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On blow-analytic equivalence

Toshizumi FUKUI

This is a resume for the talk, with the title above, at 29 November 2007 at RIMS
workshop. This is a joint Work with Laurentiu Paunescu

Motivated by the classification problem of analytic function germs, T.-C. Kuo

([31]) introduced the notions of blow-analytic maps and blow-analytic equivalence.

We start the article explaining this motivation to define blow-analytic equivalence.

He discovered a finite classification theorem for analytic function germs with iso-
lated singularities and also shows some important triviality theorems. We are going
to report several facts known now about the blow-analytic triviality and invariants.

We then discuss Lipschitz property of blow-analytic maps and show blow-analytic
homeomorphism can be far from Lipschitz map. We also discuss exotic pathologies
on a blow-analytic homeomorphism: this is illustrated by the examples in §7. We
then introduce a strengthened notion, called blow-analytic isomorphism, and discuss
the behavior of their jacobians.

In §8, we present a version of the Inverse Mapping Theorem for blow-analytic
isomorphisms.

1. Motivations

The notion of blow-analytic equivalence arises from attempts to classify analytic
function germs. One is tempted to use the following equivalence relation.

Definition 1.1. Let ¥ = 0,1,2,...,00,w. We say that two analytic function-
germs f,g : R*.0 — R,0 are C" equwalent if there is a C*-diffeomorphism-germ
h:R" 0 — R" 0 so that f = goh.

However, the following example, due to H. Whitney, shows that the C*-equivalence
is already too fine for the classification purpose.

Example 1.2 ({41]). Consider the functions f, : R%,0 — R, 0 < t < 1, defined by
fi(z,y) = ry(y — x)(y — tz). Then f, is C'-equivalent to fy, if and only if t =

As for the C%equivalence, the functions (i, y) v 22 + y?**1 k > 1, for instance,
are C%-equivalent to the regular function (z,y) — y. Hence it seems hopeless to -
expect a decent classification theory.

Now we consider the blowing-up 7 : M — R? at 0. This map is illustrated b\ the
following picture.
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The anti-podal points of the inner circle of the annulus in the middle figure are
identified to obtain the Mobius strip in the left figure. Collapsing the inner circle
to a point, yields a mapping from the Mobius strip to the disk at the right. This
is called the blowing-up of the disk at its centre point. One can introduce local
coordinates on the Mobius strip and then the above mapping can be expressed as
a real analytic map, as follows. Let M = {(z,y) x [£ : 7] € D? x P' : zn = y€},
where D? is a 2—dimensional disk and P! is the real projective line. The restriction
of the projection (r,y) % [€ : 9] — (2, y) to M is the desired 7. For the functions [;
in Example 1.2, all f, o7 are C¥- equivalent to each other ([31]).

2. Definition of blow-analytic map

2.1. A naive introduction.

Definition 2.1 (Blowing-up). Let U be a disk in R™ with analytic coordinates
o .z,, and let C C U be the locus z; = --- = 7z = 0. Let [{1 .- &) be
homogeneous coordinates of the real projective space P¥~! and let UcUx P+t
be the nonsingular manifold defined by ‘

—{( ..... fL'n [51,...,§k12$i§j=$j§i, 1_<_2,]Sk'}

The projection 7 : U — U on the first factor is s clearly an isomorphism away fromn
C. The manifold {7. together with the map 7 : U—Uis called the blowing-up with
nonsingular center C. It is well-known that the blowing-up 7 : U — U isindependent
of the coordinates chosen in U. This allows us to globalize the definition. Let Af
be a real analytic manifold of dimension n and C a submanifold of codimmension
k. Let {U,} be a collection of disks in M covering C such that in each disc U,

the submanifold C N U, may be given as the locus (z; = --- = zx = 0), and let
Mo : U’a — [, be the blowing-up with center C N U,. We then have isomorphisms

T - 7\'—1((.] N Uk;) — 7[";1((,/& N (]))_,

and we can patch together U, to form a manifold U= Un, U,, with map 7 : UV —

UU,. Since 7 is an isomorphism away from C, we can take M UU, (M—-C); M,

together with the map = : M — M extending 7 on U and the identity on M — C,

is called the blowing-up of M with center C. We call E = 7~!(C) the exceptional
divisor of the blowing-up .

Let M be areal analytic manifold. Take a function f defined on M except possibly
on some nowhare dense subset of M. We often denote this function by f: M --» R
and say that f is defined almost everywhere.
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Definition 2.2. Let 7 : M — M be a locally finite composition of blowing-ups
with nonsingular centers. We say that f: M --» Ris blow-analytic via 7 if for has
an analytic extension on M. We say that f is blow-analytic if thereisn : M — M,
a locally finite composition of blowing-ups with nonsingular centers, so that f is
blow-analytic via 7.

Many functions, used as counterexamples in Calculus, arc blow-analytic. Some of
them are as follows.
Example 2.3. (i) f(z,y) = y , (z,9) # (0,0). This function f is not continu-
ously extendable at the orlgm It is clearly blow-analytic via the blowmg—up at the
origin.
. __ %Y
() S(e.y) = 5,

at the origin, although all directional derivatives exist, if we define f(0,0) = 0. This
function f is also blow-analytic.

zy(z® — y?) . . .
(iii) f(z,y) = =—=———=, (z,y) # (0,0). This function is continuously extendable

2
(z,y) # (0,0). This function is not continuously extendable

z2 + y?
at the origin, but the second order derivatives depend on the order of differentiation:
&f f
0,0
55700 # 5:-(0.0).

This function f is also blow-analytic via the blowmg-up at the origin.

Example 2.4 ([1]). Another typical example of blow-analytic function is f(z,y) =
/2% + y*. The zero set of z° + (22 + y?)z + 2% is also the graph of a blow-analytic
function z = g(z, y).

The notion of blow-analytic map between real analytic manifolds is defined using
local coordinates.

Definition 2.5. Let X, Y be real analytic manifolds. We say that f: X — Y is
a blow-analytic homeomorphism (bah, for short) if f is a homeomorphism and that
both f and f~! are blow-analytic.

Definition 2.6. Let f.g : R*,0 — R,0 be analytic functions. We say that f
and g are blow-analytically equivalent if there is a blow-analytic homeomorphism
h:R",0— R"™ 0so that f = goh.

Note that h preserves the zero sets of [ and g. The equivalence relation determined
by the above relation on the set of analytic function-germs R™,0 — R, 0 will be
called the blow-analytic equivalence. ’

Example 2.7. (i) Consider the map f B R2,0 — R2,0 defined by

3

The map f is continuously extendable at the ongin and blow-analytic. The extension
is a homeomorphism. But the inverse is not blow-analytic. In fact, f~! is given by

(X,Y) — (X3 +YI)(X,Y).

(z,y) —
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(ii) Consider the map f : R% 0 — R? 0 defined by
(z,y) = (@° +9°)(z,y).

The map f is analytic and a hofneomorphism. But the inverse is not blow-analytic.
In fact. f~! is given by

(X.Y) = (X2 +Y?)V3(X,Y).

Problem 2.8. Classify the analytic function-germs by blow-analytic equivalence.

2.2. Real v.s. complex.

Remark 2.9. Let » : R",0 — R",0 be a blow-analytic homeomorphism. Let
;o M; — R™ ¢ = 1,2, be compositions of blowing-ups with nonsingular centers
so that hom; and h~'om, are analytic. It is natural to expect that, by repeating
blowing-ups of M; at nonsingular centers, if necessary, there will be an analytic
isomorphism H between Ml and Af; which induces h. In other words, we expect to
have the following commutative diagram:

v, = a,
7?1[ [7”1'2
R" h R"

Unfortunately, it is not known whether this is true or not.

Let 4 : M — N Dbe a proper analytic map between real analytic manifolds. It
is known that there are complexifications M* and N* of M, N, respectively, and
a holomorphic map-germ p* : M*, M — N* N so that p*|A = p. (See [23], page
208.)

In complex analytic geometry, a holomorphic map which is bimeromorphic is
often called a modification. Let M*, N* be complex analytic manifolds with anti-
holomorphic involutions oas, on. We denote the fixed point sets of ops, o by M, N,
respectively. Let 7% : M* — N* be a proper modification so that oyom* = T*o0),.
Woe take its real part (restriction to A/) and denote it by m : M — N. In this paper,
we call such a modification a complex modification.

In the setup in Remark 2.9, we can take the fiber product of hom; and m» (or m
and h~!omsy) and obtain the following diagram:

T
M1 ——‘*Rn
M [h.
\

M, —2.Rr
But we do not know whether M has a complexification so that the composed maps
M — M; - R", i = 1,2, are complex modifications, even though one can take
proper complexifications of 7;, # = 1,2. One can say that these compositions are
real modifications in the following sense. We say p: M — N is a real modification,
if one can take a representative of a complexification p* which is an isomorphism
everywhere except on a nowhere densc subset of a neighbourhood of M in M*.
Clearly a complex modification is a real modification. But it is not clear whether,
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or not, a real modification is a complex modification, that is, isomorphic to the real
part of a complex proper modification.

Example 2.10. The following map is an analytic isomorphism, hence a real modi-
fication,

R — R, :Ct——*x“l-m

But the homeomorphism R — R, z — 22, is not a real modification.

3. Triviality theorem

Let I be an interval in R, which contains the origin 0. Let F : (R*,0) x I — R, 0 be
an analytic function-germ. We consider the family f, : R, 0 — R,0, t € I, defined
by fi(z) = F(z,1).

Definition 3.1 (Blow-analytic triviality). Let 7 : M, E — R",0 be a proper ana-
lytic modification. We say f,, t € I, is blow-analytically trivial via 7 if there are a
t-level preserving homeomorphism & : (R",0) x I — (R",0) x I and a t-level pre-
serving analytic isomorphism H : (M, E) x I — (M, E) x I such that the following
diagram is commutative :

Fy

(M,E) x I ZX¥ (Rr 0) x I R,0
| NS - |
(G |

7N

(M, E) x I ZXY (Rn o) x | R,0

where Fp : (R?,0) x [ — R, 0 is the map defined by (z,t) — fo(z).

In all the cases we are interested in, 7 : M — R" is the real part of a complex
proper modification 7* : M* — C™ defined over reals.
Consider the Taylor expansion of f,(z) = F(z,t) at 0 in R™

fiz) = Se e, where =22, v = (nn,...,v0).
We set Hj(z,t) = T,,,-; ¢ (t)z” where |v] = 11 + -+ + 1, and assume that k is
the smallest number so that Hi(z.t) is not identically equal to 0.

Theorem 3.2 ([30]). If Hi(x,t) has an isolated singularity in R™ for any t € I,
then fy, t € I, is blow-analytically trivial via the blowing-up at the origin.

Let w = (wy,...,w,) be an n-tuple of positive integers. We set
HJ(-"’) = 3 coft)” where Ve = wity + - +wpvp,
vilvlw=j

and assume that k is the smallest number so that H ,ﬁw) is not idenﬁically equal to 0.

Theorem 3.3 ([14]). If H™)(z.t) has an isolated singularity in R" for any t € I,
then f,, t € I, is blow-analytically trivial via a toric modification.

See §1.5 in [36], §5 in [6], [16]. about toric modifications. Sec [37] for a general-
ization of this theorem. '
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Example 3.4 ([4]). Consider the family fi(z,y,2) = 2° + tzy® + y'z + 21°

t > —151/7(7/2)%5/3. This function is a weighted homogeneous polynomial with
weight (1,2,3) and weighted degree 15. This family satisfies the assumption of
Theorem 3.3 and hence f, is blow-analytically trivial. An important fact is that this
family is not bilipschitz trivial near t = 0. See S. Koike ([28]) for a proof.

It is expected that the blow-analytic equivalence should not have moduli. Indeed
T.-C. Kuo proved the following: If an analytic function f : R®,0 — R, 0 defines an
isolated singularity, then the number of blow-analytic equivalence classes nearby f
is finite. A more precise statement is the following.

Theorem 3.5 ([31]). Let I be a subanalytic set and let ' : (R™,0) x P - R,0 be

an analytic function. If the functions f; : R®,0 — R, 0 defined by z — F(z,t) have

an tsolated singularity for allt € P, then there is a subanalytic filtration
P=P>O>PD> - 2PyvDPya=0, dim P > dim P,y,,

such that f, and fy are blow-analytically equivalent for t, t' belonging to the same

connected component of P; — Pii1.

K. Kurdyka ([32]) introduced the notion of arc-analytic map. We xecall some
fundamental facts here.

Definition 3.6 (Arc-analytic map). Let X and Y be real analytic manifolds. We
say that a map f: X — Y is arc-analytic (a.a. for short) if foa is analytic for any
analytic map a: R,0 — X.
Theorem 3.7 ([1]). Let [ : UV — R be an arc-analytic function and U be an open
subset of R™. If there are analytic functions Gi(z), ¢ = 0,...,p, so that

Go() f(z)? + Gr(2) [ (2)P " + - - + Gpa (2} (2) + Gpl(z) = 0,
then f is blow-analytic.
Corollary 3.8. An arc-analytic function with semi-algebraic graph is blow-analytic.

Example 3.9 ([1]). The function f(z,y) = £3e=/="+¥") is blow-analytic. But there
arc no non-zero analytic functions vanishing on its graph.

Definition 3.10. Let X and Y be real analytic manifolds. We say that a map
f: X — Y is locally blow-analytic if there is a locally finite family of analytic maps
{vi: M; — X} with the following properties:
e ; are compositions of finitely many local blowing-ups with nonsingular cen-
ters,
e there are compact subsets K; of M; with |, ¥i(K;) = X, and
e foy); are analytic.

Theorem 3.11 ([1]). An arc-analytic function f : U — R with subanalytic graph
is locally blow-analytic.

See also [40] for another proof of this theorem.
Question 3.12. Is a locally blow-analytic function f: U —- R blow—analytlc7

When dimU = 2, the answer 1s “yes”, since local blowing-ups can be glued
together to yield blowing-ups.
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4. Arc lifting property ,
A remarkable property of blowing-up is the arc lifting property.

Definition 4.1 (Arc lifting property). Let J be an open interval in R. Let X and
Y be rcal analvtic manifolds. We say that a map f : X — Y has the arc lifting
property (alp. for short) if for any analytic map « : [ — Y there is an analytic map
a: I — X sothat foa = a.

X
//

a,” |r

] 2 .y

The blowing-up 7 : M — M with a nonsingular center has the alp. ~
The blowing-up with an ideal center has the alp. because it is dominated by a
composition of blowing-ups with nonsingular centers.

Example 4.2. Let f: R2 0 — R2 0 be the map-germ defined by
2 _ .2
(z,y) — (af, M)

2 + y?

This map can he extended continuously at 0. Let m : A/ — R? be the blowing-up
at the origin. Consider the map

FiM— M, (z,9)x[£:n) = f(z.y) x [ +n) 100" = €]

Here we use the same notation as that at the end of §1. It is easy to see that
moF = fom. Since the image of the set of regular points of F by F is M, f has

the arc lifting property. Since the jacobian of f is '—’%%{%?ﬁ, ‘which is zero along
2 — (2+ V5)y? = 0, (z,y) # 0, the lifting is not global.

5. Blow-analytic invariants -
5.1. Singular set.

Theorem 5.1 ([39]). Let f,g: R*,0 — R, 0 be two analytic function germs, and
let ©; and &, denote their singular sets. If there is a blow-analytic homeomorphism
h:R" 0— R".0 with f = goh, then h(X) = Z,. (That is h preserves the singular
set.)

However, a blow-analytic equivalence of analytic functions does not, in general,
preserve their singular loci, as the following example shows.

Example 5.2. Let f,(x.y) = z*+2t22%y?+y*+2° ¢ € R. By Theorem 3.2, this fam-
ily is blow-analytically trivial. Nevertheless, the dimension dimg R{z,y}/ (%’%, %lyﬁ)
changes at t = 1.
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5.2. Numerical invariant. Let [/ : R®, 0 — R, 0 be an analytic function and let
a: R,0 — R" 0 be an analytic map. If fo« is not identically zero, then there is a
positive integer £ so that

foa(t) = ct* + higher order terms, ¢ # 0.

We call & the order of f along o and denote it by ord(f). Definc ord,(f) = oo
when foa is identically zero. We define A(f) by

A(f) :={orda(f) : a:R,0— R" 0 analytic }.

Theorem 5.3. If two analytic function germs f, g : R",0 — R, 0 are blow-analytically
equivalent. then A(f) = A(g).

Remark 5.4. Let multo(f) denote the multiplicity of f at 0, i.e., the degree of
the initial polynomial of f. It is easy to show that multy(f) = min A(f). As a
consequence, the multiplicity is a blow-analytic invariant of analytic function germs.
So, this theorem should be compared with Zariski’s multiplicity conjecture: If two
holomorphic functions f, g : C*, 0 — C, 0 are topologically equivalent (C°-equivalent
or C%-V-equivalent), then multe(f) = multe(g). This is still open. It is clear that the
definition of A(f) makes sense for a holomorphic function f and it is interesting to
ask the following question: Is A(f) a topological invariant for holomorphic functions

f7
Example 5.5. Let K = R or C. Let f K" 0 — K,0 be the analvtic function
defined by [(y, ..., 2,) = o7 -2 Then

= (Zm;N) U {0}
i€l
Let f: K", 0 — K, 0 be an analytic function. Let 7 : M, E — K" 0, E = n~1(0),
denote a real modification. e.g., a composition of finitely many blowing-ups with
nonsingular centers. We assume that for is normal crossing, that is, fom can be
locally expressed as a product of powers of a number of local coordinates. Let
(fem)o = T;es m; E; denote the irreducible decomposition of the zero locus of forr
and C denote the set of subsets I of J with E* C E where Ef = EfNE, EY =

ﬂzel E UIE e [

The following for nlula is stated in [25],Theorem I.
Theorem 5.6. A(f) = ;¢ Ar(f) where A;(f) = (Tiey m:N) U {o0}.
Let f: R™ 0 — R, 0 be a real analytic function. We set
A%(f) = {orda(f) : @ : R,0 = R™,0 analytic and =+ foa(t) > 0 near 0}

The proof of Theorem 5.3 shows AX(f) = A*(g) if f and g are blow-analytically
equivalent. In a way similar to the proof of Theorem 5.6, we obtain the following

Theorem 5.7. A*(f) = U;ccx Ar(f) where C* denotes the set of I € C so that E}
intersects with the closure of {y € M : & fow(y) > 0}.
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5.3. Zeta functions. Recently S. Koike and A. Parusinski ({27]) have introduced
zeta functions for the blow-analytic equivalence. In their paper ([27]), they call their
zeta functions the ‘motivic type invariants’, since their zeta functions can be derived
from zeta functions whose coefficients are motives. G. Fichou ([10]) generalizes their
invariants using the virtual Poincaré polynomial. Since these are very interesting
invariants, we review their results in this section. See also [35] for the virtual Betti
numbers. '

Let C be a category whose objects are a class of subsets of the Euclidean spaces
with some good propertiecs. We consider an invariant 3 : C — R, where R is a
commutative ring, with the following properties.

e B(X)=0B(X-Y)+B(Y)if Y is a closed subset in X.

e B(X'x Y) = 3(X)3(Y).
When C is the ca,tcgoxv of subanalytic subsets in Euclidean spaces which have fi-
nite homologies, the Z/2Z-Euler characteristic 8 with compact supports has these
properties.

We say a semi-algebraic set A4 in a compact nonsingular real algebraic manifold
M is a AS-subset if for any analytic map a: (—¢,e) — M, € > 0, with «(0,€) C A4,
there is a positive number ¢’ so that a(—¢’,0) C A. See [33] for more information
about AS-subsets.

Theorem 5.8 ([10]). Let AS denote the set of all semi-algebraic AS-subsets in com-
pact nonsingular real algebraic manifolds. There is an invariant 3 : AS — Zfu,u™!]
with the above propertics which satisfies the following:
3(X) = 3 (dim Hx(X, Z./2Z))u*
=
when X is compact and nonsingular. Moreover, if two AS-sets X, Y are Nash
(i.e.,semi-algebraically and analytically) equivalent, then 8(X) = 3(Y).

Notice the following: 3(0) =0, 3(P*) =1+u+u?+---+u", B(R?) = u™.

Example 5.9. It is not true that 3(X) = kG(Y) when there is an unbranched
k-fold covering X — Y. Consider the double covering S* — P! and observe that
B(SY)y = B(P)=u+1.
We consider the space of polynomial arcs of order k:
= {a: R,0 — R",0: polynomial of degree k} = R"*.
Let f: R",0 — R 0 be an analvtl( function. The following spaces are algebraically
constructlble
Ak f) = {C\f € Lk : Ord(fo(l') = k} Ai(f) = {C! < Lk : foa = :Efk }

Notice that if f and g are analytically equivalent, then Ap(f) (resp. A*(f }) and

Ax(g) (resp. AF(g)) are actually isomorphic as algebra.lc constructible sets. Define
Zeta functions by the following formulas.

)= 3 A ) (L) zf<t>:=§ﬁ<Af(f)>(§;)'“

where « = —1 when f3 is the Z/2Z-Enler characteristic with compact supports ([27]),
or u is an indeterminate when /3 is the virtual Poincaré polynomial ([10}).
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Let 7 : M,E — R" 0, F = n7'(0), be a proper analytic modification so that
fom, det(dn) are in normal crossing and that 7 is an isomorphism over R™ — f~1(0).
We assume that 7=2(0) is a normal crossing divisor. We use the notation defined
in the paragraph after Example 5.5. We consider the irreducible decompositions of
the zero loci of fom and det(dn), the jacobian determinant of «:

(fom)o = >_m;E;,  (det(dm))o =D (v; — 1)E;.
Jj€J jEJ
The following formula is often called the Denef-Loeser formula.

Theorem 5.10 ([27], [10]). Setting ¢(A) =A/(1 = A) = A+ X2+ A3+ .-, we have
2= 5N - D" T]o(5)

I#0 i€l
Remark 5.11. When 3 is the virtual Poincaré polynomial we need to assume that
f is a polynomial and that 7 is algebraic (since we do not know that E} is semi-
algebraic).

It is also possible to obtain a formula for Z;‘(t) similar to Theorem 5.10. To do
this, we introduce somenotation. We define A (f, E}) by

AL B =pe(m AR N LML ED) = || pel AR (1 ED)),
Jji{m,g) =k
where Atj(f, E}) = {y € n7YAL(f)) N L(M, E}®) : ord, E; = ji}. Let p € E}
and let U/ be a coordinate neighbourhood at p. Using the local coordinates y =
(W1,-- s un) U = R with B} = {y; =0, € I,y; # 0,1 &€ I}, we can express form
as follows:
forr(y) = u(y) Hy:”‘", where u(y) is a unit.
i€l
We set y; = (y:)ies and define
Bfly = {(,v1) € (B1 nU) x R w(p) [ o™ = 21}
i€l
The sets E,ilb can be patched together and we obtain a set E,i We denote by my
the greatest common divisor of m;, ¢ € 7, and define '
Efly = {(p,w) € (B} NU) x R: u(p)w™ = +1}.

The sets g’ﬂ, can be patched together and we obtain a set E;t Setting 3% = 3(5,*),

we obtain
_ _ pmi
Zr () = Zﬁ}k (u— M7 H¢(§Z)
I i€l

Theorem 5.12 ([27]). Let f,g : R",0 — R,0 be two analytic functions and let
B be the Z/2Z-FEuler characteristic with compact supports. Assume that there are
real modifications m; : M; — R™, i = 1,2, so that m (resp. mwp) is an isomorphism
except possibly over the zero set of f (resp. g). If there is an analytic isomorphism
(M, 771(0)) — (Ma,75'(0)) which induces a blow-analytic homeomorphism h :
R",0 — R",0 with [ = goh, then Z;(1) = Z,(t). ZF(t) = ZE(¢).
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Similarly we obtain the following

Theorem 5.13 ([10]). Let f,¢g: R™,0 — R, 0 be two polynomial functions and let
B be the virtual Poincaré polynomial. Assume that there are algebraic modifications
7« M; — R". i = 1,2, whose critical loci are normal crossings. We assume that m;
(resp. m2) is an isomorphismn except over the zero set of [ (resp. g). If there is an
analytic isomorphism (My, m7*(0)) — (Mg, 75 *(0)) which induces a blow-analytic
isomorphism h : R",0 — R™ 0 with f = goh, then Z;(t) = Z,(t), Z}‘(t) = ZX(t).

See Definition 7.2 below for the notion of blow-analytic isomorphism.

6. Lipschitz maps

" An interesting class of maps which are not differentiable is the class of Lipschitz
maps. We start with some basics.
Let U be a convex open subset of R*. A map f : U — R? is said to be Lipschitz
if there is a positive constant K so that
[f(z) — f(z')| < K|z — 7| Ve, e U.

Recall that Rademacher’s theorem ([15, Theorem 4.1.1]), states that a function
which is Lipschitz on an open subset of R" is differentiable almost everywhere (in
the sense of Lebesgue measure) on that set. This allows us to introduce the following
definition. ‘

Definition 6.1 (Generalized Jacobian). The generalized Jacobian 8f(0) of f at O is
the convex hull of all matrices obtained as limits of sequences of the Jacobi matrices
of [ at z; where 2; — 0, z; € Z. Here Z denotes the set of points at which [ fails
to be differentiable.

Theorem 6.2 ([5]). Let [ : R"*,0 — R" 0 be a Lipschitz map-germ. If 3f(0) does
not contain singular matrices, then f has a Lipschitz inverse.

In this section, we are interested in blow-analytic maps satisfving the Lipschitz
condition.

Let U be a convex open subset of R™ and let f : U — R be a continuous function
with subanalytic graph. Then there is an nowhere dense closed subanalytic subset
Z so that f is analytic on U/ — Z.

Lemma 6.3. The function [ is Lipschitz if and only if all partial derivatives of f
are bounded on U — Z.

Theorem 6.4 ([13]). Let f : R"*,0 — R",0 be an arc-analytic map with subanalytic
graph. If f is bilipschitz, i.e., there are positive constants cy, ¢, so that
aly =y <fy) = F) < eely — v/
then f~! is arc-analytic.
Let f: R",0 — R", 0 be a homeomorphism which is blow-analytic and Lipschitz.
The theorem asserts that the inverse f~! is blow-analytic, if f~! is Lipschitz.

Corollary 6.5. Let f : R",0 — R".0 be an arc-analytic map with semi-algebraic
graph. If f is bilipschitz. then f~1 is blow-analytic. '



134

Theorem 6.6 ([13]). Let F: R™xR™, 0 — R", (x,y) — F(z,y), be an arc-analytic
map with subanalytic graph. If there are positive constants cy, ¢o so that

(1) | aly =y < |F(z,y) ~ Flz,y)| < ealy = ¥/,
then there is an arc-analytic and subanalytic map 7 : R™,0 — R"™, 0 such that
(2) {F(z,y) =0} = {y = 7(z)}.

Remark 6.7. Let a = (a1,...,0,) : R,0 = R" 0 be an analytic map. Let ord(«a)
denote min{ord(a;), ... ,ord(a,,)} If an arc-analytic map f : R*,0 — R™ 0 is
Lipschitz, then ord(focr) > ord(a). If the map f : R*,0 — R", O is blhpechxtm
then ord(foa) = ord(«). In particular, the image of a nonsingular curve by an
arc-analytic bilipschitz map R*,0 — R", 0 is a nonsingular curve.

Question 6.8. Does there exist a blow-analytic map (or an arc-analytic map with
subanalytic graph) f : R",0 — R", 0 with the following properties?
e there is a positive constant ¢ so that

cdy-yI<Ifly) - fW)N  Vy.y' € R0
e f is not Lipschitz.

7. Blow-analytic isomorphism and analytic arcs
A blow-analytic homeomorphism can be quite far from a bilipschitz homeomorphism.

Theorem 7.1 ([26]). For any unibranched curve C C R?,0, there is a blow-analytic
homeomorphism h : R?,0 — R*, 0 such that h(C) is nonsingular.

Theorem 7.1 motivates us to strengthen the conditions imposed to the definition
of blow-analytic homeomorphisms.

Definition 7.2. We say that a map f : R*,0 — R",0 is a blow-analytic isomor-
phism (bai for short) if there are two neighbourhoods U, U’ of 0 in R™ so that the
following conditions are satisfied.

e there are complex modifications 7 : M — U, n/ : M’ — U’, and an analytic
isomorphism F : (M,E) — (M', E’) of analytic spaces, where F and E’
denote the critical loci of m and 7’ respectively.

e f is a homeomorphism and 7'oF = for.

A blow-analytic isomorphism is clearly a blow-analytic homeomorphism. But the
converse is not true. For example, the blow-analytic homeomorphism in Example 7.1
is not a bai. In fact, the critical locus of the composites of horizontal arrows are nor-
mal crossing, and we have a correspondence between their 1rroducxble components,
but they have different multiplicities.

Let m : M — R"™ be a complex modification whose critical locus is a normal
crossing divisor. We consider an analytic vector £ on Af which is tangent to each
irreducible component of the critical locus. By integrating £, we obtain an analytic
isomorphism of M. If it induces a homeomorphism of R" near 0, this is a blow-
analytic isomorphism. Thus, in all triviality theorems stated before, we can replace
bah by bai.
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Definition 7.3. Let m : M — U be a composition of blowing-ups with nonsingular
centers. A blow-analytic function P : U --+ R is said to be a blow-analytic unit
(bau for short) via 7 if Pom extends to an analytic unit (i.e. an analytic function
which is nowhere vanishing). P is said to be a blow-analytic unit (bau for short) if
there is m : M — U such that P is a bau via 7 '

Theorem 7.4. If f : R",0 — R™. 0 is a blow-analytic isomorphism, then the Jaco-
bian determinant det(df) is a blow-analytic unit.

Let wy, ..., w, be real numbers. We consider the map
(3) J:R*»0O-R"0, r=(11,...,2,) = (1 P(x)**,... 2, P(x)""),
where P : R™, 0 --+ R is a bounded blow-analytic function.

Theorem 7.5. Let P be a non-negative blow-analytic function via some toric modi-
ficationm : M — R". If P+>"" | uvixig—g is a blow-analytic unit via the modification
7, and if P and ) _._, 'u,ri:z,vgz—’% are continuously extendable on R™ —0, 0, then the map
f defined by (3) is a blow-analytic isomorphism.

Example 7.6. The map

4 6
. (R2 2 , 3, p2 _T+2y
f'(R:O)—*(RaO).‘ (z,y) — (zP°,yP?), P—m;

is a blow-analytic isomorphism.
Consider the map
F:R"0O->R"0, z=(r1....,7,) — (21 + Q(22,...,Zpn), T2, ... Zn),

where @ : R"™',0 — R is a blow-analytic function. Since the map (z;,...,Zs) —
(1 — Q(z2,...,Zn), T2, ..., T,) is the inverse of f, f is a homeomorphism.

Theorem 7.7. If Q is blow-analytic, then f is a blow-analytic isomorphism.

Example 7.8 ([38]). Consider a blow-analytic map f : R3,0 — R?,0 defined by

2x%y
v I T, Y. 2+ —— |
e (s 22

This is a blow-analytic isomorphism by Theorem 7.7. Let a : R,0 — R?.0 be the
map defined by t — (¢2,¢%,0). Observe that foa(t) = (t2,t3,t). This means that
the blow-analytic isomorphism f sends a singular curve, the image of a, to a regular
curve. '

We say that an analytic map a : R,0 — R", 0 is irreducible if o cannot be written
as o = Jotp, where 3: R.0 —» R™, 0and ¢ : R,0 — R, 0, are analytic and 4'(0) = 0.

Theorem 7.9. Let o : R,0 —» R™ 0, n > 3, be an irreducible analytic map. Then
there is a blow-analytic isomorphism f : R*,0 — R"™ 0 such that foc is a regular
map.
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8. Jacobian of blow-analytic map

Let /: R",0 > R™,0bea hlow-analvtic map. It is interesting to investigate what
we can conclude when we assume that det(df) is a blow-analytic unit. For example,
is such a f a blow-analytic isomorphism?

Example 8.1. We identify R? with C by the map (z,y) — 2z =z + v/—1y. Let k
be a positive integer. Consider the continuous blow-analytic map

f:C,0—- C,0, z s 2Rk = PR ) 2k

Looking at the restriction to a small circle |z| = €, the mapping degree of f is 2k +1.
In particular, f is not a homecomorphism. Since

k+1 zk. sk —kzk” ;.;k+1 4
det(df) = (_k2k+)l/z{cil (k + I)Qk/zk = (k + 1)2 —k? =2k + 1, z#0,

det(df) is a blow-analytic unit. We also have that f is Lipschitz, by Lemma 6.3.
Let M — C denote the blowing-up at the origin. Since the map f is induced by an
unbranched covering M — M of degree 2k + 1, f has the arc lifting property.

Example 8.1 shows that a blow-analvtic map f : R",0 — R"™,0 may not be a
homeomorphism, even though det(df) is a blow-analytic unit. However, this kind
of phenomenon is not possible in higher codimensional cases.

Proposition 8.2. Let f : R*,0 — R".0 be a blow-analytic map so that det(df) is
a blow-analytic unit. If there is a subset C' of R*,0, of codimension > 3, so that
flrn-c is analytic, then f is a homeomorphism.

It is an open question whther f is a bai or not.
We have a version of the inverse mapping theorem via toric modification. which
is the following

Theorem 8.3. Let h = (hy,...,h,) : R*.0 - R™, 0 be a continuous blow-analytic

. ‘ : . Ahy ks a(hy,...h . .
map via a toric modification. If %ﬁ%, 5%7%’ e ’5%#73-:')2 are blow-analytic units

and they are continuously extendable on R" — 0,0, then h is a blow-analytic isomor-
phism. '

If the map h = (h1,...,hs) : R*,0 — R" 0 satisfies the assumption of Theo-
rem 8.3 after permutations of zj,..., 2, and hi.... . hy, then h is a blow-analytic
isomorphism, by Theorem 8.3.

This is the corrected version of Theorem 6.1 in [12].

Lastly we have three more theorcms.

Theorem 8.4. Let f : R*,0 --+ R™.0 be a blow-analytic map so that det(df) is a
blow-analytic unit. If there are nonsingular subanalytic subsets C, C' so that f is
blow-analytic via the blowing up with center C and that f(C) = C’, then codimC =
codun C’' and [ has the arc lifting property. Moreover, there is an analytic map
f: — M’ such that f is locally an zsomorphzsm and that m'of = fom. where
T ..’\/ — R" is the blowing-up at C and ' : M’ — R™ is the blowing-up at C’.

Theorem 8.5. Let f : (R*,0) — (R".0) be a blow-analytic map. If det(df) is a
blow-analytic unit, then f is finite.
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Theorem 8:6. Consider a blow-analytic map f : (R™,0) — (R",0) defined by
(1,3 Zn) — (21 P (2). .. .. z,Pn(z)), where P; are blow-analytic units.

If f is blow-analytic via a toric modification and det(df) is a blow-analytic unit,
then f is a blow-analytic 1somorphism.
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