^{\beta+2} a_{j} z^{j} \\ &= D_{\lambda}^{\beta+1} f(z) - \frac{1}{\lambda} \left(D_{\lambda}^{\beta+1} f(z) - z\right) + \frac{1}{\lambda} \left(D_{\lambda}^{\beta+2} f(z) - z\right) \\ &= D_{\lambda}^{\beta+1} f(z) - \frac{1}{\lambda} D_{\lambda}^{\beta+1} f(z) + \frac{z}{\lambda} + \frac{1}{\lambda} D_{\lambda}^{\beta+2} f(z) - \frac{z}{\lambda} \\ &= \frac{\lambda - 1}{\lambda} D_{\lambda}^{\beta+1} f(z) + \frac{1}{\lambda} D_{\lambda}^{\beta+2} f(z) \\ &= \frac{1}{\lambda} \left((\lambda - 1) D_{\lambda}^{\beta+1} f(z) + D_{\lambda}^{\beta+2} f(z) \right) \,. \end{split}$$

Similarly we have

$$z + \sum_{j=2}^{\infty} j \left(1 + (j-1)\lambda\right)^{\beta+2} a_j z^j = \frac{1}{\lambda} \left((\lambda - 1) D_{\lambda}^{\beta+2} f(z) + D_{\lambda}^{\beta+3} f(z) \right).$$

From (3) we obtain

$$zp'(z) = \frac{1}{\lambda} \left(\frac{(\lambda - 1)D_{\lambda}^{\beta+2} f(z) + D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)} - p(z) \frac{(\lambda - 1)D_{\lambda}^{\beta+1} f(z) + D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)} \right)$$

$$= \frac{1}{\lambda} \left((\lambda - 1)p(z) + \frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)} - p(z) \left((\lambda - 1) + p(z) \right) \right)$$

$$= \frac{1}{\lambda} \left(\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)} - p(z)^{2} \right)$$

Thus

$$\lambda z p'(z) = rac{D_{\lambda}^{eta+3} f(z)}{D_{\lambda}^{eta+1} f(z)} - p(z)^2$$

or

$$\frac{D_{\lambda}^{\beta+3}f(z)}{D_{\lambda}^{\beta+1}f(z)}=p(z)^2+\lambda zp'(z).$$

From (2) we obtain

$$\frac{D_{\lambda}^{\beta+3}f(z)}{D_{\lambda}^{\beta+2}f(z)} = \frac{1}{p(z)}\left(p(z)^2 + \lambda z p'(z)\right) = p(z) + \lambda \frac{z p'(z)}{p(z)},$$

where $\beta, \lambda \in \mathbb{R}, \beta \geq 0, \lambda > 0$.

From $f(z) \in SL_{\beta+1}^c(q)$ we have

$$p(z) + \lambda \frac{zp'(z)}{p(z)} \prec q(z),$$

with $p(0)=q(0)=1,\ \beta,\lambda\in\mathbb{R},\ \beta\geq0$ and $\lambda>0$. In this conditions from Theorem 2.1, we obtain

$$p(z) \prec q(z)$$

or

$$\frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} \prec q(z).$$

This means $f(z) \in SL^c_{\beta}(q)$.

Corollary 3.1 For every $\beta \in \mathbb{N}^*$ we have $SL^c_{\beta}(q) \subset SL^c_0(q) \subset S^c$.

Theorem 3.2 Let $\beta, \lambda \in \mathbb{R}$, $\beta \geq 0$ and $\lambda \geq 1$. If $F(z) \in SL^c_{\beta}(q)$ then $f(z) = L_aF(z) \in SL^c_{\beta}(q)$, where L_a is the Libera-Pascu integral operator defined by (1).

Proof. From (1) we have

$$(1+a)F(z) = af(z) + zf'(z)$$

and, by using the linear operator $D_{\lambda}^{\beta+1}$, we obtain

$$(1+a)D_{\lambda}^{\beta+1}F(z) = aD_{\lambda}^{\beta+1}f(z) + D_{\lambda}^{\beta+1}\left(z + \sum_{j=2}^{\infty} ja_{j}z^{j}\right)$$
$$= aD_{\lambda}^{\beta+1}f(z) + z + \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1} ja_{j}z^{j}$$

We have (see the proof of the above theorem)

$$z + \sum_{j=2}^{\infty} j \left(1 + (j-1)\lambda \right)^{\beta+1} a_j z^j = \frac{1}{\lambda} \left((\lambda - 1) D_{\lambda}^{\beta+1} f(z) + D_{\lambda}^{\beta+2} f(z) \right)$$

Thus

$$(1+a)D_{\lambda}^{\beta+1}F(z) = aD_{\lambda}^{\beta+1}f(z) + \frac{1}{\lambda}\left((\lambda-1)D_{\lambda}^{\beta+1}f(z) + D_{\lambda}^{\beta+2}f(z)\right)$$
$$= \left(a + \frac{\lambda-1}{\lambda}\right)D_{\lambda}^{\beta+1}f(z) + \frac{1}{\lambda}D_{\lambda}^{\beta+2}f(z)$$

or

$$\lambda(1+a)D_{\lambda}^{\beta+1}F(z)=\left((a+1)\lambda-1\right)D_{\lambda}^{\beta+1}f(z)+D_{\lambda}^{\beta+2}f(z)\,.$$

