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in Spatially Heterogeneous Environments
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1 SKT Model in Heterogeneous Environments
This article is concerned with the Lotka-Volterra reaction-diffusion system -

u; = A[(1 + kp(x)v)ul + u(a —u—-c(x)v). in Qx (0, o),

(P)‘ v =Av+uvb+dx)u—v) in Q x (0, c0),
ou=dv=0 on 0 % (0, o),
u(-,0)=up 20, v(-,0)=vo20 in Q. '

Here, Q is a bounded domain in RY(N < 3), a and k are positive constants, b is a real
constant, c(x) and d(x) are smooth nonnegative functions, and p(x) is a smooth positive
function with 4,p = 0 on d€Q. From the ecological viewpoint, the unknown functions
u and v, respectively, represent the population densities of the prey and predator, which
interact and migrate in Q. In the reaction terms, a and b denote the birth rates of the
prey and predator, respectively. While a and b are spatially homogeneous, the prey-
predator interactions c(x) and d(x) are assumed to be spatially dependent nonnegative
functions. In the diffusion terms, the linear part represents the natural dispersive force
of the movement of an individual. On the other hand, the nonlinear diffusion

Alp(x)vu] = V[uV(p(x)v) + p(x)vVu] (1.1)

*Partially supported by a Grant-in-Aid for Scientific Research (No. 18740093), The Ministry of Ed-
ucation, Culture, Sports, Science and Technology, Japan.



42

yields the most characteristic term in (P). In the homogeneous case when p is a positive
constant, this term models the tendency such that the prey escapes to a low density re-
gion of the predator. In this case, pA(vu) is usually referred as the cross-diffusion term
whose nonlinear effect has attracted attention in the field of reaction diffusion systems
(e.g., [1], [6]-[17], [21]) after the research by Shigesada-Kawasaki-Teramoto [20]. (In
honor of their pioneering research, such a class of Lotka-Volterra cross-diffusion sys-
tems is often called SKT model.) In the heterogeneous case when p(x) is spatially
dependent on x, (1.1) reveals that p(x) represents a type of the environment potential.
Further, A(p(x)vu) describes the spatially and density dependent diffusion such that the
prey moves to the low value region of p(x)v. We refer to [18] for a further ecological
background.

Our aim is to derive the spatially heterogeneous effects of c(x), d(x) and p(x) on
the stationary solution set of (P). Then we study the following strongly coupled elliptic
system: :

AL(1 + kp(x)v)u] + u(@a—u—c(x)v) =0 in Q,
SP) {Av+v(b+dx)u—-v) =0 in Q,

du=0v=0 on Q.
We are interested in positive solutions of (SP). Here it is said that («,v) is a positive
solution if both of u and v are positive in 2. Ecologically, a positive solution corre-
sponds to a coexistence steady-state of the prey and the predator. We study the positive
solution set of (SP) by considering b to be the bifurcation parameter. In order to obtain
the bifurcation branch of the positive solution set, we define the semitrivial solutlon
sets with the bifurcation parameter b by

Iy = {(u,v,b) =(a,0,b) : beR}, TI,:={(uub)=(0,bb):beR}

In [10], we prove that the positive solution branch which connects I', with I,. More
precisely, for any fixed (a, k, p(x), c(x), d(x)), we find a negative number b = b, < 0 and
a positive number b = b* > 0 (both depend on (a, k, p(x), c(x), d(x))) such that the posi-
tive solution set contains a bounded continuum 7", which bifurcates from (a,0,b.) € I',
and joins (0, b*, b*) € I',. Hence, (SP) has at least one positive solution if b, < b < b*.
In the spatially homogeneous case when ¢, d and p are constants, it is easily verified
that I', forms a bounded line of the positive constant solutions (see Flgure 1). This line

is expressed as
r,= {(a-—bc b+ad,b) 1 —=da<b< g}

l+cd’ 1 +cd
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Now, the change in the shape of I', according to the spatial heterogeneity of (o(x),
c(x), d(x)) needs to be studied. Among other things, we prove that a spatial heterogene-
ity can cause I', to form a C-shaped branch with respect to b when the birth rate a is
small and the cross-diffusion k is large. As a rough sketch of the main result (Theorem
4.1), we can give the following theorem. Throughout this article, we denote the average

of f(x) over Qby £, f(x) dx (:=1QI"" [, f(x)dx).

Theorem 1.1. If a > 0 is sufficiently small and k is sufficiently large, the positive
solution set of (SP) (with the bifurcation parameter b) forms the bounded smooth curve

T, = {(u(x; 5),v(x; s),b(s)) : 0<s<C}L
Here (u(x; s), v(x; s), b(s)) satisfies
(u(x; 0),v(x; 0),b(0)) = (a,0,b.) and (u(x; C),v(x;C), b(C)) = (0, 5", b)

Jor a negative number b. and a positive number b*. Furthermore, in the case when

f p(x)dx f d(x)dx > f p(x)d(x) dx, (1.2)
Q 0 Q _
the following (i) and (ii) hold true for a small number a* = a*(k, p(x), c(x), d(x)).

(i) If0 <a < a*/3, thenb’'(0) > O, that is, I', supercritically bifurcates from (a,0, b.).

(ii) If2a*/3 < a < a", thenb'(0) < O, that is, I', subcritically bifurcates from (a, 0, b,).
In this case, for b = mingg;<c b(s), (SP) possesses at least two positivé solutions
if b € (b,b.), at one positive solution if b € {b} U [b.,b*), no positive solution if
b € (—o0,b) U [b*, ).

Obviously, both sides of (1.2) are equal if either d or p is constant. If both d(x)
and p(x) are spatially heterogeneous, (1.2) may hold. For any fixed positive number
& < £ p(x)dx, if supp (o — &)+ ((0 — &)+ = max(p — &,0}) and suppd are disjoint, (1.2)
holds true. This is because |

J{z p(x)dx f‘; d(x)dx > & f‘; d(x)dx 2 J[;; p(x)d(x) dx.

For such a case, Theorem 1.1 asserts that if a belongs to a certain range, I, subcritially
bifurcates from (a,0,b,). Then, (SP) has at least two positive solutions even if b is
slightly lesser than b.(< 0). It is observed that supp (0—&).. provides a favorable domain
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for the prey in which the cross-diffusion (escape) effect from the predator is compar-
atively strong, whereas supp d gives a favorable domain for the predator in which the
increase of individuals due to preying is expecied. From the ecological viewpoint, our
result implies that the spatial segregation of supp (p ~ €). and supp d can produce the
coexistence steady-states even if the death rate of the predator is comparatively high.

(u,v)
t
r,
r, r,
b. 0 b >b

Figurel Positive solution branch in spatially homdgeneous case.

(u,v)
Q\ T,
T, r
b by 0 b >b

Figure 2 Positive solution branch in case (ii) of Theorem 1.1.

In this article, the usual norms of the spaées L?(Q) for p € [1,00) and C(S—i) are,
respectively, defined as

i/p
|luell :=( A Iu(x)I”dx) and |julle :=m%XIu(x)l-

As the functional framework for our analysis, we introduce the following Banach

spaces:
X = WHP(Q)x WP(Q), Y =LA X LP(Q) (p>N), (1.3)
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where Wf"’ (Q) = {u € W*P(Q) : d,ulsn = 0). Here we note that X ¢ C! (Q) x CY(Q)
for p > N by the Sobolev embedding theorem.

2 Finite Dimensional Limiting System

2.1 Bounded Bifurcation Continuum

As a preliminary result, we obtain the following bounded bifurcation continuum of
positive solutions of (SP) with the bifurcation parameter b:

Theorem 2.1. For any fixed (a, k, p(x), c(x),d(x)), there exist b, = b.(a,d) < 0 and
b* = b*(a,kp,c) > O such that the positive solution set of (SP) (with the bifurcation
parameter b) forms a bounded continuum I', (C XXR), which bifurcates from (u,v,b) =
(a,0,b.) € I', and joins (u,v,b) = (0,b*,b") € T,

Owing to Theorem 2.1, we find at least one positive solution when b, < b < b".
Theorem 2.1 can be proved by the combination of the local and global bifurcation
theorems ([2], [19]), the a priori estimates and the nonexistence region of the positive
* solutions. We refer to [10] for the proof.

2.2 Lyapunov-Schmidt Reduction

We now study the spatial heterogeneous effect of p(x), c(x) and d(x) on the positive
solution branch I',, introduced in Theorem 2.1. More concretely, we derive a heteroge-
neous effect that enables I', to form a c-shaped branch, when the cross-diffusion k is

| large and the birth (or death) rates a and |b| are small. For the derivation, we employ
the following scalings in (EP):

. 2.1)

L R

U=ew,v=¢€z,a=¢a,b=¢gB, k=

Here & > 0 is a small perturbation parameter. Furthermore, « is a positive number and
B is a real number. Hereafter, 8 will function as the bifurcation parameter. From (2.1),
it is observed that the new unknown function (w, z) satisfies the next perturbed elliptic

system:
Aw+ eF(w,2) =0 in Q,
Az + eG(w,z,B) =0 in Q, 2.2)
ow=0d,z=0 on 0K,
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where
Fw2) = —2 a2 -
F(w,2) = 7= ()2 ("‘r 1+ p(x)z c(x)z) ’ (2.3)
y .
Gw,z.p) =12 (ﬁ "1 fﬁf)z B Z)'

Hence, (2.2) has the semitrivial solutions
(w,2) = (,0) and (w,2) =(0.B),

in addition to the trivial solution w = z = 0.
We solve (EP) by the Lyapunov-Schmidt reduction. For the Banach spaces X and
Y in (1.3), we introduce the linear operator H : X — Y and the nonlinear operator

B:XxR — Yby
H(w,z) = (Aw, A2z), B(w,z,B) = (F(w,z2), Gw,z,p)) 24)
| Hence, (2.2) is equivalent to the equation
H(w,z) + eBw,z,8) = 0. 2.5)
By considering Ker H = R?, X and Y can be decomposed as
X=R’0X, Y=R'or,

where X (resp. Y;) denotes the L? orthogonal space of R? in X (resp.Y). Let P : X —
X; and Q : Y — Y, be the orthogonal projections. Hence, the unknown function
(w, 2) € X of (2.5) can also be decomposed as

w,2z) = (r,s)+u, u=Pw,z).
Since H(r, s) = 0 and (I - Q)H(X,) = 0, (2.5) is consequently reduced to

QH(u) + eQB((r,s) +u,p) =0 (2.6)

and

(I- Q)B((r, 5) +u,p) =0.

In order to solve (2.5), we first construct the solution set of (2.6) near & = 0.
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Lemma 2.2. For any C > 0, there exist a small &y > 0 and a neighborhood N of
{(w,z,B8,8) = (r,5,8,0) € X xR? : |r],|s],|8] < C} such that all solutions of (2.6)
contained in N can be parameterized by

= {((r’ S) + SU(Y', s:ﬁv s)aﬁa 8) : Irls ISL ’ﬁl < C+ €9, |5' < 80}'

Here, U(r, 5, B, €) is an X, -valued smooth function defined in |r, 5|, |8] < C+&q, l&| < &0
Hence, an element (w,z,B,&) = ((r, 5) + gU(r, 5,8, €),8, &) € K is a solution of (2.5) if
and only if

(1, 5.B) = U - Q)B((r, 5) + eU(r, 5,8, ), B) =

The proof of Lemma 2.2 can be carried out by using the implicit function theorem

and a compactness argument. We refer to (11, Lemma 3.1] for the proof.

2.3 Exact Expression of the Limiting Solution Set

Lemma 2.2 asserts that for each ¢ € [ —&y, & ], the solution set of (2.5) (equivalently
(2.2)) in N coincides with Ker &*. Since (I - Q)(w, 2) = (:f;! wdx, ngzdx), we obtain

&(r, 5,8) = ( f F(r, s)dx, f G(r, s,ﬂ)dx)

r__ 2.7
)( 1+sp(x)( 1 + sp(x) sc(x))dx @D

x)
4 s(ﬁ““’f 1 +sp(x)dx)
in the extreme case £ = (. Therefore, Ker @ comprises the union of the following four
sets in R?;

Lo=1{0,0,8:8€R}, L,={a,0,8):B€R},
L, ={(0,8,8) :BER} Lp = {(f(s),5,9(s)) : s € R},

where

. a — sc(x) )( dx : d(x) '
) = ——dx — e =5 f(s ——dx. 2.8
0= L Tv o) / a5 s 1= 70 e @9

It should be remarked that .£, contains the limiting set of the positive solution set of
(2.2) as &€ — 0. Then it is important to study the profiles of f(s) and g(s).
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Lemma 2.3. Let f(s) and g(s) be the functions defined by (2.8). The following profiles
of f(s) and g(s) hold true:

(i) There exists so = so(a, c(x), p(x)) > O such that

f(s)>0 for s €0, s0),
{f(S) <0 for A (S(), oo) (2.9)

Additionally, f(0) = « also holds true.
(ii) It follows that g(0) = —a £ d(x)dx < 0 and

g0 =1+ ‘)( c(x)dx f d(x)dx — af( f p(x)dx f d(x)dx - J( px)d(x) dx) .
Q 0 ‘ Q o) Q
. (2.10)
For the zero point sy of f(s), g(s) satisfies

max g(s) = g(so) =50 >0 and g'(s9) > 0.
0ss<so

Proof. In view of (2.8), it is easy to verify f(0) = & and lim,_,o, f(s) = —co. Then, f
possesses at least one zero point. After direct calculations, we know

o (%) & - se(x)
AR ‘{2 W+ sp(x»sdx){, %300

, 2.11)
_ f dx c(x) + ep(x) dx} / ( J( dx )
| a (1 + sp(x))? Ja (1 + sp(x))? a1+ sp(x))?] -
For any zero point sp of f, (2.8) yields
2= s o, (2.12)

a 1+ sep(x)
Then, letting s = 50 in (2.11) implies

) c(x) + ap(x) dx
fl == a+ sw(x»zdx/ harseer <©
Consequently, we know that sy is a unique zero point of f(s), which gives (2.9). It
immediately follows from (2.8) that g(0) = —a +, d(x)dx < 0 and g(sp) = 5o > 0. Since
_dx) p(x)d(x)

7@ =1-1) § rdsaxr o f LD @13
letting s = s9 in (2.13) yields g’(sy) > 0. Furthermore, (2.10) can be obtained by
substituting (2.8) and (2.11) into (2.13) and letting s = sp in the resulting expression.
Thus the proof of Lemma 2.3 is complete. | o
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It follows from Lemma 2.3 that
(f(o)v Os g(o)) = (a's 0’ ‘1 f d(-x) d.X) € -Ew’ (.f(SO), 50, g(s())) = (09 S0, S()) € ‘£Z'
o)

Hence, the bounded curve {(f(s),5,9(s)) : 0 < s < s} c L, implies the limiting
solution set of the positive solution set of (2.2) as € — 0.

3' Construction of the Perturbed Solution Branch

3.1 Perturbed Solution Branch of (2.2)

| In this section, for small £ > 0, we construct the positive solution set of (2.2) by
perturbing the limiting solution set {(f(s), s, g(s)) : 0 < s < 5o} obtained in Lemma 2.3.
More concretely, we aim to prove the following theorem.

Theorem 3.1. For any fixed (@, p(x), c(x), d(x)), there exist a small £y > 0 and a family
of bounded curves

(S (£, &) = (&, €), 5(£,8),B(¢,6)) € R : (¢,8) €[0,Cc] X [0, &0]}
such that for each ¢ € (0, &), all positive solutions of (2.2) are parameterized as

ro= { (W&, 8), 2¢,6), &, ) = ((r,9) + 8U(r,5,8,€).B) : } 3.1)
* T\ (5. B) = (1, 8), 56, 8), 8¢, ), £ €(0,C) ’ '

where U(r, s, 8, €) is the X1-valued smooth function defined in Lemma 2.2 and S (&,€)
is a certain smooth function which satisfies |

S(£,0) = (f£),£,9(9), 5(0,8) = (,0,8.(e)), S(C,8) = (0,5°(£),5'(€))

for the functions f and g defined by (2.8). Here, B.(¢) and *(¢) are defined by

b ‘(:") <0 and B'(e)= b'(:") >0 (3.2)

B.(e) =

for the functions b, and b* obtained in Theorem 2.1. Additionally, C, is a certain
smooth function in € € [0, &) such that Cy = so, which is obtained in (2.9).

The sketch of the proof of Theorem 3.1 will be given in the next subsection.
We now observe B(£, €) in (3.1). Since B(£,0) = g(¢) when & = 0, (2.10) reveals
that
Ip,d) = )( p(x)dx J( d(x) dx - f p(x)d(x) dx
Q [o} Q
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is an important term for the direction of the bifurcation of 7' at («, 0, 8.(¢)) when & > 0
is sufficiently small. In the case when & > 0 is sufficiently small and I(p,d) > 0, the
direction changes according to the value of a.

Theorem 3.2. Let [(p,d) > 0 and

a, = (1 + f c(x)dx f d(x) dx) I(p,d)™* > 0.
Q (o]

For any small positive number 1, there exists a small g9 > 0 such that if (a,€) €
(0, a. — 1] % [0, &), then B0,&) > O, that is, the bifurcation of I', at (a,0,B.(¢)) is
supercritical. On the other hand, if (¢, &) € [a. + n,77'] X [0, &0), then B:0,8) < 0,
that is, the bifurcation of I'y at («,0,B.(€)) is subcritical. Furthermore, if (a,€) €
[@. + 17,7711 X [0, &0, then B(¢, €) satisfies

Ble) = min B €) < fu(e)

£€[0,C,]
and the following properties hold true:
@) Ifp < E(s) or B = (&), (2.2) has no positive solution.
(i) Ifp = _,Q(s) or B.(g) < B < B7(¢), (2.2) has at least one positive solution.
(1ii) Ifg(s) < B < B.(&), (2.2) has at least two positive solutions.

Proof. (Assuming Theorem 3.1) Let S(&,&8) = (r(¢, &), s(¢, €),B(&, €)) be the smooth
curve defined by (3.1). We observe that S(f 0) = (f(&),£,9(6). Additionally, it is
possible to prove that

Lm(r(£, £). (&, £)) = (f(£), 9(£)) in C'([0, 50]) x C'([0, soD), (3.3)

where 59 is the number obtained in (2.9). When I(p, d) > 0, it follows from (2.10) that

{g(0)>0 if 0<a<a., (3.4)

g0) <0 if a> a..

Let n be any fixed small positive number. Hence, (3.3) and (3.4) enable us to find a
small £y > 0 such that if (a,&) € (0,a. — 7] X [0, 8], then B;(0,&) > O, that is, I',
supercritically bifurcates from (e, 0, B.(€)). On the other hand, if (@, &) € [a.+7n,77!] X
[0, &0], then B,(0,&) < O, that is, I', subcritically bifurcates from (e, 0, 8.(¢)). In the
latter case, g.(&)(:= B(¢, €)) satisfies gL(0) < 0, g(¢é) < g(C;) (0 £ ¢ < C,) and attains
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its minimum value at a certain £ = £(¢) € (0,C). We denote the minimum value by

B(e)(:= g«(£(£))) and set
K.(B) :=1{£ € (0,Cs) : g&(§) = B}

Then, in the case when & > 0 is sufficiently small, K,(8) is empty if ﬂ < é(e) or
B = B*(¢), contains at least one element if 8 = B(&) or B.(¢) < B < B*(¢), and contains
at least two elements if S(¢) < 8 < B.(&). In view of (3.1), we know that for any fixed
B, the number of elements of K.(B) is equal to that of positive solutions of (2.2). Thus
the proof of Theorem 3.2 is complete. O

3.2 Sketch of the Proof of Theorem 3.1

As the first step of the proof of Theorem 3.1, we construct the local branches of
positive solutions of (2.5) near the bifurcation points.

Lemma 3.3. There exist a neighborhood U. (c R?) of (a,0, —a £, d(x) dx) and a posi-
tive number 6, such that for any ¢ € [0,6.],

Ker &* N U, R, = ("€, 8),5(6,).8¢,8) : £€ 0,61} U{(@,0,0) e U}, (3.5)
where (I1{¢, €), s(&, &), B(&, €)) is a certain smooth function, which satisfies
(r(¢,0), 5(£,0),8(£,0)) = (f(£),£,9(8)), (10, 8),5(0,8),5(0, £)) = (,0,B.(¢)).

Lemma 3.4. Let 5o be the positive number in (2.9). There exist a neighborhood U*(C
R3) of (0, sq, 50) and a positive number 6* such that for any & € (0,5%], |

Ker@* nU* N iii = ((M(&, £), 8¢, 8), B(£, 6) € R® : £ € [0,6'1} U {(0,8.8) € U},
where S (£,e) = (F(,¢e), 3£, &), B(f, £)) is a smooth function with
$(€,0) = (f(so = £), 50 = & 9(s0 — &), $(0,8) = (0,8'(&),8(e)).

With the aid of the local bifurcation theorem [2], we can prove Lemmas 3.3 and 3.4
(see [10]). The next lemma is the most crucial part of the proof of Theorem 3.1.

Lemma 3.5. There exists a neighborhood U (c X X R) of {((f(s), 5,9(s)) : 0 < 5 < 50}
such that if € > 0 is sufficiently small, then all positive solutions of (3.1) contained in
U can be parameterized by (3.1).
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Proof. We use the perturbation theory of Du-Lou [4, Appendix] in the proof. For the
pbsitive numbers J, and 6* introduced in Lemmas 3.3 and 3.4, we put .£,([6./2, so -
/2] = {(f(s),5,9(5)) : s € [6./2, 50 — 8" /2]}. Here, s, represents the zero point of f
obtained in Lemma 2.3. From (2.7) and (2.8), some direct calculations yield

dx
a (1 + sp(x))*

From (2.9), we know that f(3) > 0 for any (f(3),5,9(3) € Ly([6./2,50 — 5*/2]).
Therefore, (3.6) reveals that di?m)( f(s),5,9(5)) is invertible if and only if g’(s) # 0. In
such a case, the implicit function theorem ensures a certain positive number 6 = J(5)

and a neighborhood ‘W5 of (f(5), 5) such that for each ¢ € [0, 4],

det @, ,)(f (), 5,9(5)) = s ()g(s) (3.6)

Ker &° N Us = {(r(B, £), 5(B, £),8) : B € (9(s) = 6,9(5) + 9)). (3.7

Here, Us = W5 X (g(5) — 6,9(5) + 6) and (r(B, ), s(B, £)) is a smooth function with

(r(g(5), 0), s(9(5), 0)) = (f(5), %)
On the other hand, if g’(s) = 0, (3.6) implies rankqﬁ?,,s)( f(s),5,9(s)) = 1; therefore

dim Ker &}, ,(f(3), 5, g(3)) = codim Range &, ,(f(5),5,9(®)) = L. (3.8)

After some computations, we can verify

s

B 5,96 = ( o ) ¢ Range &, ,(f(5).5.9() (39)

By virtue of (3.8) and (3.9), we can use the spontaneous bifurcation theory of Crandall-
Rabinowitz [3, Theorem 3.2 and Remark 3.3] to obtain a positive number § = 6(s) and
a neighborhood U5 of (f(s), 5, ¢(5)) such that, for any ¢ € [0, 6],

Ker @° N Uz = {(r(£, £), 5(£, ), (£, £)) : £ € (=6,6)}. (3.10)
Here, (r(¢, £), s(&, £). B(£, &)) is a smooth function in (¢, &) € [-6,6] x [0, 6] with
((0,0), 5(0,0),5(0,0)) = (9(5), 5, £(5)).
| Since (3.7) or (3.10) holds true for each Us,

Ly([6./2,50 - 6"/2]) € U{U5: 5 € [6./2, 50 — 6°/2]}.
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Furthermore, the compactness of £,([6./2, so — &"/2]) enables us to find finitely many
points {s;};_; such that

(f(s7), 55, 9(s))) € Lp([6./2,50 = 6°/2]) for 1 < j<n,
Lp([6./2,50 — & [2]) € U}y Uj, (where U = Us)).

With regard to Lemmas 3.3 and 3.4, we put U = U. and U, = U". Hence, we
can assume U; N Uy # 0 (j =0,1,2,...,n) without loss of generality. By virtue of
(3.7) and (3.10), we put §; := 6(s;). Then, for any ¢ € [0,6;] (1 < j < n), there exists a
smooth function (r;(¢, €), s (£, €), B;(£, €)) such that

Ker @° N U; = {(rj(é, ), s (£, 6),8i(£,8)) : £ € (—6;,6))) = J5. (3.11)
Here (r;(¢, €), 5 (¢, ), B;(€, £)) satisfies |
(ri(0,0),5;(0,0),8;(0,0)) = (f(5)),5,9(5,))
for each 1 < j < n. Furthermore, by considering Lemmas 3.3 and 3.4, we put

JE = {(r(¢, &), s(¢, £), (&, ©)) : € € (0,6.]},
JE, = {(F(£,8), 8(4,6),B(£,8) : £ € (0,61},

and U = U;‘;‘é U ;. Consequently, it follows from (3.11) and Lemmas 3.3 and 3.4 that
Kerd* N UN Ri = U;’:(} J; for any & € [O, nlinosjs,.+1 6,-] . (3.12)

Here, we put &y := 6. and J,,, := 6*. Hence, (3.12) implies that Ker &* N U N R3
forms a one-dimensional sub-manifold. Indeed, with the aid of the perturbation theory
of Du-Lou [4, Proposition A3], we can construct a bounded smooth curve S(£,&) =

(1€, &), s(&, €), B(&, €)) which satisfies

UG 75 = S(0,C.), &),

(r(€,0), 5(£,0),8(¢,0)) = (F(£), €, 9(£)),

(10, 8), 5(0,£),8(0, £)) = (2,0,8.(£)),

(r(Cs» ), 5(Cer £),B(Cs, 8)) = (0,8°(5), 8°(2)).

Thus, we have proved Lemma 3.5. o

In order to prove Theorem 3.1, we have to show that (2.2) does not admit any
positive solution outside of U obtained in Lemma 3.5. The next lemma can be shown
by a contradiction argument. We refer [10] for the proof.
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Lemma 3.6. Let V(c R3) be any fixed neighborhood of {(f(s), s,g(s)) : 0 < s < so}.
If € > 0 is sufficiently small, then for any positive solution (w, z) of (2.2), there exists

(r,s,B) € V such that
w,z) = (r,s) + U(r, 5,8, €).

Here, U(r, s, B, €) is the X valued function defined in Lemma 2.2.

Consequently, together with Lemmas 3.5 and 3.6, we obtain Theorem 3.1.

4 Stationary Solution Set of the SKT Model
In view of (2.1), it is convenient to state our result on the positive solution set of
the following system, which is obtained from (SP) with (a, k) = (sa,&™"):

Al(l + e lp(x)v)u] + u(ee —u—c(xp) =0 in Q,
(SP), {Av + v(b + d(x)u - v)‘ =0 in Q,
ou=0ov=0 on 0S2.

The following theorem is the main result obtained in this paper.

Theorem 4.1. Let (a, p(x), c(x),d(x)) be fixed arbitrarily. Then, if € > 0 is sufficiently
small, the positive solution set of (SP), (with the bifurcation parameter b) forms a

bounded smooth curve A
T, = {(u,v,b) = (¢, &), v(£,8),b(£,6) e XX R : £€(0,C),

where (u(&, ), v(&, €), b(¢, €)) satisfies

(0, €),v(0, &), b(0, £)) = (6,0, b.(ga)) € I,
W(C,, £),v(C,, &), b(C., £)) = (0,b"(ea),b*(ex)) € I',,

and b(¢,g) < b*(ea) (0 < & < C,). Here, b.(ex) and b*(ea) are the functions obtained
in Theorem 2.1 and C, is the positive function introduced in Theorem 3.1.
In the case when '

1(p,d) = f; o(%) dx Jf, d(x) dx — J{, p(x)d(x)dx > 0,

Jor the positive number

=11 ,d)~!
a ( +£c(x)®£d(x)dx)[(pd)
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and any small positive number 1, there exists a small positive number &y = &o(@x, 1)
such that if 0 < @ < a. —nyand 0 < & < &, then bg(0,&) > 0 and the bifurcation
of I, from (ea,0,b.(ea)) is supercritical. On the other hand, if a. + 1 < @ < 7!
and 0 < ¢ < &y, then bg(0,&) < 0 and the bifurcation of I’ » from (ea,0,b.(ea)) is
subcritical. In such a case, for the minimum value of b;

b= c_n[?)m b(¢, €) < b.(ea),

the following p}'operties hold true:
@) Ifb<borb> b“(sa) then (SP),, possesses no positive solution.

(i) If b = b or b.(ea) < b < b*(ea), then (SP), possesses at least one positive
solution.

(iii) If b < b < b.(ea), then (SP), possesses at least two positive solutions.

Proof. 1t follows from (2.1) that (w, z) is a positive solution of (2.2) if and only if

w
(u,U,b) - 8(1 + ( )Z, ’ﬂ) » (4'1)

is a positive solution of (SP).. Theréfore, Theorem. 3.1 implies that for any fixed
(a, p(x), c(x), d(x)), there exists a small positive number & such that if £ € (0, &),
all positive solutions of (SP), can be parameterized by

= {(u(£, &), u(£, €), b(¢,8)) € X xR : (§,8) € [0,C.] x [0, &]} .

Hence by (4.1), (u(¢, ), v(€, ), b(¢, £)) satisfies

o [ w8
(u(¢, €),v(£,€),b(£,8)) = b(l T P002E, ),Z(«f , €),B(&, 8))

for the function (w(¢, &), z(¢, €), B(£, €)) obtained in (3.1). In view of (3.2), we know
that
b(0,¢) = gB.(€) = bu.(ea) <0, b(C,, &) = gB*(&) = b*(ea) > 0.

Invthe case when I(p,d) > 0, from Theorem 3.2 and the one-to-one relationships of
(4.1), we obviously obtain the desired c-shaped bifurcation curve of I',. Thus the
proof of Theorem 4.1 is complete. ]
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