On blow-analytic equivalence

Toshizumi FUKUI

This is a resume for the talk, with the title above, at 29 November 2007 at RIMS workshop. This is a joint work with Laurentiu Paunescu.

Motivated by the classification problem of analytic function germs, T.-C. Kuo ([31]) introduced the notions of blow-analytic maps and blow-analytic equivalence. We start the article explaining this motivation to define blow-analytic equivalence.

He discovered a finite classification theorem for analytic function germs with isolated singularities and also shows some important triviality theorems. We are going to report several facts known now about the blow-analytic triviality and invariants.

We then discuss Lipschitz property of blow-analytic maps and show blow-analytic homeomorphism can be far from Lipschitz map. We also discuss exotic pathologies on a blow-analytic homeomorphism: this is illustrated by the examples in §7. We then introduce a strengthened notion, called blow-analytic isomorphism, and discuss the behavior of their jacobians.

In §8, we present a version of the Inverse Mapping Theorem for blow-analytic isomorphisms.

1. Motivations

The notion of blow-analytic equivalence arises from attempts to classify analytic function germs. One is tempted to use the following equivalence relation.

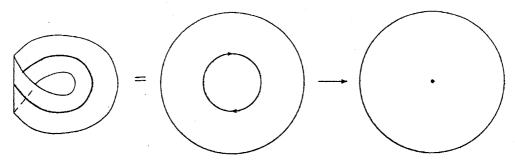
Definition 1.1. Let $k = 0, 1, 2, ..., \infty, \omega$. We say that two analytic functiongerms $f, g : \mathbf{R}^n, 0 \to \mathbf{R}, 0$ are C^k -equivalent if there is a C^k -diffeomorphism-germ $h : \mathbf{R}^n, 0 \to \mathbf{R}^n$. 0 so that $f = g \circ h$.

However, the following example, due to H. Whitney, shows that the C^1 -equivalence is already too fine for the classification purpose.

Example 1.2 ([41]). Consider the functions $f_t: \mathbf{R}^2, 0 \to \mathbf{R}, 0 < t < 1$, defined by $f_t(x,y) = xy(y-x)(y-tx)$. Then f_t is C^1 -equivalent to $f_{t'}$, if and only if t = t'.

As for the C^0 -equivalence, the functions $(x,y) \mapsto x^2 + y^{2k+1}$, $k \ge 1$, for instance, are C^0 -equivalent to the regular function $(x,y) \mapsto y$. Hence it seems hopeless to expect a decent classification theory.

Now we consider the blowing-up $\pi: M \to \mathbf{R}^2$ at 0. This map is illustrated by the following picture.



The anti-podal points of the inner circle of the annulus in the middle figure are identified to obtain the Möbius strip in the left figure. Collapsing the inner circle to a point, yields a mapping from the Möbius strip to the disk at the right. This is called the blowing-up of the disk at its centre point. One can introduce local coordinates on the Möbius strip and then the above mapping can be expressed as a real analytic map, as follows. Let $M = \{(x,y) \times [\xi : \eta] \in D^2 \times P^1 : x\eta = y\xi\}$, where D^2 is a 2-dimensional disk and P^1 is the real projective line. The restriction of the projection $(x,y) \times [\xi : \eta] \mapsto (x,y)$ to M is the desired π . For the functions f_t in Example 1.2, all $f_t \circ \pi$ are C^{ω} - equivalent to each other ([31]).

2. Definition of blow-analytic map

2.1. A naive introduction.

Definition 2.1 (Blowing-up). Let U be a disk in \mathbb{R}^n with analytic coordinates x_1, \ldots, x_n , and let $C \subset U$ be the locus $x_1 = \cdots = x_k = 0$. Let $[\xi_1 : \cdots : \xi_k]$ be homogeneous coordinates of the real projective space P^{k-1} and let $\widetilde{U} \subset U \times P^{k-1}$ be the nonsingular manifold defined by

$$\widetilde{U} = \{(x_1, \ldots, x_n) \times [\xi_1, \ldots, \xi_k] : x_i \xi_j = x_j \xi_i, 1 \le i, j \le k\}.$$

The projection $\pi:\widetilde{U}\to U$ on the first factor is clearly an isomorphism away from C. The manifold \widetilde{U} , together with the map $\pi:\widetilde{U}\to U$ is called the blowing-up with nonsingular center C. It is well-known that the blowing-up $\pi:\widetilde{U}\to U$ is independent of the coordinates chosen in U. This allows us to globalize the definition. Let M be a real analytic manifold of dimension n and C a submanifold of codimension k. Let $\{U_{\alpha}\}$ be a collection of disks in M covering C such that in each disc U_{α} the submanifold $C\cap U_{\alpha}$ may be given as the locus $(x_1=\cdots=x_k=0)$, and let $\pi_{\alpha}:\widetilde{U}_{\alpha}\to U_{\alpha}$ be the blowing-up with center $C\cap U_{\alpha}$. We then have isomorphisms

$$\pi_{\alpha\beta}:\pi_{\alpha}^{-1}(U_{\alpha}\cap U_{\beta})\to\pi_{\beta}^{-1}(U_{\alpha}\cap U_{\beta}),$$

and we can patch together \widetilde{U}_{α} to form a manifold $\widetilde{U} = \bigcup_{\pi_{\alpha\beta}} \widetilde{U}_{\alpha}$ with map $\pi : \widetilde{U} \to \bigcup U_{\alpha}$. Since π is an isomorphism away from C, we can take $\widetilde{M} = \widetilde{U} \cup_{\pi} (M - C)$; \widetilde{M} , together with the map $\pi : \widetilde{M} \to M$ extending π on \widetilde{U} and the identity on M - C, is called the blowing-up of M with center C. We call $E = \pi^{-1}(C)$ the exceptional divisor of the blowing-up π .

Let M be a real analytic manifold. Take a function f defined on M except possibly on some nowhere dense subset of M. We often denote this function by $f: M \longrightarrow \mathbb{R}$ and say that f is defined almost everywhere.

Definition 2.2. Let $\pi:\widetilde{M}\to M$ be a locally finite composition of blowing-ups with nonsingular centers. We say that $f:M\dashrightarrow \mathbf{R}$ is blow-analytic via π if $f\circ\pi$ has an analytic extension on \widetilde{M} . We say that f is blow-analytic if there is $\pi:\widetilde{M}\to M$, a locally finite composition of blowing-ups with nonsingular centers, so that f is blow-analytic via π .

Many functions, used as counterexamples in Calculus, are blow-analytic. Some of them are as follows.

Example 2.3. (i) $f(x,y) = \frac{xy}{x^2 + y^2}$, $(x,y) \neq (0,0)$. This function f is not continuously extendable at the origin. It is clearly blow-analytic via the blowing-up at the origin.

(ii) $f(x,y) = \frac{x^2y}{x^4 + y^2}$, $(x,y) \neq (0,0)$. This function is not continuously extendable at the origin, although all directional derivatives exist, if we define f(0,0) = 0. This function f is also blow-analytic.

function f is also blow-analytic. (iii) $f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$, $(x,y) \neq (0,0)$. This function is continuously extendable at the origin, but the second order derivatives depend on the order of differentiation:

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

This function f is also blow-analytic via the blowing-up at the origin.

Example 2.4 ([1]). Another typical example of blow-analytic function is $f(x,y) = \sqrt[2]{x^4 + y^4}$. The zero set of $z^3 + (x^2 + y^2)z + x^3$ is also the graph of a blow-analytic function z = g(x,y).

The notion of blow-analytic map between real analytic manifolds is defined using local coordinates.

Definition 2.5. Let X, Y be real analytic manifolds. We say that $f: X \to Y$ is a blow-analytic homeomorphism (bah, for short) if f is a homeomorphism and that both f and f^{-1} are blow-analytic.

Definition 2.6. Let $f, g: \mathbf{R}^n, 0 \to \mathbf{R}, 0$ be analytic functions. We say that f and g are blow-analytically equivalent if there is a blow-analytic homeomorphism $h: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ so that $f = g \circ h$.

Note that h preserves the zero sets of f and g. The equivalence relation determined by the above relation on the set of analytic function-germs $\mathbf{R}^n, \mathbf{0} \to \mathbf{R}, \mathbf{0}$ will be called the blow-analytic equivalence.

Example 2.7. (i) Consider the map $f: \mathbb{R}^2, 0 \to \mathbb{R}^2, 0$ defined by

$$(x,y) \mapsto \frac{1}{x^2 + y^2}(x^3, y^3).$$

The map f is continuously extendable at the origin and blow-analytic. The extension is a homeomorphism. But the inverse is not blow-analytic. In fact, f^{-1} is given by

$$(X,Y) \mapsto (X^{\frac{2}{3}} + Y^{\frac{2}{3}})(X,Y).$$

(ii) Consider the map $f: \mathbf{R}^2, 0 \to \mathbf{R}^2, 0$ defined by

$$(x,y) \mapsto (x^2 + y^2)(x,y).$$

The map f is analytic and a homeomorphism. But the inverse is not blow-analytic. In fact, f^{-1} is given by

$$(X,Y) \mapsto (X^2 + Y^2)^{-1/3}(X,Y).$$

Problem 2.8. Classify the analytic function-germs by blow-analytic equivalence.

2.2. Real v.s. complex.

Remark 2.9. Let $h: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ be a blow-analytic homeomorphism. Let $\pi_i: M_i \to \mathbf{R}^n, i = 1, 2$, be compositions of blowing-ups with nonsingular centers so that $h \circ \pi_1$ and $h^{-1} \circ \pi_2$ are analytic. It is natural to expect that, by repeating blowing-ups of M_i at nonsingular centers, if necessary, there will be an analytic isomorphism H between \tilde{M}_1 and \tilde{M}_2 which induces h. In other words, we expect to have the following commutative diagram:

$$\begin{array}{ccc}
\tilde{M}_1 & \xrightarrow{H} & \tilde{M}_2 \\
\tilde{\pi}_1 & & & |\tilde{\pi}_2| \\
\mathbf{R}^n & \xrightarrow{h} & \mathbf{R}^n
\end{array}$$

Unfortunately, it is not known whether this is true or not.

Let $\mu: M \to N$ be a proper analytic map between real analytic manifolds. It is known that there are complexifications M^* and N^* of M, N, respectively, and a holomorphic map-germ $\mu^*: M^*, M \to N^*, N$ so that $\mu^*|_{M} = \mu$. (See [23], page 208.)

In complex analytic geometry, a holomorphic map which is bimeromorphic is often called a modification. Let M^* , N^* be complex analytic manifolds with anti-holomorphic involutions σ_M , σ_N . We denote the fixed point sets of σ_M , σ_N by M, N, respectively. Let $\pi^*: M^* \to N^*$ be a proper modification so that $\sigma_N \circ \pi^* = \pi^* \circ \sigma_M$. We take its real part (restriction to M) and denote it by $\pi: M \to N$. In this paper, we call such a modification a complex modification.

In the setup in Remark 2.9, we can take the fiber product of $h_0\pi_1$ and π_2 (or π_1 and $h^{-1}_0\pi_2$) and obtain the following diagram:

$$M \xrightarrow{M_1 \xrightarrow{\pi_1} \mathbf{R}^n} h$$

$$M_2 \xrightarrow{\pi_2} \mathbf{R}^n$$

But we do not know whether M has a complexification so that the composed maps $M \to M_i \to \mathbb{R}^n$, i = 1, 2, are complex modifications, even though one can take proper complexifications of π_i , i = 1, 2. One can say that these compositions are real modifications in the following sense. We say $\mu: M \to N$ is a real modification, if one can take a representative of a complexification μ^* which is an isomorphism everywhere except on a nowhere dense subset of a neighbourhood of M in M^* . Clearly a complex modification is a real modification. But it is not clear whether,

or not, a real modification is a complex modification, that is, isomorphic to the real part of a complex proper modification.

Example 2.10. The following map is an analytic isomorphism, hence a real modification,

$$R \to R$$
, $x \mapsto x + \frac{1}{2(1+x^2)}$.

But the homeomorphism $\mathbf{R} \to \mathbf{R}$, $x \mapsto x^3$, is not a real modification.

3. Triviality theorem

Let I be an interval in \mathbb{R} , which contains the origin 0. Let $F: (\mathbb{R}^n, 0) \times I \to \mathbb{R}$, 0 be an analytic function-germ. We consider the family $f_t: \mathbb{R}^n, 0 \to \mathbb{R}$, 0, $t \in I$, defined by $f_t(x) = F(x, t)$.

Definition 3.1 (Blow-analytic triviality). Let $\pi: M, E \to \mathbf{R}^n, 0$ be a proper analytic modification. We say $f_t, t \in I$, is blow-analytically trivial via π if there are a t-level preserving homeomorphism $h: (\mathbf{R}^n, 0) \times I \to (\mathbf{R}^n, 0) \times I$ and a t-level preserving analytic isomorphism $H: (M, E) \times I \to (M, E) \times I$ such that the following diagram is commutative:

$$(M, E) \times I \xrightarrow{\pi \times \operatorname{id}_{I}} (\mathbf{R}^{n}, 0) \times I \xrightarrow{F_{0}} \mathbf{R}, 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

where $F_0: (\mathbf{R}^n, 0) \times I \to \mathbf{R}, 0$ is the map defined by $(x, t) \mapsto f_0(x)$.

In all the cases we are interested in, $\pi: M \to \mathbb{R}^n$ is the real part of a complex proper modification $\pi^*: M^* \to \mathbb{C}^n$ defined over reals.

Consider the Taylor expansion of $f_t(x) = F(x, t)$ at 0 in \mathbb{R}^n :

$$f_t(x) = \sum_{\nu} c_{\nu}(t) x^{\nu}, \quad \text{where} \quad x^{\nu} = x_1^{\nu_1} \cdots x_n^{\nu_n}, \quad \nu = (\nu_1, \dots, \nu_n).$$

We set $H_j(x,t) = \sum_{\nu:|\nu|=j} c_{\nu}(t)x^{\nu}$ where $|\nu| = \nu_1 + \cdots + \nu_n$, and assume that k is the smallest number so that $H_k(x,t)$ is not identically equal to 0.

Theorem 3.2 ([30]). If $H_k(x,t)$ has an isolated singularity in \mathbb{R}^n for any $t \in I$, then f_t , $t \in I$, is blow-analytically trivial via the blowing-up at the origin.

Let $w = (w_1, \ldots, w_n)$ be an *n*-tuple of positive integers. We set

$$H_j^{(w)} = \sum_{\nu: |\nu|_w = j} c_{\nu}(t) x^{\nu}$$
 where $|\nu|_w = w_1 \nu_1 + \dots + w_n \nu_n$,

and assume that k is the smallest number so that $H_k^{(w)}$ is not identically equal to 0.

Theorem 3.3 ([14]). If $H_k^{(w)}(x,t)$ has an isolated singularity in \mathbb{R}^n for any $t \in I$, then f_t , $t \in I$, is blow-analytically trivial via a toric modification.

See §1.5 in [36], §5 in [6], [16], about toric modifications. See [37] for a generalization of this theorem.

Example 3.4 ([4]). Consider the family $f_t(x, y, z) = z^5 + tzy^6 + y^7x + x^{15}$, $t > -15^{1/7}(7/2)^{4/5}/3$. This function is a weighted homogeneous polynomial with weight (1, 2, 3) and weighted degree 15. This family satisfies the assumption of Theorem 3.3 and hence f_t is blow-analytically trivial. An important fact is that this family is not bilipschitz trivial near t = 0. See S. Koike ([28]) for a proof.

It is expected that the blow-analytic equivalence should not have moduli. Indeed T.-C. Kuo proved the following: If an analytic function $f: \mathbf{R}^n, 0 \to \mathbf{R}, 0$ defines an isolated singularity, then the number of blow-analytic equivalence classes nearby f is finite. A more precise statement is the following.

Theorem 3.5 ([31]). Let P be a subanalytic set and let $F: (\mathbf{R}^n, 0) \times P \to \mathbf{R}, 0$ be an analytic function. If the functions $f_t: \mathbf{R}^n, 0 \to \mathbf{R}, 0$ defined by $x \mapsto F(x, t)$ have an isolated singularity for all $t \in P$, then there is a subanalytic filtration

$$P = P_0 \supset P_1 \supset \cdots \supset P_N \supset P_{N+1} = \emptyset, \qquad \dim P_i > \dim P_{i+1},$$

such that f_t and $f_{t'}$ are blow-analytically equivalent for t, t' belonging to the same connected component of $P_i - P_{i+1}$.

K. Kurdyka ([32]) introduced the notion of arc-analytic map. We recall some fundamental facts here.

Definition 3.6 (Arc-analytic map). Let X and Y be real analytic manifolds. We say that a map $f: X \to Y$ is arc-analytic (a.a. for short) if $f \circ \alpha$ is analytic for any analytic map $\alpha: \mathbf{R}, 0 \to X$.

Theorem 3.7 ([1]). Let $f: U \to \mathbf{R}$ be an arc-analytic function and U be an open subset of \mathbf{R}^n . If there are analytic functions $G_i(x)$, $i = 0, \ldots, p$, so that

$$G_0(x)f(x)^p + G_1(x)f(x)^{p-1} + \cdots + G_{p-1}(x)f(x) + G_p(x) \equiv 0,$$

then f is blow-analytic.

Corollary 3.8. An arc-analytic function with semi-algebraic graph is blow-analytic.

Example 3.9 ([1]). The function $f(x,y) = x^3 e^{x^3/(x^2+y^2)}$ is blow-analytic. But there are no non-zero analytic functions vanishing on its graph.

Definition 3.10. Let X and Y be real analytic manifolds. We say that a map $f: X \to Y$ is locally blow-analytic if there is a locally finite family of analytic maps $\{\psi_i: M_i \to X\}$ with the following properties:

- ψ_i are compositions of finitely many local blowing-ups with nonsingular centers,
- there are compact subsets K_i of M_i with $\bigcup_i \psi_i(K_i) = X_i$ and
- $f \circ \psi_i$ are analytic.

Theorem 3.11 ([1]). An arc-analytic function $f: U \to \mathbf{R}$ with subanalytic graph is locally blow-analytic.

See also [40] for another proof of this theorem.

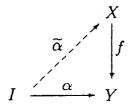
Question 3.12. Is a locally blow-analytic function $f: U \to \mathbf{R}$ blow-analytic?

When $\dim U = 2$, the answer is "yes", since local blowing-ups can be glued together to yield blowing-ups.

4. Arc lifting property

A remarkable property of blowing-up is the arc lifting property.

Definition 4.1 (Arc lifting property). Let I be an open interval in \mathbf{R} . Let X and Y be real analytic manifolds. We say that a map $f: X \to Y$ has the arc lifting property (alp. for short) if for any analytic map $\alpha: I \to X$ so that $f \circ \widetilde{\alpha} = \alpha$.



The blowing-up $\pi: \widetilde{M} \to M$ with a nonsingular center has the alp.

The blowing-up with an ideal center has the alp. because it is dominated by a composition of blowing-ups with nonsingular centers.

Example 4.2. Let $f: \mathbb{R}^2, 0 \to \mathbb{R}^2, 0$ be the map-germ defined by

$$(x,y) \mapsto \left(x, \frac{y(y^2 - x^2)}{x^2 + y^2}\right)$$

This map can be extended continuously at 0. Let $\pi: M \to \mathbb{R}^2$ be the blowing-up at the origin. Consider the map

$$F: M \to M, \quad (x,y) \times [\xi:\eta] \mapsto f(x,y) \times [\xi(\xi^2+\eta^2):\eta(\eta^2-\xi^2)].$$

Here we use the same notation as that at the end of §1. It is easy to see that $\pi \circ F = f \circ \pi$. Since the image of the set of regular points of F by F is M, f has the arc lifting property. Since the jacobian of f is $\frac{-x^4+4x^2y^2+y^4}{(x^2+y^2)^2}$, which is zero along $x^2 - (2+\sqrt{5})y^2 = 0$, $(x,y) \neq 0$, the lifting is not global.

5. Blow-analytic invariants

5.1. Singular set.

Theorem 5.1 ([39]). Let $f, g: \mathbf{R}^n, 0 \to \mathbf{R}, 0$ be two analytic function germs, and let Σ_f and Σ_g denote their singular sets. If there is a blow-analytic homeomorphism $h: \mathbf{R}^n, 0 \to \mathbf{R}^n$. 0 with $f = g \circ h$, then $h(\Sigma_f) = \Sigma_g$. (That is h preserves the singular set.)

However, a blow-analytic equivalence of analytic functions does not, in general, preserve their singular loci, as the following example shows.

Example 5.2. Let $f_t(x,y) = x^4 + 2t^2x^2y^2 + y^4 + x^5$, $t \in \mathbf{R}$. By Theorem 3.2, this family is blow-analytically trivial. Nevertheless, the dimension $\dim_{\mathbf{R}} \mathbf{R}\{x,y\}/\langle \frac{\partial f_t}{\partial x}, \frac{\partial f_t}{\partial y} \rangle$ changes at t=1.

5.2. Numerical invariant. Let $f: \mathbf{R}^n, 0 \to \mathbf{R}, 0$ be an analytic function and let $\alpha: \mathbf{R}, 0 \to \mathbf{R}^n, 0$ be an analytic map. If $f \circ \alpha$ is not identically zero, then there is a positive integer k so that

$$f \circ \alpha(t) = ct^k + \text{higher order terms}, \quad c \neq 0.$$

We call k the order of f along α and denote it by $\operatorname{ord}_{\alpha}(f)$. Define $\operatorname{ord}_{\alpha}(f) = \infty$ when $f \circ \alpha$ is identically zero. We define A(f) by

$$A(f) := \{ \operatorname{ord}_{\alpha}(f) : \alpha : \mathbf{R}, 0 \to \mathbf{R}^n, 0 \text{ analytic } \}.$$

Theorem 5.3. If two analytic function germs $f, g : \mathbb{R}^n, 0 \to \mathbb{R}, 0$ are blow-analytically equivalent, then A(f) = A(g).

Remark 5.4. Let $\operatorname{mult}_0(f)$ denote the multiplicity of f at 0, i.e., the degree of the initial polynomial of f. It is easy to show that $\operatorname{mult}_0(f) = \min A(f)$. As a consequence, the multiplicity is a blow-analytic invariant of analytic function germs. So, this theorem should be compared with Zariski's multiplicity conjecture: If two holomorphic functions $f, g: \mathbb{C}^n, 0 \to \mathbb{C}$, 0 are topologically equivalent (\mathbb{C}^0 -equivalent or \mathbb{C}^0 -V-equivalent), then $\operatorname{mult}_0(f) = \operatorname{mult}_0(g)$. This is still open. It is clear that the definition of A(f) makes sense for a holomorphic function f and it is interesting to ask the following question: Is A(f) a topological invariant for holomorphic functions f?

Example 5.5. Let $K = \mathbb{R}$ or \mathbb{C} . Let $f : \mathbb{K}^n, 0 \to \mathbb{K}, 0$ be the analytic function defined by $f(x_1, \ldots, x_n) = x_1^{m_1} \cdots x_n^{m_n}$. Then

$$A(f) = \left(\sum_{i \in I} m_i \mathbf{N}\right) \cup \{\infty\}.$$

Let $f: \mathbf{K}^n, 0 \to \mathbf{K}, 0$ be an analytic function. Let $\pi: M, E \to \mathbf{K}^n, 0, E = \pi^{-1}(0)$, denote a real modification. e.g., a composition of finitely many blowing-ups with nonsingular centers. We assume that $f \circ \pi$ is normal crossing, that is, $f \circ \pi$ can be locally expressed as a product of powers of a number of local coordinates. Let $(f \circ \pi)_0 = \sum_{j \in J} m_j E_j$ denote the irreducible decomposition of the zero locus of $f \circ \pi$ and C denote the set of subsets I of J with $E_I^* \subset E$ where $E_I^* = E_I^o \cap E$, $E_I^o = \bigcap_{i \in I} E_i - \bigcup_{j \in J-I} E_j$.

The following formula is stated in [25], Theorem I.

Theorem 5.6. $A(f) = \bigcup_{I \in \mathcal{C}} A_I(f)$ where $A_I(f) = (\sum_{i \in I} m_i \mathbf{N}) \cup \{\infty\}$.

Let $f: \mathbf{R}^n, 0 \to \mathbf{R}, 0$ be a real analytic function. We set

$$A^{\pm}(f) = \{ \operatorname{ord}_{\alpha}(f) : \alpha : \mathbf{R}, 0 \to \mathbf{R}^{n}, 0 \text{ analytic and } \pm f \circ \alpha(t) \geq 0 \text{ near } 0 \}$$

The proof of Theorem 5.3 shows $A^{\pm}(f) = A^{\pm}(g)$ if f and g are blow-analytically equivalent. In a way similar to the proof of Theorem 5.6, we obtain the following

Theorem 5.7. $A^{\pm}(f) = \bigcup_{I \in \mathcal{C}^{\pm}} A_I(f)$ where \mathcal{C}^{\pm} denotes the set of $I \in \mathcal{C}$ so that E_I^* intersects with the closure of $\{y \in M : \pm f \circ \pi(y) > 0\}$.

5.3. Zeta functions. Recently S. Koike and A. Parusiński ([27]) have introduced zeta functions for the blow-analytic equivalence. In their paper ([27]), they call their zeta functions the 'motivic type invariants', since their zeta functions can be derived from zeta functions whose coefficients are motives. G. Fichou ([10]) generalizes their invariants using the virtual Poincaré polynomial. Since these are very interesting invariants, we review their results in this section. See also [35] for the virtual Betti numbers.

Let \mathcal{C} be a category whose objects are a class of subsets of the Euclidean spaces with some good properties. We consider an invariant $\beta: \mathcal{C} \to R$, where R is a commutative ring, with the following properties.

- $\beta(X) = \beta(X Y) + \beta(Y)$ if Y is a closed subset in X.
- $\beta(X \times Y) = \beta(X)\beta(Y)$.

When C is the category of subanalytic subsets in Euclidean spaces which have finite homologies, the $\mathbb{Z}/2\mathbb{Z}$ -Euler characteristic β with compact supports has these properties.

We say a semi-algebraic set A in a compact nonsingular real algebraic manifold M is a \mathcal{AS} -subset if for any analytic map $\alpha: (-\varepsilon, \varepsilon) \to M$, $\varepsilon > 0$, with $\alpha(0, \varepsilon) \subset A$, there is a positive number ε' so that $\alpha(-\varepsilon', 0) \subset A$. See [33] for more information about \mathcal{AS} -subsets.

Theorem 5.8 ([10]). Let \mathcal{AS} denote the set of all semi-algebraic \mathcal{AS} -subsets in compact nonsingular real algebraic manifolds. There is an invariant $\beta: \mathcal{AS} \to \mathbf{Z}[u, u^{-1}]$ with the above properties which satisfies the following:

$$\beta(X) = \sum_{k} (\dim H_k(X, \mathbf{Z}/2\mathbf{Z})) u^k$$

when X is compact and nonsingular. Moreover, if two AS-sets X, Y are Nash (i.e., semi-algebraically and analytically) equivalent, then $\beta(X) = \beta(Y)$.

Notice the following: $\beta(\emptyset) = 0$, $\beta(P^n) = 1 + u + u^2 + \cdots + u^n$, $\beta(\mathbf{R}^n) = u^n$.

Example 5.9. It is not true that $\beta(X) = k\beta(Y)$ when there is an unbranched k-fold covering $X \to Y$. Consider the double covering $S^1 \to P^1$ and observe that $\beta(S^1) = \beta(P^1) = u + 1$.

We consider the space of polynomial arcs of order k:

$$L_k := \{\alpha : \mathbf{R}, 0 \to \mathbf{R}^n, 0 : \text{polynomial of degree } k\} = \mathbf{R}^{nk}$$

Let $f: \mathbf{R}^n, 0 \to \mathbf{R}, 0$ be an analytic function. The following spaces are algebraically constructible

$$A_k(f) := \{ \alpha \in L_k : \operatorname{ord}(f \circ \alpha) = k \} \quad A_k^{\pm}(f) := \{ \alpha \in L_k : f \circ \alpha = \pm t^k + \cdots \}.$$

Notice that if f and g are analytically equivalent, then $A_k(f)$ (resp. $A_k^{\pm}(f)$) and $A_k(g)$ (resp. $A_k^{\pm}(g)$) are actually isomorphic as algebraic constructible sets. Define Zeta functions by the following formulas.

$$Z_f(t) := \sum_{k \ge 1} \beta(A_k(f)) \left(\frac{t}{u^n}\right)^k \qquad Z_f^{\pm}(t) := \sum_{k \ge 1} \beta(A_k^{\pm}(f)) \left(\frac{t}{u^n}\right)^k$$

where u = -1 when β is the $\mathbb{Z}/2\mathbb{Z}$ -Euler characteristic with compact supports ([27]), or u is an indeterminate when β is the virtual Poincaré polynomial ([10]).

Let $\pi: M, E \to \mathbf{R}^n, 0$, $E = \pi^{-1}(0)$, be a proper analytic modification so that $f \circ \pi$, $\det(d\pi)$ are in normal crossing and that π is an isomorphism over $\mathbf{R}^n - f^{-1}(0)$. We assume that $\pi^{-1}(0)$ is a normal crossing divisor. We use the notation defined in the paragraph after Example 5.5. We consider the irreducible decompositions of the zero loci of $f \circ \pi$ and $\det(d\pi)$, the jacobian determinant of π :

$$(f \circ \pi)_0 = \sum_{j \in J} m_j E_j, \qquad (\det(d\pi))_0 = \sum_{j \in J} (\nu_j - 1) E_j.$$

The following formula is often called the Denef-Loeser formula.

Theorem 5.10 ([27], [10]). Setting $\phi(\lambda) = \lambda/(1-\lambda) = \lambda + \lambda^2 + \lambda^3 + \cdots$, we have

$$Z_f(t) = \sum_{I \neq \emptyset} \beta(E_I^*)(u-1)^{|I|} \prod_{i \in I} \phi\left(\frac{t^{m_i}}{u^{\nu_i}}\right).$$

Remark 5.11. When β is the virtual Poincaré polynomial we need to assume that f is a polynomial and that π is algebraic (since we do not know that E_I^* is semi-algebraic).

It is also possible to obtain a formula for $Z_f^{\pm}(t)$ similar to Theorem 5.10. To do this, we introduce somenotation. We define $A_k^{\pm}(f, E_I^*)$ by

$$A_k^{\pm}(f, E_I^*) := p_k(\pi_*^{-1}(\mathcal{A}_k^{\pm}(f)) \cap \mathcal{L}(M, E_I^*)) = \bigsqcup_{\boldsymbol{j}: \langle \boldsymbol{m}, \boldsymbol{j} \rangle_I = k} p_k(\mathcal{A}_{k, \boldsymbol{j}}^{\pm}(f, E_I^*)),$$

where $\mathcal{A}_{k,j}^{\pm}(f, E_I^*) := \{ \gamma \in \pi_*^{-1}(\mathcal{A}_k^{\pm}(f)) \cap \mathcal{L}(M, E_I^{*,\pm}) : \operatorname{ord}_{\gamma} E_i = j_i \}$. Let $p \in E_I^*$ and let U be a coordinate neighbourhood at p. Using the local coordinates $y = (y_1, \ldots, y_n) : U \to \mathbf{R}^n$ with $E_I^* = \{ y_i = 0, i \in I, y_i \neq 0, i \notin I \}$, we can express $f \circ \pi$ as follows:

$$f \circ \pi(y) = u(y) \prod_{i \in I} y_i^{m_i}$$
, where $u(y)$ is a unit.

We set $y_I = (y_i)_{i \in I}$ and define

$$\widehat{E}_I^{\pm}|_U = \left\{ (p, y_I) \in (E_I^* \cap U) \times \mathbf{R}^{|I|} : u(p) \prod_{i \in I} y_i^{m_i} = \pm 1 \right\}$$

The sets $\widehat{E}_I^{\pm}|_U$ can be patched together and we obtain a set \widehat{E}_I^{\pm} . We denote by m_I the greatest common divisor of m_i , $i \in I$, and define

$$\widetilde{E}_I^{\pm}|_U = \{(p, w) \in (E_I^* \cap U) \times \mathbf{R} : u(p)w^{m_I} = \pm 1\}.$$

The sets $\widetilde{E}_I^{\pm}|_U$ can be patched together and we obtain a set \widetilde{E}_I^{\pm} . Setting $\bar{\beta}_I^{\pm} = \beta(\widetilde{E}_I^{\pm})$, we obtain

$$Z_f^{\pm}(t) = \sum_{I} \bar{\beta}_I^{\pm} (u-1)^{|I|-1} \prod_{i \in I} \phi\left(\frac{t^{m_i}}{u^{\nu_i}}\right).$$

Theorem 5.12 ([27]). Let $f, g: \mathbf{R}^n, 0 \to \mathbf{R}, 0$ be two analytic functions and let β be the $\mathbb{Z}/2\mathbb{Z}$ -Euler characteristic with compact supports. Assume that there are real modifications $\pi_i: M_i \to \mathbf{R}^n$, i = 1, 2, so that π_1 (resp. π_2) is an isomorphism except possibly over the zero set of f (resp. g). If there is an analytic isomorphism $(M_1, \pi_1^{-1}(0)) \to (M_2, \pi_2^{-1}(0))$ which induces a blow-analytic homeomorphism $h: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ with $f = g \circ h$, then $Z_f(t) = Z_g(t)$. $Z_f^{\pm}(t) = Z_g^{\pm}(t)$.

Similarly we obtain the following

Theorem 5.13 ([10]). Let $f, g: \mathbf{R}^n, 0 \to \mathbf{R}, 0$ be two polynomial functions and let β be the virtual Poincaré polynomial. Assume that there are algebraic modifications $\pi_i: M_i \to \mathbf{R}^n$, i=1,2, whose critical loci are normal crossings. We assume that π_1 (resp. π_2) is an isomorphism except over the zero set of f (resp. g). If there is an analytic isomorphism $(M_1, \pi_1^{-1}(0)) \to (M_2, \pi_2^{-1}(0))$ which induces a blow-analytic isomorphism $h: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ with $f = g \circ h$, then $Z_f(t) = Z_g(t), Z_f^{\pm}(t) = Z_g^{\pm}(t)$.

See Definition 7.2 below for the notion of blow-analytic isomorphism.

6. Lipschitz maps

An interesting class of maps which are not differentiable is the class of Lipschitz maps. We start with some basics.

Let U be a convex open subset of \mathbb{R}^n . A map $f:U\to\mathbb{R}^p$ is said to be *Lipschitz* if there is a positive constant K so that

$$|f(x) - f(x')| \le K|x - x'| \qquad \forall x, x' \in U.$$

Recall that Rademacher's theorem ([15, Theorem 4.1.1]), states that a function which is Lipschitz on an open subset of \mathbb{R}^n is differentiable almost everywhere (in the sense of Lebesgue measure) on that set. This allows us to introduce the following definition.

Definition 6.1 (Generalized Jacobian). The generalized Jacobian $\partial f(0)$ of f at 0 is the convex hull of all matrices obtained as limits of sequences of the Jacobi matrices of f at x_i where $x_i \to 0$, $x_i \notin Z$. Here Z denotes the set of points at which f fails to be differentiable.

Theorem 6.2 ([5]). Let $f: \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ be a Lipschitz map-germ. If $\partial f(0)$ does not contain singular matrices, then f has a Lipschitz inverse.

In this section, we are interested in blow-analytic maps satisfying the Lipschitz condition.

Let U be a convex open subset of \mathbb{R}^n and let $f: U \to \mathbb{R}$ be a continuous function with subanalytic graph. Then there is an nowhere dense closed subanalytic subset Z so that f is analytic on U - Z.

Lemma 6.3. The function f is Lipschitz if and only if all partial derivatives of f are bounded on U-Z.

Theorem 6.4 ([13]). Let $f: \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ be an arc-analytic map with subanalytic graph. If f is bilipschitz, i.e., there are positive constants c_1 , c_2 so that

$$|c_1|y-y'| \leq |f(y)-f(y')| \leq c_2|y-y'|,$$

then f^{-1} is arc-analytic.

Let $f: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ be a homeomorphism which is blow-analytic and Lipschitz. The theorem asserts that the inverse f^{-1} is blow-analytic, if f^{-1} is Lipschitz.

Corollary 6.5. Let $f: \mathbb{R}^n, 0 \to \mathbb{R}^n$. 0 be an arc-analytic map with semi-algebraic graph. If f is bilipschitz, then f^{-1} is blow-analytic.

Theorem 6.6 ([13]). Let $F: \mathbf{R}^m \times \mathbf{R}^n, 0 \to \mathbf{R}^n$, $(x, y) \mapsto F(x, y)$, be an arc-analytic map with subanalytic graph. If there are positive constants c_1 , c_2 so that

(1)
$$c_1|y-y'| \leq |F(x,y)-F(x,y')| \leq c_2|y-y'|,$$

then there is an arc-analytic and subanalytic map $\tau: \mathbf{R}^m, 0 \to \mathbf{R}^n, 0$ such that

(2)
$$\{F(x,y)=0\}=\{y=\tau(x)\}.$$

Remark 6.7. Let $\alpha = (\alpha_1, \ldots, \alpha_n) : \mathbf{R}, 0 \to \mathbf{R}^n, 0$ be an analytic map. Let $\operatorname{ord}(\alpha)$ denote $\min\{\operatorname{ord}(\alpha_1), \ldots, \operatorname{ord}(\alpha_n)\}$. If an arc-analytic map $f : \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ is Lipschitz, then $\operatorname{ord}(f \circ \alpha) \geq \operatorname{ord}(\alpha)$. If the map $f : \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ is bilipschitz, then $\operatorname{ord}(f \circ \alpha) = \operatorname{ord}(\alpha)$. In particular, the image of a nonsingular curve by an arc-analytic bilipschitz map $\mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ is a nonsingular curve.

Question 6.8. Does there exist a blow-analytic map (or an arc-analytic map with subanalytic graph) $f: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ with the following properties?

• there is a positive constant c so that

$$c|y-y'| \le |f(y)-f(y')| \quad \forall y, y' \in \mathbf{R}^n, 0;$$

• f is not Lipschitz.

7. Blow-analytic isomorphism and analytic arcs

A blow-analytic homeomorphism can be quite far from a bilipschitz homeomorphism.

Theorem 7.1 ([26]). For any unibranched curve $C \subset \mathbb{R}^2$, 0, there is a blow-analytic homeomorphism $h: \mathbb{R}^2, 0 \to \mathbb{R}^2$, 0 such that h(C) is nonsingular.

Theorem 7.1 motivates us to strengthen the conditions imposed to the definition of blow-analytic homeomorphisms.

Definition 7.2. We say that a map $f: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ is a blow-analytic isomorphism (bai for short) if there are two neighbourhoods U, U' of 0 in \mathbf{R}^n so that the following conditions are satisfied.

- there are complex modifications $\pi: M \to U$, $\pi': M' \to U'$, and an analytic isomorphism $F: (M, E) \to (M', E')$ of analytic spaces, where E and E' denote the critical loci of π and π' respectively.
- f is a homeomorphism and $\pi' \circ F = f \circ \pi$.

A blow-analytic isomorphism is clearly a blow-analytic homeomorphism. But the converse is not true. For example, the blow-analytic homeomorphism in Example 7.1 is not a bai. In fact, the critical locus of the composites of horizontal arrows are normal crossing, and we have a correspondence between their irreducible components, but they have different multiplicities.

Let $\pi: M \to \mathbb{R}^n$ be a complex modification whose critical locus is a normal crossing divisor. We consider an analytic vector ξ on M which is tangent to each irreducible component of the critical locus. By integrating ξ , we obtain an analytic isomorphism of M. If it induces a homeomorphism of \mathbb{R}^n near 0, this is a blow-analytic isomorphism. Thus, in all triviality theorems stated before, we can replace bah by bai.

Definition 7.3. Let $\pi: M \to U$ be a composition of blowing-ups with nonsingular centers. A blow-analytic function $P: U \dashrightarrow \mathbf{R}$ is said to be a blow-analytic unit (bau for short) via π if $P \circ \pi$ extends to an analytic unit (i.e. an analytic function which is nowhere vanishing). P is said to be a blow-analytic unit (bau for short) if there is $\pi: M \to U$ such that P is a bau via π

Theorem 7.4. If $f: \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ is a blow-analytic isomorphism, then the Jacobian determinant $\det(df)$ is a blow-analytic unit.

Let w_1, \ldots, w_n be real numbers. We consider the map

(3)
$$f: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0, \quad x = (x_1, \dots, x_n) \mapsto (x_1 P(x)^{w_1}, \dots, x_n P(x)^{w_n}),$$

where $P: \mathbf{R}^n, 0 \longrightarrow \mathbf{R}$ is a bounded blow-analytic function.

Theorem 7.5. Let P be a non-negative blow-analytic function via some toric modification $\pi: M \to \mathbf{R}^n$. If $P + \sum_{i=1}^n w_i x_i \frac{\partial P}{\partial x_i}$ is a blow-analytic unit via the modification π , and if P and $\sum_{i=1}^n w_i x_i \frac{\partial P}{\partial x_i}$ are continuously extendable on $\mathbf{R}^n - 0$, 0, then the map f defined by (3) is a blow-analytic isomorphism.

Example 7.6. The map

$$f: (\mathbf{R}^2, 0) \to (\mathbf{R}^2, 0), \quad (x, y) \mapsto (xP^3, yP^2), \quad P = \frac{x^4 + 2y^6}{x^4 + y^6},$$

is a blow-analytic isomorphism.

Consider the map

$$f: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0, \quad x = (x_1, \dots, x_n) \mapsto (x_1 + Q(x_2, \dots, x_n), x_2, \dots, x_n),$$

where $Q: \mathbf{R}^{n-1}, 0 \to \mathbf{R}$ is a blow-analytic function. Since the map $(x_1, \ldots, x_n) \mapsto (x_1 - Q(x_2, \ldots, x_n), x_2, \ldots, x_n)$ is the inverse of f, f is a homeomorphism.

Theorem 7.7. If Q is blow-analytic, then f is a blow-analytic isomorphism.

Example 7.8 ([38]). Consider a blow-analytic map $f: \mathbb{R}^3, 0 \to \mathbb{R}^3, 0$ defined by

$$(x,y,z) \mapsto \left(x,y,z+\frac{2x^5y}{x^6+y^4}\right).$$

This is a blow-analytic isomorphism by Theorem 7.7. Let $\alpha : \mathbf{R}, 0 \to \mathbf{R}^3$. 0 be the map defined by $t \to (t^2, t^3, 0)$. Observe that $f \circ \alpha(t) = (t^2, t^3, t)$. This means that the blow-analytic isomorphism f sends a singular curve, the image of α , to a regular curve.

We say that an analytic map $\alpha : \mathbf{R}, 0 \to \mathbf{R}^n, 0$ is *irreducible* if α cannot be written as $\alpha = \beta \circ \psi$, where $\beta : \mathbf{R}, 0 \to \mathbf{R}^n, 0$ and $\psi : \mathbf{R}, 0 \to \mathbf{R}, 0$, are analytic and $\psi'(0) = 0$.

Theorem 7.9. Let $\alpha: \mathbf{R}, 0 \to \mathbf{R}^n, 0, n \geq 3$, be an irreducible analytic map. Then there is a blow-analytic isomorphism $f: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ such that $f \circ \alpha$ is a regular map.

8. Jacobian of blow-analytic map

Let $f: \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ be a blow-analytic map. It is interesting to investigate what we can conclude when we assume that $\det(df)$ is a blow-analytic unit. For example, is such a f a blow-analytic isomorphism?

Example 8.1. We identify \mathbb{R}^2 with C by the map $(x,y)\mapsto z=x+\sqrt{-1}y$. Let k be a positive integer. Consider the continuous blow-analytic map

$$f: \mathbf{C}, 0 \to \mathbf{C}, 0, \qquad z \mapsto z^{k+1}/\bar{z}^k = z^{2k+1}/|z|^{2k}.$$

Looking at the restriction to a small circle $|z| = \varepsilon$, the mapping degree of f is 2k+1. In particular, f is not a homeomorphism. Since

$$\det(df) = \begin{vmatrix} (k+1)z^k/\bar{z}^k & -kz^{k+1}/\bar{z}^{k+1} \\ -k\bar{z}^{k+1}/z^{k+1} & (k+1)\bar{z}^k/z^k \end{vmatrix} = (k+1)^2 - k^2 = 2k+1, \quad z \neq 0,$$

 $\det(df)$ is a blow-analytic unit. We also have that f is Lipschitz, by Lemma 6.3. Let $M \to \mathbb{C}$ denote the blowing-up at the origin. Since the map f is induced by an unbranched covering $M \to M$ of degree 2k+1, f has the arc lifting property.

Example 8.1 shows that a blow-analytic map $f: \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ may not be a homeomorphism, even though $\det(df)$ is a blow-analytic unit. However, this kind of phenomenon is not possible in higher codimensional cases.

Proposition 8.2. Let $f: \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ be a blow-analytic map so that $\det(df)$ is a blow-analytic unit. If there is a subset C of $\mathbb{R}^n, 0$, of codimension ≥ 3 , so that $f|_{\mathbb{R}^{n}-C}$ is analytic, then f is a homeomorphism.

It is an open question whther f is a bai or not.

We have a version of the inverse mapping theorem via toric modification, which is the following

Theorem 8.3. Let $h = (h_1, \ldots, h_n) : \mathbf{R}^n.0 \to \mathbf{R}^n, 0$ be a continuous blow-analytic map via a toric modification. If $\frac{\partial h_1}{\partial x_1}, \frac{\partial (h_1, h_2)}{\partial (x_1, x_2)}, \cdots, \frac{\partial (h_1, \dots, h_n)}{\partial (x_1, \dots, x_n)}$ are blow-analytic units and they are continuously extendable on $\mathbf{R}^n - 0, 0$, then h is a blow-analytic isomorphism.

If the map $h = (h_1, \ldots, h_n) : \mathbf{R}^n, 0 \to \mathbf{R}^n, 0$ satisfies the assumption of Theorem 8.3 after permutations of x_1, \ldots, x_n and h_1, \ldots, h_n , then h is a blow-analytic isomorphism, by Theorem 8.3.

This is the corrected version of Theorem 6.1 in [12].

Lastly we have three more theorems.

Theorem 8.4. Let $f: \mathbf{R}^n, 0 \longrightarrow \mathbf{R}^n, 0$ be a blow-analytic map so that $\det(df)$ is a blow-analytic unit. If there are nonsingular subanalytic subsets C, C' so that f is blow-analytic via the blowing up with center C and that f(C) = C', then $\operatorname{codim} C = \operatorname{codim} C'$ and f has the arc lifting property. Moreover, there is an analytic map $\tilde{f}: M \longrightarrow M'$ such that \tilde{f} is locally an isomorphism and that $\pi' \circ \tilde{f} = f \circ \pi$, where $\pi: M \to \mathbf{R}^n$ is the blowing-up at C and $\pi': M' \to \mathbf{R}^n$ is the blowing-up at C'.

Theorem 8.5. Let $f: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be a blow-analytic map. If $\det(df)$ is a blow-analytic unit, then f is finite.

Theorem 8.6. Consider a blow-analytic map $f: (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ defined by

$$(x_1,\ldots,x_n)\mapsto (x_1P_1(x),\ldots,x_nP_n(x)),$$
 where P_i are blow-analytic units.

If f is blow-analytic via a toric modification and det(df) is a blow-analytic unit, then f is a blow-analytic isomorphism.

REFERENCES

- [1] E. Bierstone and P. Milman, Arc-analytic functions, Invent. math., 101 (1990), 411-424.
- [2] E. Bierstone and P. Milman, Canonical desingularization in characteristic zero by blowing up the maximal strata of a local invariants, Invent. math., 128 (1997), 207-302.
- [3] J. Bochnak, M. Coste and M.-F. Roy, Real algebraic geometry. Ergebnise der Mathematik und ihrer Grenzgebiete 36, 3 Folge, Springer-Verlag, 1998.
- [4] J. Briançon and J. Speder, La trivialité topologique n'implique pas les conditions de Whitney,
 C. R. Acad. Sci. Paris, Ser. A 280 (1975), 365-367.
- [5] F. H. Clarke, On the inverse function theorem, Pacific J. Math., 64, (1976), 97-102.
- [6] V.I.Danilov, The geometry of toric varieties, Russ. Math. Surveys 33(1978) 97-154.
- [7] J. Denef and L. van den Dries, p-adic and real subanalytic sets. Ann. of Math., 128 (1988), no. 1, 79-138.
- [8] J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. math. 135 (1999), 201-232.
- [9] A. duPlessis and T. Wall, The geometry of topological stability, London Mathematical Society Monographs, New Series 9, Oxford Science Publication, 1995
- [10] G. Fichou, Motivic invariants of arc symmetric sets and blow-Nash equivalence, preprint.
- [11] T. Fukui, S. Koike and T.-C. Kuo, Blow-analytic equisingularities, properties, problems and progress, in "Real analytic and algebraic singularities", Pitman Research Notes in Mathematics Series, 381, 1997, Longman, 8-29.
- [12] T. Fukui, T.-C. Kuo and L. Paunescu, Constructing blow-analytic isomorphisms, Ann. Inst. Fourier, Grenoble 54 (2001), 1071–1087.
- [13] T. Fukui, K. Kurdyka and L. Paunescu, An inverse mapping theorem for arc-analytic homeomorphisms, preprint.
- [14] T. Fukui and L. Paunescu, The modified analytic trivialization of singularities, J. Math. Soc. Japan 52 (2000), 433-446.
- [15] A. Friedman, Differential games, Pure and Applied Mathematics, Vol. XXV. Wiley-Interscience, 1971.
- [16] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, 1993.
- [17] H. Grauert and R. Remmert, Analytische Stellenalgebren, Unter Mitarbeit von O. Riemenschneider. Die Grundlehren der mathematischen Wissenschaften, Band 176. Springer-Verlag, Berlin-New York, 1971.
- [18] R. Hartshorne, Algebraic geometry, Graduate texts in Mathematics 52 Springer-Verlag, 1977.
- [19] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I-H. Ann. of Math., 97 (1964).
- [20] H. Hironaka, Subanalytic sets. in "Number theory, algebraic geometry and commutative algebra", in honor of Yasuo Akizuki, pp. 453-493. Kinokuniya, Tokyo, 1973.
- [21] H. Hironaka, Introduction to real-analytic sets and real-analytic maps. Quaderni dei Gruppi di Ricerca Matematica del Consiglio Nazionale delle Ricerche, Istituto Matematico "L. Tonelli" dell'Università di Pisa (1973).
- [22] H. Hironaka, Flattening theorem in complex analytic geometry, Amer. J. Math., 97 (1975), 503-547
- [23] H. Hironaka, Stratification and flatness, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 199–265. Sijthoff and Noordhof Alphen aan den Rijn, 1977.

- [24] H. King, Approximating submanifolds of real projective space by varieties, Topology, 15 (1976), 81-85.
- [25] S. Izumi, S. Koike and T.-C. Kuo, Computations and stability of the Fukui invariant, Compositio Mathématica 130 (2002), 49-73.
- [26] M. Kobayashi and T.-C. Kuo, On Blow-analytic equivalence of embedded curve singularities, in "Real analytic and algebraic singularities", Pitman Research Notes in Mathematics Series, 381, 1997, Longman, 30–37.
- [27] S. Koike and A. Parusiński, Motivic type invariants of blow-analytic equivalence, to appear in Ann. Inst. Fourier, Grenoble.
- [28] S. Koike, The Briançon-Speder and Oka families are not biLipschitz trivial, in 'Several topic in singularity theory', RIMS Kokyuroku 1328 (2003), 165-173.
- [29] J. Nash, Real algebraic manifolds, Ann. of Math., 56(1952), 405-421.
- [30] T.-C. Kuo, The modified analytic trivialization of singularities, J. Math. Soc. Japan 32 (1980), 605-614.
- [31] T.-C. Kuo, On classification of real singularities, Invent. math., 82 (1985), 257-262.
- [32] K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann., 282(1988), 445–462.
- [33] K. Kurdyka and A. Parusiński, Arc-symmetric sets and arc-analytic mappings, in this volume.
- [34] S. Lojasiewicz, Ensembles semi-analytiques, Instutut des Hautes Etudes Scientifiques, 1965.
- [35] C. McCrory, A. Parusiński, Virtual Betti numbers of real algebraic varieties. C. R. Math. Acad. Sci. Paris 336 (2003), 763-768.
- [36] T. Oda, Convex bodies and algebraic geometry, An introduction to the theory of toric varieties, (Translated from the Japanese) Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 15., Springer-Verlag, 1988.
- [37] M. Ould Abderrahmane, Polyèdre de Newton et trivialitité en famille. J. Math. Soc. Japan 54 (2002), no. 3, 513-550.
- [38] L. Paunescu, An example of blow-analytic homeomorphism, in "Real analytic and algebraic singularities". Pitman Research Notes in Mathematics Series, 381, 1997, Longman, 62-63.
- [39] L. Paunescu, Invariants associated with blow-analytic homeomorphisms, Proc. Japan Acad. 78. Ser. A (2002).
- [40] A. Parusiński, Subanalytic functions. Trans. Amer. Math. Soc. 344 (1994) 583-595.
- [41] H. Whitney, Local properties of analytic varieties, A Symposium in Honor of M.Morse, (ed. S.S.Cairns), Princeton Univ. Press. (1965), 205–244.