Similarly, we obtain

$$\lambda(1+a)D_{\lambda}^{\beta+2}F(z) = ((a+1)\lambda - 1)D_{\lambda}^{\beta+2}f(z) + D_{\lambda}^{\beta+3}f(z).$$

Then

$$\frac{D_{\lambda}^{\beta+2}F(z)}{D_{\lambda}^{\beta+1}F(z)} = \frac{\frac{D_{\lambda}^{\beta+3}f(z)}{D_{\lambda}^{\beta+1}f(z)} + ((a+1)\lambda - 1) \cdot \frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)}}{\frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} + ((a+1)\lambda - 1)}.$$

With notation

$$\frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} = p(z), \, p(0) = 1,$$

we obtain

(4)
$$\frac{D_{\lambda}^{\beta+2}F(z)}{D_{\lambda}^{\beta+1}F(z)} = \frac{\frac{D_{\lambda}^{\beta+3}f(z)}{D_{\lambda}^{\beta+1}f(z)} + ((a+1)\lambda - 1) \cdot p(z)}{p(z) + ((a+1)\lambda - 1)}$$

We have (see the proof of the above theorem)

$$\frac{D_{\lambda}^{\beta+3}f(z)}{D_{\lambda}^{\beta+1}f(z)}=p(z)^2+\lambda zp'(z).$$

From (4), we obtain

$$\frac{D_{\lambda}^{\beta+2}F(z)}{D_{\zeta}^{\beta+1}F(z)} = \frac{p(z)^2 + \lambda z p'(z) + ((a+1)\lambda - 1)p(z)}{p(z) + ((a+1)\lambda - 1)} = p(z) + \lambda \frac{z p'(z)}{p(z) + ((a+1)\lambda - 1)},$$

where $a\in\mathbb{C},\ Re\ a\geq0,\ \beta,\lambda\in\mathbb{R},\ \beta\geq0$ and $\lambda\geq1$. From $F(z)\in SL^c_{\beta}(q)$ we have

$$p(z) + \frac{zp'(z)}{\frac{1}{\lambda}\left(p(z) + ((a+1)\lambda - 1)\right)} \prec q(z),$$

where $a \in \mathbb{C}$, $Re \, a \geq 0$, $\beta, \lambda \in \mathbb{R}$, $\beta \geq 0$, $\lambda \geq 1$, and from her construction, we have $Re \, q(z) > 0$. In this conditions we have from Theorem 2.1 we obtain

$$p(z) \prec q(z)$$

or

$$\frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} \prec q(z) \, .$$

This means $f(z) = L_a F(z) \in SL_{\beta}^c(q)$.

For $\beta = n \in \mathbb{N}$ and $\lambda = 1$ we obtain

Corollary 3.2 If $F(z) \in CV_n(q)$ then $f(z) = L_a F(z) \in CV_n(q)$, where L_a is the Libera-Pascu integral operator and by $CV_n(q)$ we denote the class of n-convex functions subordinate to the function q(z) (see [2]).

For $\beta = n \in \mathbb{N}$ we obtain

Corollary 3.3 [3] Let $n \in \mathbb{N}$ and $\lambda \geq 1$. If $F(z) \in SL_n^c(q)$ then $f(z) = L_aF(z) \in SL_n^c(q)$, where L_a is the Libera-Pascu integral operator defined by (1).

For $\beta \in \mathbb{R}$ and $\lambda = 1$ we obtain

Corollary 3.4 [4] If $F(z) \in S^c_{\beta}(q)$ then $f(z) = L_a F(z) \in S^c_{\beta}(q)$, where L_a is the Libera-Pascu integral operator defined by (1).

References

- [1] M. Acu, On a subclass of n-convex functions associated with some hyperbola, Annals of Oradea University, Fascicola Matematica, (to appear).
- [2] M. Acu, Some general classes of convex functions, (to appear).
- [3] M. Acu, On a class of n-convex functions, (to appear).
- [4] M. Acu, A general class of convex functions, (to appear).
- [5] M. Acu, S. Owa, Convex functions associated with some hyperbola, (to appear).
- [6] M. Acu, S. Owa, Note on a class of starlike functions, (to appear).
- [7] F.M. Al-Oboudi, On univalent funtions defined by a generalized Sălăgean operator, Ind. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
- [8] P. Duren, Univalent functions, Springer Verlag, BerlinHeildelberg, 1984.
- [9] S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Mich. Math. 28(1981), 157-171.
- [10] S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equation, J. Differential Equations 56(1985), 297-308.
- [11] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordination, Mich. Math. 32(1985), 185-195.
- [12] N.N. Pascu, Alpha-close-to-convex functions, Romanian-Finish Seminar on Complex Analysis, Bucharest 1976, Proc. Lect. Notes Math. 1976, 743, Spriger-Varlag, 331-335.
- [13] Gr. Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj-Napoca, 1983.
- ¹ University "Lucian Blaga" of Sibiu, Department of Mathematics, Str. Dr. I. Raţiu, No. 5-7, 550012 Sibiu, Romania
- ² Department of Mathematics, School of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan